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Abstract

The generalized (vacuum) field equations corresponding to gravity on curved
2d-dimensional tangent bundle/phase spaces associated to the geometry of the
(co)tangent bundle TMd−1,1(T ∗Md−1,1) of a d-dim spacetime Md−1,1 is investi-
gated following the strict formalism of Lagrange-Finsler and Hamilton-Cartan
geometry. It is found that there is no mathematical equivalence with Einstein’s
vacuum field equations in spacetimes of 2d-dimensions, with two times, after
a d + d Kaluza-Klein-like decomposition of the 2d-dim scalar curvature R is
performed and involving the introduction of a nonlinear connection Aa

µ(xµ, yb).
The physical applications of the 4-dim phase space metric solutions found in
this work, corresponding to the cotangent space of a 2-dim spacetime, deserve
further investigation. The physics of two times may relevant in the solution to
the problem of time in Quantum Gravity. Finding nontrivial solutions of the
generalized gravitational field equations corresponding to the 8-dim cotangent
bundle (phase space) of the 4-dim spacetime remains a challenging task.

1 Introduction : Born’s Reciprocal Relativity in
Phase Space

Born’s reciprocal (”dual”) relativity [1] was proposed long ago based on the
idea that coordinates and momenta should be unified on the same footing, and
consequently, if there is a limiting speed (temporal derivative of the position
coordinates) in Nature there should be a maximal force as well, since force is the
temporal derivative of the momentum. A maximal speed limit (speed of light)
must be accompanied with a maximal proper force (which is also compatible
with a maximal and minimal length duality). The generalized velocity and
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acceleration boosts (rotations) transformations of the 8D Phase space, where
Xi, T, E, P i; i = 1, 2, 3 are all boosted (rotated) into each-other, were given by
[2] based on the group U(1, 3) and which is the Born version of the Lorentz
group SO(1, 3).

The U(1, 3) = SU(1, 3) ⊗ U(1) group transformations leave invariant the
symplectic 2-form Ω = − dt∧dp0+δijdxi∧dpj ; i, j = 1, 2, 3 and also the following
Born-Green line interval in the 8D phase-space (in natural units h̄ = c = 1)

(dσ)2 = (dt)2 − (dx)2 − (dy)2 − (dz)2 +
1
b2

(
(dE)2 − (dpx)2 − (dpy)2 − (dpz)2

)
(1.1)

the rotations, velocity and force (acceleration) boosts leaving invariant the sym-
plectic 2-form and the line interval in the 8D phase-space are rather elaborate,
see [2] for details. These transformations can be simplified drastically when
the velocity and force (acceleration) boosts are both parallel to the x-direction
and leave the transverse directions y, z, py, pz intact. There is now a subgroup
U(1, 1) = SU(1, 1) ⊗ U(1) ⊂ U(1, 3) which leaves invariant the following line
interval

(dω)2 = (dT )2 − (dX)2 +
(dE)2 − (dP )2

b2
=

(dτ)2
(

1 +
(dE/dτ)2 − (dP/dτ)2

b2

)
= (dτ)2

(
1 − F 2

F 2
max

)
(1.2)

where one has factored out the proper time infinitesimal (dτ)2 = dT 2 − dX2 in
(2.2). The proper force interval (dE/dτ)2− (dP/dτ)2 = −F 2 < 0 is ”spacelike”
when the proper velocity interval (dT/dτ)2 − (dX/dτ)2 > 0 is timelike. The
analog of the Lorentz relativistic factor in eq-(2.2) involves the ratios of two
proper forces.

If (in natural units h̄ = c = 1) one sets the maximal proper-force to be given
by b ≡ mP Amax, where mP = (1/LP ) is the Planck mass and Amax = (1/Lp),
then b = (1/LP )2 may also be interpreted as the maximal string tension. The
units of b would be of (mass)2. In the most general case there are four scales
of time, energy, momentum and length that can be constructed from the three
constants b, c, h̄ as follows

λt =

√
h̄

bc
; λl =

√
h̄ c

b
; λp =

√
h̄ b

c
; λe =

√
h̄ b c (1.3)

The gravitational constant can be written as G = αG c4/b where αG is a di-
mensionless parameter to be determined experimentally. If αG = 1, then the
four scales (2.3) coincide with the Planck time, length, momentum and energy,
respectively.

The U(1, 1) group transformation laws of the phase-space coordinates X, T, P,E
which leave the interval (2.2) invariant are [2]

T ′ = T coshξ + (
ξv X

c2
+

ξa P

b2
)

sinhξ

ξ
(1.4a)
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E′ = E coshξ + (−ξa X + ξvP )
sinhξ

ξ
(1.4b)

X ′ = X coshξ + (ξv T − ξa E

b2
)

sinhξ

ξ
(1.4c)

P ′ = P coshξ + (
ξv E

c2
+ ξa T )

sinhξ

ξ
(1.4d)

ξv is the velocity-boost rapidity parameter and the ξa is the force (acceleration)
boost rapidity parameter of the primed-reference frame. These parameters are
defined respectively in terms of the velocity v = dX/dT and force f = dP/dT
(related to acceleration) as

tanh(
ξv

c
) =

v

c
; tanh(

ξa

b
) =

f

Fmax
(1.5)

It is straightforwad to verify that the transformations (1.4) leave invariant
the phase space interval c2(dT )2 − (dX)2 + ((dE)2 − c2(dP )2)/b2 but do not
leave separately invariant the proper time interval (dτ)2 = dT 2 − dX2, nor the
interval in energy-momentum space 1

b2 [(dE)2− c2(dP )2]. Only the combination

(dσ)2 = (dτ)2
(

1 − F 2

F 2
max

)
(1.6)

is truly left invariant under force (acceleration) boosts (1.4).
The physics of a limiting value of the proper acceleration in spacetime [4] has

been studied by Brandt [3] from the perspective of the tangent bundle geometry.
Generalized 8D gravitational equations reduce to ordinary Einstein-Riemannian
gravitational equations in the infinite acceleration limit. A pedagogical mono-
graph on Finsler geometry can be found in [9] and [10] where, in particular,
Clifford/spinor structures were defined with respect to nonlinear connections
associated with certain nonholonomic modifications of Riemann–Cartan grav-
ity.

We explored in [5] some novel consequences of Born’s reciprocal Relativity
theory in flat phase-space and generalized the theory to the curved spacetime
scenario. We provided, in particular, six specific results resulting from Born’s
reciprocal Relativity and which are not present in Special Relativity. These are
: momentum-dependent time delay in the emission and detection of photons;
energy-dependent notion of locality; superluminal behavior; relative rotation
of photon trajectories due to the aberration of light; invariance of areas-cells
in phase-space and modified dispersion relations. A different approach to the
physics of curved momentum space has been undertaken by [22], [23], [24].

