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History of physics is full of psychological and philosopical moodswings: in
the middle ages, nature was mystical and magical, from the 18th century on-
wards an irrational rationality installed itself culminating in the arrogance of
modern science that the entire world can be described in a symbolic language.
Of course, a notorious austrian Kurt Godel put an end to such aspirations at
the beginning of the last century which ultimatly drove him to the paradoxical
attempt to prove the existence of God. Godel, from all people, should have
understood that some things are beyond proof and classical logic and that irra-
tionality is the very foundation of everything we do and accept as true. There
were other giants at the beginning of the previous century who were contem-
plating similar topics such as Albert Einstein and Wolfgang Pauli. Einstein
was obsessed with what is but at the same time the old man was wise enough
to use words to describe his thoughts; he threw his equivalence principles and
the principle of general covariance into the physics world while never caring to
really define them. Of course, when writing a paper, you better make some-
thing precise so that your collegues feel comfortable that they have a chance
to understand and to judge you and during the process, they might even get
the entirely false feeling that they actually understand what you are saying.
Specifically, Albert used the language of manifolds and of Riemannian geom-
etry to realize his ideas and in one breath gave away the field equations any
graduate student knows today. So, people today believe that they know what
local Lorentz covariance and general covariance mean while this understanding
is at most contextual within a certain mathematical representation. Einstein
never cared too much about representations because from relativity he evolved
into general two covariant tensors (gravity with an antisymmetric tensor), the-
ories with an affine connection (Einstein-Cartan theory) and later on, he even
contemplated the discrete manifolds Riemann thought about before. There re-
mains an infinity of other possibilities to be explored and Riemannian geometry
is just the beginning of the road; again, the crucial thing here is that Einstein
valued his undefined principles much more than all the easy mathematics which
followed.

Likewise it has been so with quantum theory; the ideas of the founding fathers
such as Heisenberg, Von Neumann, Dirac and Wigner suffered the same des-
tiny. This is a social phenomenon which is grounded in the simple fact that
when ordinary people write about the thoughts of a genius, they never are able
to capture the full richness of the exposed ideas. Hence, a lot of information
gets lost and people start actually to narrow their scope until a new genius
comes along and slaps them on the wrist. To illustrate this phenomenon, let
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us consider the example of Johnny Von Neumann who united Heisenbergs with
Schrodingers approach to quantum physics. Now, Von Neumann did not do
anything really special at first, he simply observed that both approaches could
be written within the language of densly defined self-adjoint operators on Hilbert
space. He was himself very aware of this and later paved the ground for the
more axiomatic approach of quantum logic which has been extended by Con-
stantin Piron later on and which is still subject of study in the Brussels-Geneva
approach to quantum mechanics. Likewise, he suggested the possibility of a
quaternionic Hilbert module; an idea which has been developped in the margins
by Finkelstein, Jauch, Adler and others. Von Neumann was what I could call
a finitist, he was fascinated with bounded operators and constructed weakly
closed subalgebras of the full C? algebra of bounded operators on Hilbert space
H. Likewise was Weyl: his stomach must have felt rather akward when dealing
with subtle domain issues, symmetric densly defined operators and self-adjoint
extensions of such exotic beasts. Weyl felt much more comfortable in his finite
world and simply exponentiated these operators so that he found himself into
the realm of the safe unitary kindergarten. Heisenberg however took Cantor’s
and Godel’s lesson for real and tried to understand infinity when it came to him;
later on in his life he appears to have been playing with even more essential un-
bouded operators in Nevanlinna space (indefinite norm). Mathematicians such
as Krein never accepted this kind of exotics and Krein space is still too close
to Hilbert space as it stands. The tension between the finitists and people who
understand the meaning of infinity culminated when the standard model was
developped including its machinery of renormalization. Now, this is the kind of
infinity Dirac did not sign for and I don’t think Heisenberg did either but I am
not sure here. Evidence for my position here is that Heisenberg was developping
a radical spinor theory with plenty of non-renormalizable terms. My point being
here is that all the eminent founding fathers were aware that Hilbert space was
not adequate nor compelling, the C numbers were not that special as they are
generally believed to be, the approach embracing unbounded (and even later
on distributional) operators has been proven to be the most fruitful and as an
aside, consciousness had an essential role to fullfill in the quantum formalism.

