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Abstract: The fine structure constant give a simple derivation of the localized wavefunction,
Schrödinger equation and the uncertainty principle in Quantum theories.
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�
The fine-structure constant α and proton-to-electron mass ratio β are deeply involved

in the Quantum theory. [1, 2] Pauli considered quantum mechanics to be inconclusive
without understanding of the fine structure constant. [2] Feynman also said that nobody
truly understands quantum mechanics. [3] In this short paper, we discuss the fine structure
constant interpretation of Quantum Theory. [4]

(1) Wavefunction in Quantum Theory
�
One basic problem in the quantum interpretation is the wavefunction. From 1926 to

1928, there are some proposed quantum wave equations ĤΨ = i~ ∂
∂t

Ψ, for example

[−~2µ∇
2 − V (r)]Ψ(r, t) = i~ ∂

∂t
Ψ(r, t) (a) Schrödinger (1)

[ 1
2m(→σ · (→p − q

→
A))2 + qφ]Ψ1,2 = i~ ∂

∂t
Ψ1,2 (b) Pauli

[∇2 − (mc~ )2]Ψ(r, t) = 1
c2

∂
∂t

Ψ(r, t) (c)Klein−Gordon

[βmc2 +
3∑

k=1
αkPkc]Ψ1,2,3,4 = i~ ∂

∂t
Ψ1,2,3,4 (d)Dirac

where the non-relativistic equations are (a) for the atomic electron configuration and
(b) for the Dirac limitation of spin-1/2 particles, and the other two relativistic quantum
equations are (c) for the spin-0 free particle and (d) for the spin-1/2 particle-antiparticles.
The different Hamiltonian Ĥ on the left-side are proposed based on the imitations of
various classical physical process, such as, the Schrodinger’s Hamilton is imitating the
optical wave equation.

The eigenvalues of a negatively charged electron orbiting the positively charged nu-
cleus is determined by the time-independent Schrödinger equation ĤΨ (r) = EΨ (r). [5]
Wavefunction Ψnlm = Rnl (r) Ylm (θ, φ) (n, l, m are quantum numbers) is geometrically
quantized in a 3D cavity. According to Born, Ψ is the probability amplitude and ΨΨ∗ is
the probability density. [6] Each state only allows two counter-spin electrons (ms = ±1

2) as
the Pauli principle, e2 |Ψnlm|2 = α~c |Ψnlm|2 is the probability density of the paired charge.
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The Schrödinger wavefunction Ψnlm indeed describes the twins in a box. Dirac relativistic
quantum equation solves the spin-1/2 problem. Then, e |Ψnlmms|

2 =
√
α~c |Ψnlmms|

2 is
the probability density of the charge. The fine structure constant can be defined as the
conservation of angular momentum

e2

c
= ±α~ (2)

The wavefunction had an entropy format S = klnΨ for ĤΨ = EΨ in Schrödinger’s
first paper in 1926. [5] The Boltzmann constant k is linked to α by the dimensionless
blackbody radiation constant αR and primes [7]

αR = e2( 4σ
ck4 )1/3 = (∏ p2

p2+1
)1/3α = 0.86976680α = 1

157.555 (3)

A plane wave function Ψ(r, t) and the Born probability density |Ψ(r, t)|2 are

Ψ(r, t) = Ae−
i
~ (p·r−Et) = Ae−

i
~Etψ(r) = f(t)ψ(r) (4)

|Ψ(r, t)|2 = ΨΨ∗ = [Ae− i
~Etψ(r)][Ae− i

~Etψ(r)]∗

= Ae−
i
~Etψ(r) · Ae i

~Etψ∗(r) = A2|ψ(r)|2

(2) Schrödinger Equation Derivation from α
�
We notice that e2/c in (2) has the same dimension with ~, Et and p · r. Let’s use

i = −1/i, and e−iπ = −1 = i2 = lne−1 to rewrite (2)

e2

c
= p · r− Et = ±α~ = ±i2 · α~ · lne−1 = i~ ln e∓iα (5)