The purpose of this work is to analyze the geometry of the curved 8D (co)
tangent bundle within the context of the geometry of Lagrange-Finsler (tan-
gent space) and Hamilton-Cartan spaces (phase spaces), instead of viewing
Born’s reciprocal complex gravitational theory [6] as an 8D local gauge the-
ory of the Quaplectic group [2] that is given by the semi-direct product of the
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pseudo-unitary group U(1, 3) with the Weyl-Heisenberg group involving four
coordinates and momenta. We shall work with real metrics, instead of complex
metrics having symmetric real components and antisymmetric imaginary ones
[6]. We must emphasize that Reciprocity symmetry and U(1, 3) invariance will
not be invoked in this work.

2 Two-Times Physics and Phase Space Metrics

Through the years it has become evident that the (2, 2)-signature is not only
mathematically interesting [13] (see also Refs. [14], [15]) but also physically. In
fact, the (2, 2) signature emerges in several physical contexts, including self-dual
gravity a la Plebanski (see Ref. [16] and references therein), consistent N = 2
superstring theory as discussed by Ooguri and Vafa [17], and the N = (2, 1)
heterotic string [19].

In [18] it was shown how a N = 2 Supersymmetric Wess-Zumino-Novikov-
Witten model valued in the area-preserving (super) diffeomorphisms group is
Self Dual Supergravity in 2+2 and 3+1 dimensions depending on the signatures
of the base manifold and target space. The interplay amongW∞ gravity, N = 2
Strings, self dual membranes, SU(∞) Toda lattices and SU∗(∞) Yang-Mills
instantons in 2 + 2 dimensions can be found also [18] .

More recently, using the requirement of SL(2, R) and Lorentz symmetries
it has been proved by [21] that the 2 + 2-target spacetime of a 0-brane is an
exceptional signature, where a special kind of 0-brane called quatl shows that
the 2 + 2-target spacetime can be understood either as the 2 + 2-world-volume
or as a 1 + 1 matrix-brane. Another recent motivation of physical interest
is that the 2 + 2-signature emerges in the discovery of hidden symmetries of
the Nambu-Goto action found by [20]. In fact, Duff was able to rewrite the
Nambu-Goto action in a 2 + 2-target spacetime in terms of Cayley’s hyper-
determinant, revealing apparently new hidden symmetries of such an action.
Duff’s observation has been linked with the matrix-brane idea [21]. Black-hole-
like solutions ( spacetimes with singularities ) of Einstein field equations in 3+1
and 2 + 2-dimensions were studied in [8].

Bars [12] has proposed a gauge symmetry in phase space. One of the con-
sequences of this gauge symmetry is a new formulation of physics in spacetime.
Instead of one time there must be two times, while phenomena described by
one-time physics in 3 + 1 dimensions appear as various shadows of the same
phenomena that occur in 4 + 2 dimensions with one extra space and one extra
time dimensions (more generally, d + 2). Problems of ghosts and causality are
resolved automatically by the Sp(2, R) gauge symmetry in phase space.

Instead of working with d+2-dim spaces with two times [12] we shall propose
a different picture and view the two temporal directions as those corresponding
to the time and energy variables of phase space, whereas the remaining phase
space variables correspond to the spatial coordinates and momenta. Following
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this premise, firstly, we shall search for candidate 4-dim phase space metrics of
signature (2, 2) which are associated with metrics in 4-dim curved spacetimes
of signature (2, 2) and that are solutions to the ordinary vacuum Einstein field
equations. In the next section, we shall formulate the rigorous construction of
the geometry of the cotangent bundle (phase space) of spacetime within the
context of the geometry of Hamilton-Cartan and Lagrange-Finsler spaces [9],
[10], [11].

Let us begin with 4-dim spacetimes of signature (2, 2). Given a 4-dim space-
time of signature +,+,−,− (two times, t1, t2), a parametrization of the t2, x, y
coordinates in terms of the variables

r ≥ 0; −∞ ≤ ξ ≤ +∞; 0 ≤ θ ≤ 2π; −∞ ≤ t2 ≤ +∞ (2.1)

given by

t2 = r sinh ξ; x = r cosh ξ cos θ; y = r cosh ξ sin θ. (2.2)

where r is the variable throat size of the 2-dim hyperboloid H2 embedded in
3-dim and that can be defined analytically in terms of t2, x, y as

−(t2)2 + x2 + y2 = r2. (2.3)

shows that the flat spacetime metric

(ds)2 = − (dt1)2 − (dt2)2 + (dx)2 + (dy)2 (2.4)

can be recast in terms of the new coordinates as

ds2 = −(dt1)2 + (dr)2 + r2[ cosh2 ξ (dθ)2 − (dξ)2 ]. (2.5)

Notice that we have a two times (−,+,+,−) signature in eq-(2.5), as one should.
The topology corresponding to metric in eq-(2.5) is R × R∗ × H2. R∗ is the
half-interval [0,∞] representing the values of the radial coordinate. One tem-
poral variable t1 is characterized by the real line R and whose values range
from (−∞,+∞), and the other temporal variable t2 is one of the 3 coordinates
(t2, x, y) which parametrize the two-dim hyperboloid H2 described by eq-(2.3).

A curved spacetime version of the metric of eq-(2.5) is

ds2 = −eµ(r)(dt1)2 + eν(r)(dr)2 + (R(r))2[ cosh2 ξ (dθ)2 − (dξ)2 ]. (2.6)

The metric in eq-(2.6) whose signature is (2, 2) = (−,+,+,−) is the hyperbolic
version of the Schwarzschild metric. In general, due to radial reparametrization
invariance, one can replace the radial variable r → R(r) for another variable
called the area-radius, since Einstein’s equations do not determine the form of
the radial function R(r) as explained in the appendix. We still must determine
what are the functional forms of µ(r) and ν(r). In the appendix we find the
solutions to Einstein’s vacuum field equations in D-dimensions for metrics as-
sociated with a D − 2-dim homogeneous space of constant positive (negative
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) scalar curvature. In particular when D = 4 and the two-dim homogeneous
space H2 has a constant positive scalar curvature, like two-dim de Sitter space,
the metric components, in natural units G = h̄ = c = 1, are given by

(ds)2 = − (1− 2M

r
) (dt)2 + (1− 2M

r
)−1 (dr)2 + r2 ( cosh2ξ (dθ)2 − (dξ)2 )