Combining both these insights coming from relativity and quantum mechanics,
mainstream approaches towards quantum gravity seem like to be wrong from
the start. Indeed, we all pretend to have an axiomatic grounding for quan-
tum mechanics, but people knew already 80 years ago we didn’t and nothing
much changed since then. As an example, one can cite the attempts to formalize
quantum field theory; the most well known and recent mainstream books in that
direction probably constitute Steven Weinberg’s excellent trilogy [2]. Weinberg
uncritically accepts : (a) complex Hilbert spaces with a countable basis (b) an
associative and well defined operator multiplication (c) the validity of the prin-
ciples of causality and (d) cluster decomposition. He does not discuss in depth
the consequences of Haag’s theorem and presents the Coleman-Mandula theo-
rem as a serious blow to theories unifying in a nontrivial way representations of
the Poincaré group with other symmetries in nature. The virtue of Weinberg’s
presentation, however, is that it is clear and allows for deeper insight where to
modify assumptions he takes for granted if one wishes to avoid some of the con-
clusions he is getting to. For example, he derives the spin statics theorem from
the following principles: (a) causality (b) cluster decomposition (c) Fock space
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(d) statistics “theorem” (e) positive energies (assuming Minkowski spacetime).
It is well known that if any single one of these assumptions fail, excluding (d) of
course, there is no theorem anymore and particles with spin 1/2 could be bosons
as well as fermions. I am not aware however that the following suggestion has
ever been made: Weinbergs proof also shows that the reverse holds, that is
(b),(c),(d),(e) and spin statistics imply causality. This relation appears to be
much more robust since one can drop some assumptions here such as weakining
the notion of Hilbert space to Nevanlinna space. Hence, this would degrade
causality to a mere computation and not a fundamental principle. This appears
the right way to go since quantum causality as we know it in a spacetime back-
ground makes no sense in quantum gravity. The point is that we do not even
know the right principles for quantum field theory on Minkowski! In curved
spacetime the situation is considerably worse, it is known for at least 35 years
that free quantum fields can only be defined in the context of spacetimes with a
timelike Killing symmetry. This inherent limitation of quantum field theory is
deadly for quantum gravity; recently a formulation of free quantum field theory
for scalar particles has been given on a causal set which avoids this limitation
and therefore, the Feynman propagator is uniquely defined here.

