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In this paper we give the n-th root algorithm in completions of fraction
semifields of normed euclidean semialgebras for every natural n > 1. The
algorithm starts with a nonzero element in terms of its p-adic expansion for a
nonunit p of nonzero degree of a normed euclidean semialgebra, thereafter, for
a nonzero natural m, calculates and writes O(m) elements of length O(1) to go
through O(m) steps in each of which compares, calculates and writes O(1)
elements of length O(m*) for some natural number k.

Let R be the completion of the fraction semifield Q% of a normed euclidean
semialgebra Ng with the Zariski topology F, let x € R such that z # Og,
let p € Ng such that degp > 0 and p # 1g, that is, for N is free since
it is euclidean and so R, its fraction completion, also a free semialgebra, its
multiplicative cyclic subgroup (p) is a basis of R. Let n € N such that n > 1.
Let Z [z] be the algebra of polynomials of one variable in R over Z with the
Zariski topology, and let B be the basis of the Zariski topology F for Z [z], that
is, B C F such that for every F' € B there exists s € R and Fs € F such that
there exists a linear polynomial f € Z[z] such that f(s) = Or, Fs = Var(f) and
F = F;.

By the division algorithm in complete free semialgebras, for = and (p), there
exist unique N € Z and ay,an_1, ... € Ng such that a, # 0,
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and 0 < degay—_; < degp for every i because (p) is a multiplicative cyclic
basis of R, the right member of this equation known as the p-adic expansion
of x. Also by the division algorithm in integer normed euclidean algebras, for
N € Z and n there exist unique ¢ € Z and r € N such that N = ng + r and
0 < degyr < degy n, that is, 0 < r < n, then
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Let go,91,... € R such that
- k
9o = D GngikP
k=0

and



n—1

gi = Z an(q—i)+kpk
k=0
for every i > 0. At the first step find
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Afterwards find
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dy = p"r1 + ga2.
At the i-th step find

o0 i_l . . .
yi=max{yeNgn U Fo: Z()(Zp )"y <dioa}
=17 k=0

SER =
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Finally the n-th root z of z is
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Time complexity of the algorithm

The n-th root algorithm is of polynomial time complexity because, in every
completion R of the fraction semifield of any normed euclidean semialgebra Ny,
for every natural n > 1, for an input nonzero element of length v in terms of
its p-adic expansion for a nonunit p of nonzero degree of the normed euclidean
semialgebra, since both the n-th root is an isomorphism between the positive
multiplicative group and the real additive group and by the division algorithm
in normed euclidean semialgebras, for v — 1 € N and n, there exist unique
m € N and p € N such that v =nm+p and 1 < p < n+ 1, the output its n-th
root is of length m + 1 = O(m) in terms of its p-adic expansion if it is finite
as is the number of steps in which it is calculated, at the i-th of which after
writing O(m) elements of length O(1), so in time O(m), for n > 3 the n-th root
algorithm compares and writes O(1) elements calculated in time O(m?), thereby
of length O(m?), so also in time O(m?), as does the squared root algorithm in
time O(m?), therefore, since O(m*) = O(v*), the time complexity of the n-th
root algorithm, for n = 2, is T'(n) = O(n?), and, for n > 3, T'(n) = O(n?).

A theorem of the theory of complete free semialgebras

The n-th root algorithm is a consequence of both the division algorithm
in the theory of complete free semialgebras and of a corollary of the binomial
theorem in the theory of semirings that states in every semiring R, for every
n €N, meNand zg,z1,...,2, €R,
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Thus the existence of the m-th root algorithm in completions of fraction
semifields of normed euclidean semialgebras is in accordance not only with the
completeness of the theory of semirings and with the completeness of the theory
of semifields, but also with the incompleteness of the theory of complete free
semialgebras.
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