(2.7)
The 2-dim hyperboloid homogeneous space whose metric is defined by (ds)2 =
r2(cosh2ξ (dθ)2 − (dξ)2) coincides with the metric of a 2-dim de Sitter space
of constant positive scalar curvature and whose throat-size is r. Anti de Sitter
space has a constant negative scalar curvature. There is a physical singularity
at r = 0, the location of the point mass source, when the hyperboloid H2

degenerates to a cone since the throat size r has been pinched to zero.
By postulating that the momentum coordinates E,P are curled-up along

the 2-dim de Sitter space allows to set the correspondence E
λe
↔ ξ; P

λp
↔ θ,

while the spacetime coordinates correspondence is X ↔ r; T ↔ t. λp, λe are the
scales of momentum and energy that can be constructed from the three constants
b, c, h̄ as described in eq-(1.3). A nontrivial metric associated to a curved 4D
phase-space and which is a putative solution to the vacuum field (generalized
gravitational) equations corresponding to the cotangent bundle T ∗M of a two-
dim spacetime M is

(ds)2 = −(1−2M

X
) (dT )2 + (1−2M

X
)−1 (dX)2 + X2 [ cosh2(

E

λe
)

(dP )2

λ2
p

− (dE)2

λ2
e

]

(2.8)
One has the correct (2, 2) signature −,+,+,− and the domain of values of the
X, T,E, P variables are respectively

X ≥ 0; −∞ ≤ T ≤ +∞; −∞ ≤ E

λe
≤ +∞; 0 ≤ P

λp
≤ 2π (2.9)

A different identification for the phase space variables can be found from the
following correspondence

−(t2)2 + x2 + y2 = r2 ↔ −e2 + x2 + p2 = r2 = X2 (2.10)

so that
T = t1 = t; e = t2 = r sinhξ = X sinh(

E

λe
) (2.11)

x = r coshξ cosθ = X cosh(
E

λe
) cos(

P

λp
)

p = r coshξ sinθ = X cosh(
E

λe
) sin(

P

λp
) (2.12)
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P

λp
= θ = arctan(

p

x
) ⇒ dθ =

1
1 + (p/x)2

d(
p

x
) (2.13)

(dX)2 = (dr)2 = [−e2 + x2 + p2 ]−1 (−ede + xdx + pdp)2; (2.14)

r2 (dξ)2 = X2 (dE)2

λ2
e

=

1
x2 + p2

[ (−e2 + x2 + p2)(de)2 +
e2

−e2 + x2 + p2
(−ede + xdx + pdp)2 ] −

1
x2 + p2

[ 2e de (−ede + xdx + pdp) ] (2.15)

etc .... leading to a very complicated expression for the metric (2.8) rewritten
in terms of the t, x, e, p variables. In the flat phase limit, M = 0, the metric
(2.8) can be rewritten in the standard pseudo-Euclidean form

(ds)2 = −(dt)2−(de)2+(dx)2+(dp)2 ↔ −(dt1)2−(dt2)2+(dx)2+(dy)2 (2.16)

as expected.
We have shown that a particular 4D metric of topology R × S1 × R × S1

which solves the 4D vacuum Einstein field equations in spaces of signature (2, 2)
is of the form [8]

ds2 = − (λl/ρ) (dt1)2 + (ρ/λl) (dρ)2 + ρ2 ( (dθ)2 − (dt2)2

λ2
t

) =

−(λl/ρ) (dt1)2 + (ρ/λl) (dρ)2 + ρ2 ( (dθ)2 − (dφ)2 ) (2.17)

where φ ≡ t2/λt and λt, λl are constants. By assigning in eq-(2.17) the phase
space variables

t1 = T ; ρ = X; θ =
P

λp
; t2 = E; φ =

E

λe
; (2.18)

the 4-dim phase space metric of signature (2, 2) becomes

(ds)2 = − (dT )2

(X/λl)
+

X

λl
(dX)2 − X2 (dE)2

λ2
e

+ X2 (dP )2

λ2
p

(2.19)

where λt, λe, λp, λl are the four scales of time, energy, momentum and length
that can be constructed from the three constants b, c, h̄ as described in eq-(1.3).
In natural units h̄ = c = G = b = 1 one has that λt = λe = λp = λl = 1.

Since the cotangent space of the circle S1 is a cylinder R×S1, the 4D space
of topology R×S1×R×S1 can be interpreted as the cotangent bundle (phase-
space) of the 2-dim torus S1 × S1. The latter torus is also the Shilov boundary
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of the 4D phase space. Another approach to gravity in curved phase spaces
from the perspective of the geometry of bounded homogenous complex domains
has been undertaken by [26]. Phase space is interpreted as the upper tubular
regions of these complex domains, like the Siegel upper half plane (obtained
from a conformal map of the Poincare disk), and spacetime corresponds to
their Shilov boundary. Applications of curved phase spaces in Quantum Field
Theories can be found in [27].

Physically, eq-(2.18) assigns the energy-momentum E,P variables to be con-
fined along the two-torus S1 × S1, and the space-time T,X variables are the
fibers of the cotangent space of the two-torus. Therefore, the 4D phase-space is
the cotangent bundle of the two-torus whose topology is R × S1 × R × S1. By
Born’s reciprocity one may reverse the assignment so that the space-time T,X
variables are confined along the two-torus S1×S1, while the energy-momentum
E,P variables are the fibers of the cotangent space of the torus, setting aside
for the moment the caveat behind having closed-timelike variables. One can
bypass this problem by going to the covering space of the circle, like it is done
with the temporal variable in AdS spacetime.

As shown in the Appendix, another metric solution in D = 4 when the two-
dim homogeneous space has a constant negative scalar curvature, like two-dim
de Anti de Sitter space AdS2, in natural units G = h̄ = c = 1, is given by

(ds)2 = (1+
2M

r
) (dt)2 − (1+

2M

r
)−1 (dr)2 + r2 ( − cosh2ξ (dθ)2 + (dξ)2 )

(2.20)
in this case one has a signature flip from the signature of the metric in eq-(2.7).
By exchanging r ↔ t, like it occurs with the Kantowski-Sachs cosmological
solution, eq-(2.20) becomes

(ds)2 = (1+
2M

t
) (dr)2 − (1+

2M

t
)−1 (dt)2 + t2 ( − cosh2ξ (dθ)2 + (dξ)2 )

(2.21)
If the energy-momentum coordinates E,P are curled-up along the 2-dim Anti
de Sitter space, it allows to set the correspondence E

λe
↔ θ; P

λp
↔ ξ, and

X ↔ r; T ↔ t so that eq-(2.21) becomes

(ds)2 = (1+
2M

T
) (dX)2 − (1+

2M

T
)−1 (dT )2 + T 2 [− cosh2(

P

λp
)