Now, what has this all to do with the question of this contest you may ask
? Why did I indulge in repeating some too often forgotten or misunderstood
history ? Because I wanted to sharpen up the question and therefore also make
my answer more comprehensible. Einstein suggested that quantum mechanics
is not complete and should be supplemented with hidden variables, but what is
never said is that Quantum Field theory is a theory of hidden variables. Indeed,
reality consists here in Fock space, an ill defined Hamiltonian (except when the
theory is free) and some inertial reference system which we imagine to be tied
to the observer which is not described by our quantum theory of “everything”
on flat spacetime. Apart from the fact that Quantum Field Theory does not al-
low for measurement of particles inside the universe, the rigorous description
of infraparticles and so on, the interpretation of the asymptotic state is still
contextual. That is, what we imagine to be particles and states with a definite
particle number are not always what they appear to be. In theory and probably
also in practice, one may construct detectors such that a “single photon state”
really gives two particle clicks instead of one. This puts a death sentence on
approaches like Bohm-de Broglie whose practitioners would have to squeeze
themselves in all corners to affirm that a measurement of two particles with the
ontology of a single particle is not a logical contradiction, but a mere paradox.
So quantum mechanics says that reality is in a bi-module over some ring (to gen-
eralize immediately the quantum formalism) and in right linear distributional
operators over it represented on some fixed spacetime. So, if quantum mechan-
ics were universally true, we should also be in this structure but then we meet
the “logical incompleteness” of how to measure oneself from within. If we are
within the state, then a mere state description is incomplete because that sim-
ply gives an arrangement of elementary particles; it doesn’t contain information
concerning nonlocal variables such as human, table and so on. I mean, an out-
side conscious observer can assign such nonlocal variables, but from the inside
this is impossible. For example, there is nothing in the formalism which even
allows for an identification of the same cat within a superposition of monomials
in creation beables applied to the vacuum state (even on Minkowski) since this
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would require the extra imput of catX observable as well as the interpretation
of it. But then, one arrives at the conclusion that in order for such system to
work, the theory should be supplemented with observables for all living entities
which were and will be in the entire universe. Still, one is left with the issue
of consciousness, what or who projects my state to the state of observation of
my computer screen. Is this a kind of personal consciousness or is it a univer-
sal awareness such as religious people imagine God to be? It is impossible to
prove such scheme wrong by experimental verification and therefore many peo-
ple are content with this situation. However, science does not operate like this:
there is a more stringent criterion called Occam’s razor, which values theories
by means of a balance between their assumptions and validations. The picture
above is infinitely open and hence a complete description does not exist: indeed,
it appears that the whole of Platonic space should be represented in operators
and there is no way to describe the former. Humans would be drones and the
Mona Lisa would be ordered in the initial state of the universe by means of a
Mona Lisa projection operator; moreover, there would exist something outside
spacetime which we have no means of describing at all. Suppose moreover now
that spacetime itself is quantum, then this super observer not only measures
me and you, but also the causal relations between us. But how is this possible
? We never ever measure causality, a spacetime metric or a distance between
two points; these are all imaginary concepts which are needed to discribe the
quantum world but they are not observables in the quantum mechanical sense.
They are “classical”, meaning non-operational, hidden variables; so the princi-
ple of superposition does not apply to them. However, there is still no logical
contradiction, it could be that a super observer measures these things but that
we as humans are incapable of appreciating this because our brain states do
not contain this information. Again, I believe this is an unrealistic attitude and
therefore my answer to the question whether spacetime is digital in the sense
that it is measured somehow as we measure particles is a resounding no. Of
course, we still did not make full use of the information in the first three pages
and we proceed on the road to exploit this to a full extend. So, we came to
the conclusion that spacetime has a pure ontological status; now we have to
ask what attributes we might wish to impose upon its structure. In partic-
ular, we may wonder wether it is (a) a continuum (b) discrete (c) neither of
both or (d) it does not matter what it is. We could broadly assume Einsteins
attitude here and say that it is not important what it is, that it might be a
matter of representation of deeper underlying undefined principles which do not
need any backbone whatsoever. I think that this is unlikely and I will try to
say something more intelligent about this later on. So, let us concentrate for
now on options (a), (b) and (c). One always has to start out conservative and
study if there are compelling reasons to give up the “easiest” option, that is (a).
Typical reasons which you hear are the following : (a) since all Quantum Field
Theories require a UV regulator, there should be a natural physical mechanism
to provide an upper scale of observation, therefore one has a shortest distance
scale which suggests discreteness (b) atoms are discrete and quantum theory is
all about atoms, therefore spacetime should be discrete (c) Brownian motion
and quantum diffusion can be modelled by a (quantum) random walker which
requires a discrete lattice like structure (d) path integrals are only well defined
on a finite lattice and regularization happens while taking the continuum and
thermodynamic limit, which might indicate that the lattice is more fundamental
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than the spacetime is (e) (classical) gauge theories have a natural representa-
tion in terms of Wilson loops and electric field variables (surfaces), so spacetime
is a relational theory of lines and surfaces. Anyhow, these are the ones which
immediately pop up in my mind and we shall continue now to deconstruct every
one of them carefully. I think (a) is the most important reason and we have
prepared the ground for a in depth discussion of why renormalization problems
do not force us to abandon the continuum but allow for more conservative and
controlled strategies. Renormalization is in my view a problem of field theory
and not of the continuum, so logically we have to abandon one of the premises
behind field theory. As indicated before causality is a good candidate to sac-
rify and the cluster decomposition principle will be violated generally too. The
latter is indeed in conflict with the Machian principle in which everything is
connected to everything else certainly in the bulk of spacetime where real mea-
surements happen. Also, traditional Fock space will be replaced by a generalized
Fock like construction allowing for negative norm particles. In this context, it is
natural to extend quantum mechanics beyond the real, complex and quaternion
numbers to generic Clifford algebras; this will involve negative probabilities
automatically. I believe locality can be saved and it is worthwile to understand
what happens if we give up the continuum. In causal set theory for example,
locality and cluster decomposition fail just as unitarity does. It is a this moment
even unknown what quantum causality means within this context so asking the
question is not even opportune at this moment in time. Let us go further into
(b), atoms are not “discrete” at all, actually all representations of the Poincaré
e group have a mixed unbounded continuous and bounded discrete spectrum
asso- ciated energy-momentum and spin respectively (within a single particle
species). Discreteness is only an approximation in the semi-classical limit where
fermionic particles are quantized but the gauge field is static and classical. So,
I dont see why atomisticity should imply discreteness at all. Concerning (c),
these results merely concern alternative ways to understand an equation which
is well defined in the continuum, likewise is (e), so again this is far from being
a compelling argument. Perhaps the best argument is still (d) but this is in my
opinion a “problem” of path integrals and not of physics. Now, let us study
negative arguments why alternatives to the continuum are not appealing: (a)
the issue of local Poincar é invariance becomes problematic, in causal set theory
for example this is a statistical statement concerning sprinklings of points in
Minkowski, there is no intrinsic causet notion of local Lorentz covariance at all
(b) in approaches like causal dynamical triangulations, local Lorentz covariance
is clearly broken at the bones (c) discretization sacrifies many things as we have
just seen and it hasnt rewarded anybody in a substantial way until now.