Applying the Einstein/de Broglie wave-particle duality [8, 9]

E = ~ω (6)
p = ~k

with conservation of angular momentum in the reduced Planck (Dirac) constant ~, [10,11]

lne∓iα = − i
~(p · r−Et) = −i(k · r−ωt) =

´ Ψ

A

du
u

= ln Ψ
A

(7)

In Hilbert space (eiĤt/~ = eiEt/~), a non-localized plane wavefunction Ψ(r, t) = Ae−
i
~Etψ(r),

i.e., Ψ(r, t) = Ae−i(p·r−Et)/~ is defined as the exponential (7), and the wavefunction can
be locally quantized by the fine structure constant as (5)

Ψ(r, t) = Ae−
i
~ (p·r−Et) = Ae∓iα = A cos(∓α)∓ iA sin(∓α) = a∓ bi (8)

In (8), obviously, Ψ(r, t) = ∑
anψn(r) = ∑

ane
−iEt/~ψn(r) and

´
|Ψ|2dV = 1. It is a

Hermitian function, where the real part is an even function and the imaginary part is an
odd function. From Ψ(r, t) = Ae−

i
~ (p·r−Et) = Ae−

i
~ (Px·x+Py ·y+Pz ·z−Et),
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∂
∂t

Ψ(r, t) = − i
~EΨ(r, t) (9)

∂2

∂x2 Ψ(x, t) = − 1
~2P

2
xΨ(x, t)

i.e., the operators can also be derived mathematically

i~ ∂
∂t

Ψ(r, t) = EΨ(r, t) (10)
−~2 ∂2

∂x2 Ψ(x, t) = P 2
xΨ(x, t)

The Hamiltonian Ĥ = T̂ + V̂ = E is the sum of kinetic and potential energy, and
T = 1

2µP2 = 1
2µ(P 2

x+P 2
y +P 2

z ). In this way, the time-independent Schrödinger equation
can be derived from the fine structure constant (2)

�

[−~2µ∇
2 − V (r)]Ψ(r, t) = EΨ(r, t) (11)

�

From (8), the Ψ(r, t) = Ae−
i
~ (p·r−Et) = Ae−iα is for a negatively charged electron orbiting

a positively charged nucleus, which has the complex number conjugates Ψ(r, t) = a − bi
and Ψ(r, t)∗ = a+ bi, then ΨΨ∗ is a real number for the probability density

|Ψ|2 = ΨΨ∗ = (a− bi) (a+ bi) = a2 + b2 (12)
Specially, if Ψ = a− ai, then the normalization from (12) yields a = 1/

√
2.

After localization, the wavefunctions (variables) become simple fixed complex numbers
(vectors in Hilbert space). The complex addition Ψ12 of Ψ1 = a+ bi and Ψ2 = c+ di is

Ψ12 = Ψ1 + Ψ2 = (a+ bi)± (c+ di) = (a± c) + (b± d)i (13)

There is an interference term when calculating the probability density from (10)

Ψ12Ψ∗12 = [(a± c) + (b± d)i][(a± c)− (b± d)i] (14)
= (a± c)2 + (b± d)2

= a2 + b2 + c2 + d2 ± 2(ac+ bd)︸ ︷︷ ︸
This enlightens the physical interpretation of wavefunction. There is a hidden fine-
structure constant α in the localized wavefunction (8). It naturally yields the
eigenvalues En = −Ee(αn)2 from Schrödinger equation, where Ee = 1

2mec
2; and the fine-

structures 4EF = ±Ee(αn)4[3
4 −

n
j+1/2 ] from Dirac relativistic equation, where j = l + ms

is the total angular momentum. [4] In the magnetic field, QED yields the Lamb shift
4EL = Ee

α5

2n3 [k(n, l) ± 1
π(j+1/2)(l+1/2) ], and the hyperfine structures due to the “nuclear

spin” 4EH = ±Ee gp

β
α4

n3

[
F (F +1)−j(j+1)−I(I+1)

j(j+1)(2l+1)