(dE)2

λ2
e

+
(dP )2

λ2
p

]

(2.22)
which is another nontrivial metric associated to a curved 4-dim phase-space
and which is a putative solution to the vacuum field (generalized gravitational)
equations corresponding to the cotangent bundle T ∗M of a two-dim spacetime
M . One has the correct (2, 2) signature +,−,−,+ in eq-(2.22) : (dX)2, (dP )2

appear with a positive sign, whereas (dT )2, (dE)2 appear with a negative sign.
The domain of values of the X, T, P,E variables in eq-(2.22) are respectively

X ≥ 0; −∞ ≤ T ≤ +∞; −∞ ≤ P

λp
≤ +∞; 0 ≤ E

λe
≤ 2π (2.23)
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To sum up, we have displayed three nontrivial metrics in phase space given
by eqs-(2.8, 2.19, 2.22) with split signature (2, 2) and which are obtained from
solutions to the 4-dim Einstein field equations in spacetimes of signature (2, 2)
by identifying one of the temporal variables with the energy and one of the
spatial variables with the momentum. In the next section we shall study the
geometry of the (co) tangent space within the framework of Lagrange-Finsler
geometry and Hamilton-Cartan spaces and explore the field equations in order
to verify the validity of the proposed metric solutions gIJ(xi, pi) in phase spaces,
where the indices span i, j = 1, 2, 3, ....d and I, J = 1, 2, 3, ...., 2d.

3 Gravity in Curved Phase Spaces

3.1 A Kaluza-Klein like approach

Some time ago, it was shown by [7] that a Kaluza-Klein formalism of Einstein’s
theory, based on the (2 + 2)-fibration of a generic 4-dimensional spacetime, de-
scribes General Relativity as a Yang-Mills gauge theory on the 2-dimensional
base manifold, where the local gauge symmetry is the group of the diffeomor-
phisms of the 2-dimensional fibre manifold. They found the Schwarzschild solu-
tion by solving the field equations after a very laborious procedure. Their for-
malism was valid for any d+n decomposition of the D-dim spacetime D = d+n.

As shown by [7] the line element

ds2 = gab dya dyb + (gµν + gab Aa
µ Ab

ν) dxµ dxν + 2gab Ab
µ dxµ dya. (3.1)

in light cone coordinates

u =
1√
2

(t + r), v =
1√
2

(t− r). (3.2)

Aa
u =

1√
2

(Aa
t + Aa

r), Aa
v =

1√
2

(Aa
t − Aa

r). (3.3)

after using the Polyakov ansatz

gµν =
(
−2 h(t, r) −1
−1 0

)
, (3.4)

becomes

ds2 = gab dya dyb − 2du dv − 2h(u) du2 +

gab (Aa
udu + Ab

vdv) (Ab
udu + Ab

vdv) + 2gab (Aa
udu + Ab

vdv) dya. (3.5a)

Upon setting gab = eσ ρab such that det ρab = 1 and after a very laborious
calculation Yoon [7] arrived finally at the expression for the scalar curvature
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R = gµν (Rα
µαν + Rb

µbν) + gab(Rc
acb + Rµ

aµb) (3.5b)

in the light-cone coordinates given by

R = − 1
2

e2σ ρab F a
+− F b

+− + eσ R2 + eσ D+σ D−σ −

1
2

eσ ρab ρcd (D+ρab) (D−ρcd) +
1
2

eσ ρab ρcd (D+ρac) (D−ρbd) +

2h++ eσ [ D2
−σ +

1
2
(D−σ)2 +

1
4

ρab ρcd (D−ρac) (D−ρbd) ] (3.6)

plus surface terms. The Lie-bracket is

[ Aµ , gab ] = (∂a Ac
µ(xµ, ya)) gbc(xµ, ya) + (∂b Ac

µ(xµ, ya)) gac(xµ, ya) +

Ac
µ(xµ, ya) ∂c gab(xµ, ya). (3.7)

the Yang-Mills-like field strength is

F a
µν = ∂µAa

ν − ∂νAa
µ − [Aµ, Aν ]a =

∂µAa
ν − ∂νAa

µ − Ac
µ∂cA

a
ν + Ac

ν∂cA
a
µ. (3.8)

The covariant derivative of a tensor density ρab with weight 1 is

Dµ ρab = ∂µ ρab − [ Aµ , ρ ]ab + (∂cA
c
µ) ρab =

∂µ ρab −Ac
µ∂c ρab − (∂aAc

µ) ρcb − (∂bA
c
µ) ρac + (∂cA

c
µ) ρab. (3.9)

the covariant derivative on the scalar density Ω = eσ of weight −1 is

DµΩ = ∂µΩ −Aa
µ∂aΩ − (∂aAa

µ)Ω ⇒ . (3.10)

Dµσ = ∂µσ −Aa
µ∂aσ − (∂aAa

µ). (3.11)

after factoring the eσ terms.
The authors [7] were able to solve the equations of motion associated with

the Einstein-Hilbert action

S =
∫

du dv d2y R. (3.12)

by varying the Einstein-Hilbert action before imposing the gauge fixing con-
ditions (3.4) and det ρab = 1 giving a total of 10 equations for the 10 fields
σ, h++, h−−, Aa

+, Aa
−, ρab with a, b = 1, 2. These 10 fields match the same num-

ber of idependent components of the metric gµν in 4D. After a very laborious
procedure the authors found solutions for the ”vacuum” field configurations
Aa

+ = 0, Aa
− = 0 given by

ds2 = 2 du dv − (1− 2GM

u
) dv2 + u2 dΩ2. (3.13)
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ds2 = − 2 du dv − (1− 2GM

v
) du2 + v2 dΩ2. (3.14)

which have the same functional form as the Schwarzschild-Hilbert solution
in the retarded and advanced temporal Eddington-Finkelstein coordinates, u =
t− r∗, v = t + r∗

ds2 = 2 dr dv − (1− 2GM

r
) dv2 + r2 dΩ2. (3.15)

ds2 = − 2 du dr − (1− 2GM

r
) du2 + r2 dΩ2. (3.16)

with the subtle technicality that r∗ appearing in the definitions u = t− r∗, v =
t + r∗ in eqs-(2.15, 2.16) is the tortoise radial coordinate r∗(r) given by

∫
dr∗ =

∫
dr

1− 2GM/r
⇒ r∗ = r + 2GM ln | r

2GM
− 1|. (3.17a)

It is well known [25] that one can introduce afterwards the Fronsdal-Kruskal-
Szekeres coordinates in terms of the Eddington-Finkelstein coordinates and
which allow an analytical extension of the Schwarzschild-Hilbert solution into
the interior region of the black hole beyond the horizon.