Of course, showing that abandoning the continuum is troublesome and that
there is no compelling reason to do so of course doesn’t prove that the theater
of spacetime is analog. Let us assume a postive attitude now, in the spirit of
Einstein that it might all just be a matter of representation (perhaps locality
has to be given up too), towards non-manifold like structures and see what they
might imply. There exists only a limited number of acceptable structures be-
tween discreteness and the continuum which are :(a) the natural numbers (b) the
rational numbers and (c) the p-adic fields for p a prime number. The rational
numbers differ from the natural ones in the following aspects : (a) Q is a field
(b) Q is totally ordered but there is no numeration of elements of Q preserving
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the order. So, on Q we can perform a lot more arithmetic and it doesn’t contain
any holes like N does. The p-adic fields are number theoretic completions of Q
with respect to a particular norm attached to a scale a. For the p-adic com-
pletions, one sees that the norm is not an Euclidean one: that is, it cannot be
derived from a bi-linear scalar product. This destroys the properties of quasi-
local linearity in the continuum and must have far reaching consequences what
the small scale geometry is concerned. In such cases, it might be natural to give
up the bi-linearity properties of the scalar product in quantum mechanics too
which would seriously complicate the probability interpretation and again, I do
not see any indication that something that radical is really needed. Locality is
a notion which is tied to the continuum and for a certain extend to Q; every-
thing else which moves apart from this does appear to violate this sacrosant
principle. So, it is possible to formulate a physical principle which does exclude
all these exotic spacetime structures and therefore it seems that the continuum
has a deeper meaning. Now, one may ask if this also applies to the manifold
structure; here I see some possibilities for generalization. The original idea of
a manifold basically is that it locally looks like a real vector space which is of
primordial importance since it allows one to add vectors and perform scalar
multiplication. These concepts are required to express things like curvature
tensors and so on; although the notions of scalar and sectional curvature bounds
can be generalized to general metric spaces, a real local definition of scalar cur-
vature is not possible since the necessary limiting operation is usually not well
defined. However in quantum mechanics, we can do more than just add, we
can also multiply (since one disposes of an algebra of operators) and likewise,
one could change the local spacetime vector space structure over R to a local
Clifford or Grasmann algebra structure over R. This is already done partially
of course in the context of supermanifolds, but this line of thought may be ex-
tended to more general structures. To stress the importance of local algebraic
structures, let me launch the following idea: in the deformation approach to
quantum mechanics one has the ordinary commutative product structure and
the deformed Moyal star product as implementing the canonical commutation
relations. Indentically, geometry may be seen as a deformed nonassociative and
noncommutative sum sructure on the vectorfields X,Y ; indeed, define