]
, where the total angular momentum F is

equal to the total nuclear spin I plus the total orbital angular momentum J ; the proton
g-factor gp = 5.585. This gives experimental confirmation of a connection between α ∼=
1/137 and β ∼= 1836 . In fact, the reduced masses µ = me·mp

me+mp
= β·me

β+1 ≈ me always
involve β in the Schrödinger equation (11). Quantum theory not only describes the
electron configurations around the nucleus, but also considers the effect of nuclear mass.
Neglecting interaction between electrons, the above eigenvalues are

En=−Eµ(α
n

)2 ∝ α2 = 5.3×10−5 (15)
4EF=±Eµ(α

n
)4[ 3

4−
n

j+1/2 ] ∝ α4 = 2.8×10−9

4EL=Eµ
α5

2n3 [k(n,l)± 1
π(j+1/2)(l+1/2) ] ∝ α5 = 2.1× 10−11

4EH=±Eµ gp

β
α4

n3

[
F (F +1)−j(j+1)−I(I+1)

j(j+1)(2l+1)

]
∝ α4/β = 1.5×10−12
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where Eµ = 1
2µc

2 = 0.25536[MeV]. In (15), we have En > 4EF > 4EL > 4EH since
α2 > α4 > α5 > α4β−1.

The interpretation of entropy S = klnΨ in the statistical mechanics is the measure of
uncertainty, or mixedupness to paraphrase Gibbs. [12] The wave-function Ψ is the number
of micro-states as the statistical information as the probability amplitude.

(3) Uncertainty Principle Derivation from α

�
Landau reviewed the uncertainty principle as 4P4t & ~

c
α1/2. He also pointed out

a weakness in the interpretation of the uncertainty principle, such as, 4E4t & ~
2 “does

not mean that the energy can not be measured with arbitrary accuracy within a short
time.” [13] Bohr used similar derivation on the debate in 1927. [13] Here we show, the
uncertainty principle can also be derived from the fine structure constant
(2), i.e., from e2/c which has the same dimension with ~, Et and p · r

~
2 = e1e2

2αc = e2

2ve
= 1

2
e2

4x
4t = 1

24E4t = (16)

1
2

e2

4x24t4x = 1
2mea4t4x = 1

2me4v4x = 1
24Px4x

where E = e2/r, F = e2/r2 = ma, v = at and P = mv are simple relationships in
classical physics. In (16), if 4t decease, 4x will decease and make 4E increase; so does
4x and 4Px. The 4x and others can be defined as the standard deviations, e.g.,

4x = σx =
√

1
N

N∑
i=1

(xi − x)2 (17)

If 4x→ 0, then the symmetric standard deviation σPx & 1
24Px. Therefore,

4E4t & ~
2 (18)

4Px4x & ~
2

Due to the conservation of angular momentum, the property of e1 must change if e2
is altered. The electrons in a atom are high-speed (αc) charged particles. The distance
between each is constantly changing, which causes the measurement uncertainty. The
nucleon has a micro-motion and thus the electron orbit could not be a perfect circle.
The orthogonal and anti-commute pair [A, B] = ±i~, then 4A4B ≥ ~/2 given by
Heisenberg-Kennard. [14,15]

The Quantum Theory is based on some postulates. The interpretation of Quantum
Theory has been of great debate among theoretical physicists, specially, Bohr and Einstein.
[13] Einstein was quoted: God does not play dice! However, he not only was a pioneer
on Brownian motion, but also supported the Born statistic explanation of Psi-function.
He had argued the realism, completeness, determinism, EPR-paradox, etc. What he
really looking for is A DEFINITE RULE. In 1953, he said “That the Lord should
play dice, all right; but that He should gamble according to definite rules,
that is beyond me.” [16] Here we show, the fine structure constant α is the ruler of
quantum theory. The wavefunction, Schrödinger equation and Uncertainty principle can
all be derived from it. Just like Pauli and Feynman point out: Quantum Theory to be
inconclusive without understand the fine structure constant. [2, 3]

�
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