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Abstract

The paper is about an approach to logic that differs from the standard first-order logic and other
known approaches. It should be a new approach the author has created proposing to obtain a
general and unifying approach to logic and a faithful model of human mathematical deductive
process. We list the most relevant features of the system. In first-order logic there exist two
different concepts of term and formula, in place of these two concepts in our approach we have
just one notion of expression. The set-builder notation is enclosed as an expression-building
pattern. In our system we can easily express second-order and all-order conditions (the set to
which a quantifier refers is explicitly written in the expression). The meaning of a sentence
will depend solely on the meaning of the symbols it contains, it will not depend on external
‘structures’. Our deductive system is based on a very simple definition of proof and provides a
good model of human mathematical deductive process. The soundness and consistency of the
system are proved, as well as the fact that our system is not affected by the most known types of
paradox. The paper provides both the theoretical material and two fully documented examples
of deduction. The author believes his aims have been achieved, obviously the reader is free to
examine the system and get his own opinion about it.

2010 Mathematics Subject Classification: Primary 03B; Secondary 60,99.
Key words and phrases: logic, mathematical logic, foundations, foundations of mathematics
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1. Introduction

This paper outlines a system or approach to mathematical logic which is different from
the standard one. By ‘the standard approach to logic’ I mean the one presented in chap-
ter 2 of Enderton’s book [2] and there named ‘First-Order Logic’. The same approach
is also outlined in chapter 2 of Mendelson’s book [4], where it is named ‘Quantification
Theory’.

We now list the features of our system, pointing out the differences and improvements
with respect to standard logic.

In first-order logic there exist two different concepts of term and formula, in place of

these two concepts in our approach we have just one notion of expression. Each expression
is referred to a certain ‘context’. A context can be seen as a (possibly empty) sequence of
ordered pairs (x, ), where x is a variable and ¢ is itself an expression. Given a context
k= (x1,01) ... (m, pm) we call a ‘state on k’ a function which assigns ‘allowable values’
(we’ll explain this later) to the variables a1, ..., x,,. If t is an expression with respect to
context k and o is a state on k, we’ll be able to define the meaning of t with respect to
k and o, which we’ll denote by #(k,t,0).
Our approach requires to build all at the same time, contexts, expressions, states and
meanings. We’ll call sentences those expressions which are related to an empty context
and whose meaning is true or false. The meaning of a sentence depends solely on the
meaning of the symbols it contains, it doesn’t depend on external ‘structures’.

In first-order logic we have terms and formulas and we cannot apply a predicate to
one or more formulas, this seems a clear limitation. With our system we can apply pred-
icates to formulas. We’ll see this allows in principle to give a rigorous construction of
something similar to the liar paradox, but we can also give a fairly simple explanation of
such paradox, which in the end is not a paradox (see chapter [7)).

When we specify a set in mathematics we often use the ‘set-builder notation’. Exam-
ples of sets defined with this notation are {z € N| 3y € N : z = 2y}, {z € R|z = 22},
and so on. In our system the set-builder notation is enclosed as an expression-building
pattern, and this is an advantage over standard logic.

Of course in our approach we allow connectives and quantifiers, but unlike first-order
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6 M. Avon

logic these are at the same level of other operators, such as equality, membership and
more. While the set-builder notation is necessarily present with its role, connectives and
quantifiers as ‘operators’ are not strictly mandatory and are part of a broader category.
For instance the universal quantifier simply applies an operation of logical conjunction
to a set of conditions, and so it can be classified as an operator.

In first-order logic variables range over individuals, but in mathematics there are
statements in which both quantifiers over individuals and quantifiers over sets of individ-
uals occur. One simple example is the following condition:

for each subset X of N and for each x € N we have x € X or x ¢ X .

Another example is the condition in which we state that every bounded, non empty set
of real numbers has a supremum. Formalisms better suited to express such conditions are
second-order logic and type theory, but these systems have a certain level of complexity
and are based on different types of variable. In our system we can express the conditions
we mentioned above, and we absolutely don’t need different types of variables, the set to
which the quantifier refers is explicitly written in the expression, this ultimately makes
things easier and allows a more general approach. If we read the statement of a theorem in
a mathematics book, usually in this statement some variables are introduced, and when
introducing them often the set in which they are varying is explicitly specified, so from
this point of view our approach is consistent with the actual processes of mathematics.