The solutions in eqs-(3.13-3.16) reflect the spherical symmetry where r2(dΩ)2

is the standard metric of the two-dim sphere S2. In the split signature case (2, 2),
one must replace the r2(dΩ)2 metric interval by the one corresponding to an
internal two-dim hyperboloid H2, a two-dim de Sitter space dS2, and given by
r2(cosh2ξ(dθ)2 − (dξ)2) as indicated by eq-(2.7).

Secondly, in order to avoid confusion with the notation, let us label t′, r′ for
the variables of the 1 + 1 dim spacetime M1+1 used by [7], such that the equiv-
alence of eq-(3.14) with eq-(3.16) is established by setting the correspondence

t′ − r′ ↔ r; t′ + r′ ↔ t − r∗ = t − ( r +2GM ln | r

2GM
−1| ) (3.17b)

similar equivalence of eq-(3.13) with eq-(3.15) is established by setting the cor-
respondence

t′ + r′ ↔ r; t′ − r′ ↔ t + r∗ = t + ( r +2GM ln | r

2GM
−1| ) (3.17c)

To sum up, the equivalence among eqs-(3.13, 3.14) with eqs-(3.15,3.16) cor-
roborates once more that the metric (2.7) is a solution of the 4D Einstein field
equations, as well as being a solution to the field equations after a Kaluza-Klein-
like 2 + 2 decomposition of the 4D space is performed, in the split signature
(2, 2) case.

Having written the explicit 2 + 2 decomposition and above solutions in eqs-
(3.15, 3.16), one may assign the internal variables, that parametrize the hyper-
bolic two-dim de Sitter space dS2, to correspond to the energy E and momentum
P , and the 1+1 base spacetime variables to correspond to the X, T coordinates
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of the 4-dim phase space. In order to have consistent units one must have that
ya ↔ pa/b; ∂/∂ya ↔ b ∂/∂pa and Aa

i ∂ya ↔ bAia∂pa , with i, j = 1, 2; a = 1, 2.
In natural units h̄ = G = c = 1 it yields b = 1, as shown in eq-(1.3), such that
it simplifies matters.

Concluding, the 4-dim curved phase-space metric (2.8) is a viable solution
to the gravitational field equations following the Kaluza-Klein-like 2+2 decom-
position and after identifying the internal coordinates with the E,P variables.
The other solutions in eqs-(2.19, 2.22) are harder to verify. A more rigorous
method to find and verify solutions to the generalized gravitational field equa-
tions in tangent spaces/phase spaces requires to study directly the geometry of
the (co)tangent bundle TM

1+1(T
∗M1+1) of the two-dim spacetime M1+1, rather

than following the Kaluza-Klein-like method of [7] described above. We find
that the Kaluza-Klein decomposition is not equivalent to the more rigorous
methods of Finsler-Lagrange and Hamilton-Cartan spaces [9]. We proceed to
show this in the next section. See also the related work by [3].

3.2 Geometry of the Tangent and Cotangent Bundle of
Spacetime : Lagrange-Finsler and Hamilton-Cartan
Spaces

In this section we shall present the essentials behind the geometry of the tangent
and cotangent space. We will follow closely the description by authors [9], [10],
[11]. The metric associated with the tangent space TMd can be written in the
in the following block diagonal form

(ds)2 = gij(xk, ya) dxid xj + hab(xi, ya) δya δyb (3.18)

(i, j, k = 1, 2, 3, ....d; a, b, c = 1, 2, 3, ....d) if instead of the standard coordinate-
basis one introduces the anholonomic frames (non-coordinate basis) defined as

δi = ∂i −N b
i (x, y) ∂b = ∂/∂xi −N b

i (x, y) ∂b; ∂a =
∂

dya
(3.19)

and its dual basis is

δα ≡ δuα = (δi = dxi, δa = dya + Na
k (x, y) dxk) (3.20)

where the N–coefficients define a nonlinear connection, N–connection structure,
see details in [9], [10], [11]. As a very particular case one recovers the ordinary
linear connections if Na

i (x, y) = Γa
bi (x) yb.

The N–connection structures can be naturally defined on (pseudo) Rieman-
nian spacetimes and one can relate them with some anholonomic frame fields
(vielbeins) satisfying the relations δαδβ − δβδα = W γ

αβδγ , with nontrivial an-
holonomy coefficients

W k
ij = 0; W k

aj = 0; W k
ia = 0; W k

ab = 0; W c
ab = 0

12



W a
ij = − Ωa

ij ; W a
bj = − ∂bN

a
j ; W b

ia = ∂aN b
j (3.21)

where
Ωa

ij = δjN
a
i − δiN

a
j (3.22)

is the nonlinear connection curvature (N–curvature). This is the same object as
F a

µν described in the previous section when Na
j ↔ Aa

µ.
A metric of type given by eq-(3.18) with arbitrary coefficients gij(xk, ya) and

hab(xk, ya) defined with respect to a N–elongated basis is called a distinguished
metric. A linear connection Dδγ

δβ = Γα
βγ(x, y)δα associated to an operator

of covariant derivation D is compatible with a metric gαβ and N–connection
structure on a pseudo–Riemannian spacetime if Dαgβγ = 0. The linear distin-
guished connection is parametrized by irreducible (horizontal, vertical ) h–v–
components, Γα

βγ =
(
Li

jk, La
bk, Ci

jc, C
a
bc

)
such that [9], [10], [11].

Li
jk =

1
2
gin (δkgnj + δjgnk − δngjk)

La
bk = ∂bN

a
k +

1
2
hac
(
δkhbc − hdc∂bN

d
k − hdb∂cN

d
k

)
Ci

jc =
1
2
gik∂cgjk; Ca

bc =
1
2
had (∂chdb + ∂bhdc − ∂dhbc) . (3.23)

This defines a canonical linear connection (distinguished by a N–connection)
which is similar to the metric connection introduced by Christoffel symbols in
the case of holonomic bases. The anholonomic coefficients wγ

αβ and N–elongated
derivatives give nontrivial coefficients for the torsion tensor, T (δγ , δβ) = Tα

βγδα.
One arrives at

Tα
βγ = Γα

βγ − Γα
γβ + wα

βγ , (3.24)

and at the curvature tensor, R(δτ , δγ)δβ = R α
β γτδα

R α
β γτ = δτΓα

βγ − δγΓα
βτ + Γσ

βγΓα
στ − Γσ

βτΓα
σγ + Γα

βσwσ
γτ (3.25)

One should note the key presence of the last term in (3.25) due to the non-
vanishing anholonomic coefficients wγ

αβ . One is not accustomed to see this
term in ordinary textbooks. The torsion distinguished tensor has the following
irreducible, nonvanishing, h–v–components, Tα

βγ =
(
T i

jk, Ci
ja, Sa

bc, T
a
ij , T

a
bi

)
given by

T i
jk = Li

jk − Li
kj ; T i

ja = Ci
ja; T i

aj = − Ci
ja

T i
ja = 0; T a

bc = Sa
bc = Ca

bc − Ca
cb

T a
ij = − Ωa

ij ; T a
bi = ∂bN

a
i − La

bi; T a
ib = − T a

bi (3.26)

and where Ωa
ij = δjN

a
i − δiN

a
j can be interpreted as the ”field strength” asso-

ciated with the nonlinear connection Na
i .