X ⊕ Y = X + Y + ε∇XY −
ε

2
[X,Y ]

for some ε > 0. Then, the commutator X ⊕ Y − Y ⊕X is proportional to the
torsion tensor and a nonzero associator is related to the Riemann curvature.
This suggests that quantum gravity may be founded on algebra’s with a de-
formed sum and product structure. So, I believe there are compelling reasons
why spacetime must be analog and representational ambiguities do not appear
to arise at this level although the concepts of manifold, general covariance and
local Poincaré invariance may have infinitely more useful implementations which
remain currently unexplored.

So, again, infinity (in terms of the infinite small) seems to vindicate and the
finitist attitude is not as deeply motivated as one may think and problematic to
say the least. Therefore, the remaining useful principles to construct a theory of
quantum gravity are (a) spin-statistics (b) local Poincaré invariance (c) a gen-
eralized Fock module bundle (d) general covariance and (e) locality. Causality
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and cluster decomposition are both abandonned and the degree to which they
are violated depends upon the semiclassical gravitational field. Indeed, as we
have suggested, the problems of Quantum Field Theory reside in some very ba-
sic principles which need to be given up, but the continuum isn’t one of them.
So far, we have argued our case only from the perspective of quantum field
the- ory; are the infinities showing up in relativity imposing us to reconsider
the continuum ? Likewise, the answer is a resounding no and the issue may be
dealt with in several ways. First of all, there are the standard Penrose-Hawking
singularity theorems which apply only to Riemannian geometry. They do not
apply to the affine connections used in Einstein-Cartan theory and Trautman
has provided evidence that the big bang singularity dissapears in a gravitational
theory with torsion. Intuitively, it is clear why this should be the case, torsion
is associated to angular momentum and the latter offers “resistance” to the
gravitational attraction. Therefore, by restoring the full local Poincaré group
and by not merely taking into account the translations (diffeomorphisms), the
singularities might evaporate in thin air in a classical setting. A second attitude
to infinities in general relativity is simply accepting them: in my view they do
not pose any problem for the classical theory at all but they merely destroy
the modern view on the theory. Indeed, I have heard too often people express
the view that “silly” Einstein was not aware of the superior formulation of rel-
ativity in terms of action principles which allow for a more direct calculation
of the Einstein tensor and the conservation equations than by contracting the
second Bianchi identities. Well, in my view, it is clear who is “dumb” here and
it isn’t Einstein; let me explain why. Einstein’s formulation in terms of the
field equations is a truely local one and suggests more a boundary value point
of view rather than an initial value perspective. The manifold is not fixed at
all in this picture and may be seen as an evolving entity by pasting together
local coordinate patches. Nowhere does the boundary of a coordinate chart
enter the formulation, the field equations are constraints and nothing more. A
Lagrangian point of view is nonlocal and specifies the manifoldM immediately
from the beginning; moreover, the action needs a boundary term in case M
has a nontrivial closure. Therefore, a singularity is troublesome for the La-
grangian formulation (and hitherto for the initial value formulation) since the
York-Hawking-Gibbons boundary term is not well defined; however, there is no
problem in Einstein’s view. Albert’s picture is not one of an evolving universe
which starts somewhere and develops towards the future; his interpretation of
affairs is that a universe simply organically “forms” in a four dimensional way.
It is clear to me that a solution of the problem of quantum gravity will require a
truely local formulation of quantum mechanics which dismisses the philosophy
of Feynman and Heisenberg which are based upon global considerations and not
local ones. Therefore, it is fair to say that the limitations of general relativity
imply an Einsteinian view and not the modern one.