The curvature distinguished tensor has the following irreducible, non-vanishing,
h–v–components R α

β γτ =
(
Ri

hjk, Ra
bjk, P i

jka, P c
bka, Si

jbc, S
a
bcd

)
given by [9], [10],

[11]
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Ri
hjk = δkLi

hj − δjL
i
hk + Lm

hjL
i
mk − Lm

hkLi
mj − Ci

haΩa
jk

Ra
bjk = δkLa

bj − δjL
a
bk + Lc

bjL
a
ck − Lc

bkLa
cj − Ca

bcΩ
c
jk

P i
jka = ∂aLi

jk + Ci
jbT

b
ka −

(
δkCi

ja + Li
lkCl

ja − Ll
jkCi

la − Lc
akCi

jc

)

P c
bka = ∂aLc

bk + Cc
bdT

d
ka −

(
δkCc

ba + Lc
dkCd

ba − Ld
bkCc

da − Ld
akCc

bd

)
Si

jbc = ∂cC
i
jb − ∂bC

i
jc + Ch

jbC
i
hc − Ch

jcC
i
hb

Sa
bcd = ∂dC

a
bc − ∂cC

a
bd + Ce

bcC
a
ed − Ce

bdC
a
ec (3.27)

Having reviewed the geometry of the tangent bundle TM we proceed with
the cotangent bundle case T ∗M (phase space). In the case of the cotangent
space of a d-dim manifold T ∗Md the metric can be equivalently rewritten in the
block diagonal form [9] as

(ds)2 = gij(xk, pa) dxid xj + hab(xk, pc) δpa δpb (3.28)

i, j, k = 1, 2, 3, .....d, a, b, c = 1, 2, 3, .....d, if instead of the standard coordinate
basis one introduces the following anholonomic frames (non-coordinate basis)

δi = δ/δxi = ∂xi + Nia ∂a = ∂xi + Nia ∂pa
; ∂a ≡ ∂pa

=
∂

∂pa
(3.29)

One should note the key position of the indices that allows us to distinguish
between derivatives with respect to xi and those with respect to pa. The dual
basis of (δi = δ/δxi; ∂a = ∂/∂pa) is

dxi, δpa = dpa − Nja dxj (3.30)

where the N–coefficients define a nonlinear connection, N–connection structure.
An N-linear connection D on T ∗M can be uniquely represented in the adapted
basis in the following form

Dδj
(δi) = Hk

ij δk; Dδj
(∂a) = − Ha

bj ∂b; (3.31)

D∂a(δi) = Cka
i δk; D∂a(∂b) = − Cba

c ∂c (3.32)

where Hk
ij(x, p),Ha

bj(x, p), Cka
i (x, p), Cba

c (x, p) are the connection coefficients.
For any N-linear connection D with the above coefficients the torsion 2-forms
are
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Ωi =
1
2
T i

jk dxj ∧ dxk + Cia
j dxj ∧ δpa

Ωa =
1
2
Rjka dxj ∧ dxk + P b

aj dxj ∧ δpb +
1
2
Sbc

a δpb ∧ δpc (3.33)

and the curvature 2-forms are

Ωi
j =

1
2
Ri

jkm dxk ∧ dxm + P ia
jk dxk ∧ δpa +

1
2
Siab

j δpa ∧ δpb (3.34a)

Ωa
b =

1
2
Ra

bkm dxk ∧ dxm + P ac
bk dxk ∧ δpc +

1
2
Sacd

b δpc ∧ δpd (3.34b)

where one must recall that the dual basis of δi = δ/δxi, ∂a = ∂/∂pa is given by
dxi, δpa = dpa −Njadxj .

The distinguished torsion tensors are of the form [9]

T i
jk = Hi

jk − Hi
kj ; Sab

c = Cab
c − Cba

c ; P a
bj = Ha

bj − ∂a Njb

Rija =
δNja

δxi
− δNia

δxj
(3.35)

the last tensor Rija has a one to one correspondence with the field strength F a
µν

of section 3.1. The distinguished tensors of the curvature are of the form

Ri
kjh = δhHi

kj − δjH
i
kh + H l

kj Hi
lh − H l

kh Hi
lj − Cia

k Rjha

P ab
cj = ∂a Hb

cj + Cad
c P b

dj −
(
δj Cab

c + Hb
dj Cda

c + Ha
dj Cbd

c − Hd
cj Cab

d

)

P ak
ij = ∂a Hk

ij + Cal
i T k

lj −
(
δj Cak

i + Ha
bj Cbk

i + Hk
lj Cal

i − H l
ij Cak

l

)

Sabc
d = ∂c Cab

d − ∂b Cac
d + Ceb

d Cac
e − Cec

d Cab
e ; etc.......... (3.36)

where we have omitted the other components and once again we have for our
notation ∂a = ∂/∂pa and δ/δxi = ∂xi + Nia ∂a. Equipped with these curvature
tensors one can perform suitable contractions involving gij , h

ij , Nia to obtain
three curvature scalars of the R,P,S type

R = δj
i Ri

kjl gkl; S = δd
b Sabc

d hac
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P1 = δc
b P ab

cj gjkNka; P2 = δc
a P ab

cj Nbk gkj ; P3 = δi
k P ak

ij gjl Nla; P4 = δj
k P ak

ij Nal gli

(3.37)
and construct phase space Lagrangians involving a linear combination of the
three curvature scalars

Lphase space = a R + b S +
4∑

n=1

cn Pn (3.38)

where a, b, cn are real-valued numerical coefficients. Notice that the Kaluza-
Klein-like decomposition of the scalar curvature in higher dimensions given in
eq-(3.6) involves a very specific linear combination of the curvature tensor
contractions given by

R = GMN RMN = gµν (Rα
µαν + Rb

µbν) + gab(Rc
acb + Rµ

aµb) (3.39)

There is a direct and exact correspondence/match between the components in
eq-(3.37) and those in eq-(3.39) given by

R ←→ gµν Rα
µαν ; S ←→ gab Rc

acb; (3.40a)

However, there is no correspondence/match between the P curvature scalars

c1 P1 + c2 P2 + c3 P3 + c4 P4 (3.40b)

with the following scalar contractions stemming from the Kaluza-Klein decom-
position (3.39) gµνRb

µbν + gabRµ
aµb. In the tangent bundle case, for instance, if

one were to exchange the b↔ j indices in the expression for Ra
bjk in eq-(3.27),

one obtains Ra
jbk that has the same index structure as Rc

µbν whose contraction in
the bc indices gives the desired term Rb

µbν in eq-(3.39). However, there is a prob-
lem with this procedure since exchanging the b↔ j indices leads to an exchange
La

bk → La
jk which is problematic because there is no connection coefficient of

the form La
jk associated to the covariant derivation D.