Summarizing, I think the main lessons are the following: locality implies the
continuum (or Q) and local formulations of the laws of nature give room to in-
finities. Therefore, I conjecture that the renormalization problems in QFT will
evaporate once a superior local formulation of a truely relativistic quantum the-
ory has been found (which is accomplished in [1]). Such formulation cannot be
based upon causality, a global Hamiltonian, the cluster decomposition principle
and so on but it needs to take into account that unitarity is a local principle;
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indeed, all conservation laws in GR are quasi-local and so has to be the con-
servation of probability. In this context, infinities in the quantum theory are
just coordinate infinities by extending the group properties of unitary relators
too far and hence, they have no local physical meaning at all (but nevertheless
a global one) [1]. Since one simple principle as locality has such constraining
consequences what the laws of physics are concerned and such virtues what the
interpretation of infinities is about, I think there is little room for doubting that
the continuum is a fundamental property of physics. In order to remain fair
to the reader and not merely refer to a book in progress which will still take a
while to “complete” in a way which I am not too unhappy about, let me present
a few core physical principles and equations how these ideas come together in
one coherent entity. Haags theorem reveals that the only quantum field theory
which exists is a free one; in other words, the interaction picture does not exist
and we have to find a fundamentally new way of treating interactions. The idea
how to do this mainly comes from relativity; how did Einstein proceed from
special relativity to the general theory? He simply put special relativity as a
kinematical entity on tangent space and the dynamics (interaction) was all in
the vierbein. Well, let us put free quantum field theory on tangent space then;
this implies that the theater of reality is not the four manifoldM , but its tan-
gent bundle TM or some higher jet bundle if one wishes to take into account
accelerations of the vierbein. Hence, the geometry of gravity is not Riemannian
geometry anymore but a subtle generalization of Ehresmann connections in the
context of Finsler geometry. That is, TM is equipped with dynamical charts
(associated to the vielbein) and is dynamically split into a horizontal and ver-
tical distribution (often called a nonlinear connection). The free theory is in
the vertical part and gravitational interactions in the horizontal piece. So, each
vertical space contains a generalized Fock module (meaning Clifford-Nevanlinna
bi-modules closed by means of the Guichardet construction) and a representa-
tion of the Poincaré algebra attached to the vierbein. Now, locally on M, one
can demand the existence of a group of unitary relators with trivial homology;
that is, there exists unitary operators U(x, y, eb(x), eb(y)) which depend upon
the points and local frames of reference and which map local particle notions to
local particle notions and local vacua to local vacua. The homology condition
is that for any x, y, z in the coordinate chart O on M the following holds:

U(z, x, eb(z), eb(x))U(y, z, eb(y), eb(z))U(x, y, eb(x), eb(y)) = 1

which allows for the introduction of a unitary potential U(x, eb(x)) with respect
to some reference point x0 so that

U(x, y, eb(x), eb(y)) = U(y, eb(y))U†(x, eb(x))

locally. It is good to know that unitary operators on Nevanlinna spaces can
be genuinely unbounded and therefore composition is generally not well defined
globally; a minimal requirement is that this is so locally. The dynamics of the
unitary potential is governed by two Dirac type equations where both equations
are needed to preserve unitarity. This necessitates dynamical Clifford bundles
and indeed, the Clifford numbers enter in a vital way the unitary potential once
a nonzero gravitational field is present. Obviously, the Dirac equations have
to be locally Lorentz covariant implying the presence of a quantum gauge field
satisfying a generalized Yang-Mills equation. This scheme fully solves Haag’s
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objection, avoids the Coleman-Mandula theorem (because the action of the
Lorentz group is local and the representations of the Poincaré algebra differ
from one point and reference system to another) and throws a different light on
the Weinberg-Witten theorem.
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