Therefore, due to the fact that the scalar curvature contractions stemming
from the Kaluza-Klein decomposition (3.39) gµνRb

µbν + gabRµ
aµb do not have a

proper match/correspondence with the curvature contractions appearing in the
geometry of the (co) tangent space, the 2d-dimensional phase space Lagrangian
(3.38) corresponding to the cotangent bundle of the d-dim spacetime Lphase space

does not have the same structure (same functional form up to total derivatives)
as the Einstein-Hilbert Lagrangian R in 2(d − 1) + 2 = 2d dimensions (with
two times), after a Kaluza-Klein-like d + d decomposition of R described in
section 3.1 is performed, and upon imposing the identifications ya ↔ pa/b,
∂/∂ya ↔ b ∂/∂pa; and Aa

i ↔ Nia with i, j = 1, 2, 3, .....d; a, b = 1, 2; 3, ....., d.
Consequently, the field equations obtained from a variational principle of the
phase space Lagrangian L in eq-(3.38) are not equivalent to the gravitational
field equations in 2d-dimensions corresponding to the d + d decomposition of
the Einstein-Hilbert Lagrangian R.
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The same result applies to the 2d-dimensional tangent bundle case TM ;
i.e. their field equations are not equivalent. Hence, the putative phase space
metrics in eqs-(2.8,2.19, 2.22), with split signature (2, 2) are viable solutions to
the field equations obtained from the Klauza-Klein-like decomposition of the
4-dim space, but are not solutions to the vacuum field equations in the 4-dim
phase space associated with the cotangent bundle T ∗M of the 2-dim spacetime
of signature (1, 1).

The generalized (vacuum) field equations corresponding to gravity on the
curved 2d-dimensional tangent bundle/phase spaces associated to the geometry
of the (co)tangent bundle TMd−1,1(T ∗Md−1,1) of a d-dim spacetime Md−1,1

with one time, and which are obtained from a direct variation of the tangent
space/phase space actions with respect to the respective fields

gij(xk, ya), hab(xk, ya), Na
i (xk, ya); gij(xk, pk), hab(xk, pa), Nia(xk, pa)

(3.41)
needs to be investigated further because there is no mathematical equivalence
with the ordinary Einstein vacuum field equations in spacetimes of 2d-dimensions
with two times

RMN (X) − 1
2

gMN (X) R(X) = 0; M,N = 1, 2, 3, ......., 2d (3.42)

To display explicitly the difficulty in solving the field equations in Lagrange-
Finsler and Hamilton-Cartan spaces, we devote the next section to provide
specific nontrivial solutions in a ”simple” case.

3.3 Integrable solutions in the Tangent Bundle TM2 case

To solve the most general solutions for gij(xk, ya), hab(xk, ya), Na
i (xk, ya) is a

very difficult task even in the simpler case of actions involving linear terms in
the scalar curvature. Einstein’s equations in dimensions 2 + 2 as a toy model of
Einstein-Finsler gravity in the tangent bundle TM2 over a 2-dimensional man-
ifold M2 were studied by [10], [11]. An integrable class of solutions was found
which are different from the solutions (3.13,3.14) provided by [7]. Solutions in
dimensions 2+2+2.....; 3+2+2+ ... have also been found by [11]. However we
must stress that the equations and solutions found by [10], [11] in the tangent
bundle TM2 case differ from the field equations one obtains from a variation
of the most general action involving the 3 types of curvature scalars R,P,S
because Vacaru sets P = 0.

The field equations used by Vacaru are

Rij −
1
2

( R+ S ) gij = 0 ; Sab −
1
2

( R+ S ) hab = 0 (3.43a)

Pia = 0; Pai = 0; Pia 6= Pai; i, j, k = 1, 2; a, b, c = 1, 2 (3.43b)
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Rij ,Sab,Pia,Pai are obtained from the curvature contractions Rk
ikj , S

c
acb, P

k
ika, P b

abi,
respectively. A further contraction gijRij = R; habSab = S yields the curvature
scalars. Since Vacaru sets Pia,Pai to zero this leads to P1 = P2 = 0.

A special family of solutions was found by [10] for the case

gij = gij(xk); hab = hab(xk, y1); Na
i = Na

i (xk, y1) (3.44)

i.e. when the solutions do not depend on the coordinate y2. The solutions
are determined by the generating functions f(xi, y1), the integration functions
0f(xi),0 h(xk),0 wj(xk),0 ni(xk) and the signature coefficients ε1 = ±1, ε2 =
±1, ε3 = ±1, ε4 = ±1. As explained by [10] one should chose and/or fix such
functions following additional assumptions on symmetry of solutions, boundary
conditions etc. For instance, the solutions to the wave equation in two dimen-
sions are given in terms of two generating functions Ψ = f(x + ct) + g(x− ct).

By defining N1
i = wi, N2

i = ni, i = 1, 2, the integrable solutions to the
vacuum equations (3.43) found by Vacaru [10], [11] are given by

g11 = ε1 eΨ(xk); g22 = ε2 eΨ(xk) for ε1 ∂2
x1Ψ + ε2 ∂2

x2Ψ = 0 (3.45)

h11 = ε3
0h(xi) [ ∂y1f(xi, y1) ]2; h22 = ε4 [ f(xi, y1) − 0f(xi) ]2 (3.46)

wj = 0wj(xk) exp

(
−
∫ y1

0

dy1[
2h11∂y1A

∂y1h11
]

) ∫ y1

0

dy1 [
h11Bj

∂y1h11
] exp

(
−
∫ y1

0

dy1[
2h11∂y1A

∂y1h11
]

)
(3.47)

for j = 1, 2.

ni = 0ni(xk) +
∫

dy1 h11 Ki; i = 1, 2.

The expressions for A,Bk,Ki are given by

A =
∂y1h11

2h11
+

∂y1h22

2h22
(3.48)

Bk =
(

∂y1h22

2h22

) (
∂xkg11

2g11
− ∂xkg22

2g22

)
− ∂xkA; k = 1, 2. (3.49)

K1 = − 1
2

(
∂x2g11

g22h11
+

∂x1g22

g22h22

)
; K2 =

1
2

(
∂x1g22

g11h11
− ∂x2g22

g22h22

)
(3.50)

Due to the duality between the tangent and cotangent bundles of spacetime,
one expects analogous (not identical) field equations and solutions for the 4-dim
phase space case (associated with the 2-dim space). In this particular case one
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could have solutions of the form gij(X, T );hab(X, T, E);Nia(X, T, E), reminis-
cent of the so-called rainbow metrics (energy dependent). Solutions of the form
gij(X, T );hab(X, T, P );Nia(X, T, P ) are equally valid, or solutions depending
on X, T and the combinations like E + P , or E − P but not both.

The real challenge is to find solutions to Einstein’s equations associated
with the 8-dim cotangent bundle (phase space) of the 4-dim spacetime; i.e.
one has a 8 = 4 + 4 decomposition with two temporal directions T,E and 6
spatial ones X1, X2, X3, P1, P2, P3. Furthermore, more general actions than the
Einstein-Hilbert type, including torsion-squared and curvature-squared terms
in phase space should be studied. To the author, one of the most physically
interesting extensions of gravity in phase spaces (Born reciprocal gravity) is the
study of higher order (co) tangent spaces (Jet bundles) which are related to
higher order accelerations and naturally involve higher dimensions than D = 8.
The principle of maximal speed (special relativity), maximal acceleration/force
(Born reciprocal relativity) would extend to a generalized relativity of maximal
higher order accelerations/forces. Physics in phase space uniting space-time-
momentum-energy should reveal important clues to the true origins of mass
that do not rely on the Higgs mechanism.

Finally, it is desirable to find if there are any connections among the lat-
ter theories (higher order accelerations/forces) and the higher spin theories of
Vasiliev. The connection between Finsler geometry and the higher conformal
spin theories behind W∞ gravity/strings was suggested by Hull long ago [28].
Yoon also has discussed the emergence of W∞ gravity Lagrangians from the
Lagrangian of eq-(3.6). The physical applications of the phase space metrics
found in section 2 deserve further investigation, as well as how the physics of
two times may resolve the problem of time in Quantum Gravity. Finding non-
trivial solutions of the generalized field equations corresponding to the 8-dim
cotangent bundle (phase space) of the 4-dim spacetime is a challenging task of
paramount importance.
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APPENDIX

Let us start with the line element

ds2 = −eµ(r)(dt1)2 + eν(r)(dr)2 + R2(r)g̃ijdξidξj . (A.1)

Here, the metric g̃ij corresponds to a homogeneous space and i, j = 3, 4, ..., D−2.
The only nonvanishing Christoffel symbols are

Γ1
21 = 1

2µ′, Γ2
22 = 1

2ν′, Γ2
11 = 1

2µ′eµ−ν ,

Γ2
ij = −e−νRR′g̃ij , Γi

2j = R′

R δi
j , Γi

jk = Γ̃i
jk,

(A.2)

and the only nonvanishing Riemann tensor are
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R1
212 = − 1

2µ′′ − 1
4µ′2 + 1

4ν′µ′, R1
i1j = − 1

2µ′e−νRR′g̃ij ,

R2
121 = eµ−ν( 1

2µ′′ + 1
4µ′2 − 1

4ν′µ′), R2
i2j = e−ν( 1

2ν′RR′ −RR′′)g̃ij ,

Ri
jkl = R̃i

jkl −R′2e−ν(δi
kg̃jl − δi

l g̃jk).
(A.3)

The field equations are

R11 = eµ−ν(
1
2
µ′′ +

1
4
µ′2 − 1

4
µ′ν′ +

(D − 2)
2

µ′
R′

R
) = 0, (A.4)

R22 = −1
2
µ′′ − 1

4
µ′2 +

1
4
µ′ν′ + (D − 2)(

1
2
ν′

R′

R
− R′′

R
) = 0, (A.5)

and

Rij =
e−ν

R2
(
1
2
(ν′ − µ′)RR′ −RR′′ − (D− 3)R′2)g̃ij +

k

R2
(D− 3)g̃ij = 0, (A.6)

where k = ±1, depending if g̃ij refers to positive or negative curvature. From
the combination e−µ+νR11 + R22 = 0 we get

µ′ + ν′ =
2R′′

R′ . (A.7)

The solution of this equation is

µ + ν = lnR′2 + a, (A.8)

where a is a constant.
Substituting (A.7) into the equation (A.6) we find

e−ν(ν′RR′ − 2RR′′ − (D − 3)R′2 = −k(D − 3) (A.9)

or

γ′RR′ + 2γRR′′ + (D − 3)γR′2 = k(D − 3), (A.10)

where

γ = e−ν . (A.11)

The solution of (A.10) for an ordinary D-dim spacetime ( one temporal
dimension ) corresponding to a D − 2-dim sphere for the homogeneous space
can be written as

γ = (1− 16πGDM

(D − 2)ΩD−2RD−3
) (

dR

dr
)−2 ⇒

20



grr = eν = (1− 16πGDM

(D − 2)ΩD−2RD−3
)−1 (

dR

dr
)2. (A.12)

where ΩD−2 is the appropriate solid angle in D − 2-dim and GD is the D-dim
gravitational constant whose units are (length)D−2. Thus GDM has units of
(length)D−3 as it should. When D = 4 as a result that the 2-dim solid angle
is Ω2 = 4π one recovers from eq-(A.12) the 4-dim Schwarzchild solution. The
solution in eq-(A.12) is consistent with Gauss law and Poisson’s equation in
D − 1 spatial dimensions obtained in the Newtonian limit.

The ΩD is the volume of the unit D-sphere

ΩD =
2π(D+1)/2

Γ(D+1
2 )

(A.13)

Thus, according to (A.8) we get

µ = ln(k − βDGDM

RD−3
) + constant. (A.14)

we can set the constant to zero, and this means the line element (A.1) can be
written as

ds2 = −(k− βDGDM

RD−3
)(dt1)2 +

(dR/dr)2

(k − βDGDM
RD−3 )

(dr)2 + R2(r)g̃ijdξidξj . (A.15)

One can verify, taking for instance (A.5), that the equations (A.4)-(A.6) do not
determine the form R(r). It is also interesting to observe that the only effect
of the homogeneous metric g̃ij is reflected in the k = ±1 parameter, associated
with a positive ( negative ) constant scalar curvature of the homogeneous D−2-
dim space.
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