Let’s examine how our system behaves when giving a meaning and possibly a truth
value to expressions. Standard logic doesn’t plainly associate meanings and truth values
to formulas. It introduces some related notion as the concepts of ‘structure’ (defined in
section 2.2 of Enderton’s book), truth in a structure, validity, satisfiability. Within first-
order logic a structure is used, first of all, to define the collection of things to which a
quantifier refers to. Moreover, some symbols such as connectives and quantifiers have a
fixed meaning, while for other symbols the meaning is given by the structure. In first-
order logic there is a certain level of independence between the meaning of symbols and
the language’s set of formulas. For instance, if P is a 2-places predicate symbol and ¢,
to are terms then Ptyt, is always a formula, and this doesn’t depend on the meaning of
P, t; and to. Anyway, what if P was a 3-places predicate? In this case Ptito couldn’t be
a formula. This is just an example to show that the independence between the meaning
of symbols and the set of formulas isn’t absolute.

In our approach we do not ask, as a requirement, to have independence between the
meaning of symbols and the set of expressions, nor do we take care to investigate what
happens when changing the meaning of symbols. It wouldn’t be easy to deal with this
because, for example, you should determine the desired level of independence and vari-
ability. Also, I could not say whether trying to deal with this matters would produce any
result or added value. For a first presentation of our approach, this topic doesn’t seem a
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priority, it could be a subject of future studies.

Therefore if a symbol is in our system it has his own meaning, and we don’t feature
a notion of structure like the one of first-order logic. Also, the set of expressions in our
language depends on the meaning of symbols. We'll simply speak of the meaning of an
expression and when possible of the truth value of that meaning. As we’ve already said,
the meaning of a sentence will depend solely on the meaning of the symbols it contains,
it will not depend on external ‘structures’.

Our deductive system seeks to provide a good model of human mathematical deduc-
tive process. The concept of proof we’ll feature is probably the most simple and intuitive
that comes to mind, we try to anticipate some of it.

If we define S as the set of sentences then an axiom is a subset of S, an n-ary rule
is a subset of S"*1. If ¢ is a sentence then a proof of ¢ is a sequence (31, ...,%,,) of
sentences such that

e there exists an axiom A such that ¢, € A ;
e if m > 1 then for each j = 2...m one of the following holds

— there exists an axiom A such that ¢; € A,
— there exists an n-ary rule R and 41, .. ., i, < jsuch that (¢;,,..., ¢, ,%;) € R;

® Um=¢.

Our deductive system, in order to do its job, needs to track the various hypotheses we
have introduced along our proof. In a fixed moment of our reasoning we have a sequence
of active hypotheses, and we need to be able to apply one of our rules. To this end our
axioms and rules need to be properly constructed.

As regards the soundness of the system, it is proved at the beginning of chapter
Consistency is a direct consequence of soundness. We also discuss (in chapter [7)) how the
system relates with some well known paradoxes, it comes out that our system doesn’t lead
to this kind of inconsistencies. Actually (and obviously) I'm not aware of inconsistencies
to which it would lead.

We have examined the main features of the system. If the reader will ask what is the
basic idea behind a system of this type, in agreement with what I said earlier I could say
that the principle is to provide something like a general and unifying approach to logic
and a faithful model of human mathematical deductive process.

This statement about our system of course is not a mathematical statement, so I
cannot give a mathematical proof of it. On the other hand, logic exists with the specific
primary purpose of being a model to human deduction. In general, suppose we want to
provide a mathematical model of some process or reality. The fairness of the model can be
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judged much more through experience than through mathematics. In fact, mathematics
always has to do with models and not directly with reality.

This paper’s purpose is to present an approach to logic, but clearly we cannot pro-
vide here all possible explanations and comparisons in any way related to the approach
itself. The author believes that this paper provides a fairly comprehensive presentation of
the approach in question, this introduction includes significant elements of explanation,
justification and comparison with the standard approach to logic. Other material in this
regard is presented in the subsequent sections (for example in chapter [7)).

First-order logic has been around for many decades, but to date no absolute evidence
has been found that first-order logic is the best possible logic system. In this regard I
may quote a stronger statement at the beginning of Jose Ferreirés’ paper ‘The road to
modern logic an interpretation’ ([3]).

It will be my contention that, contrary to a frequent assumption (at least
among philosophers), First-Order Logic is not a ‘natural unity’, i.e. a system
the scope and limits of which could be justified solely by rational argument.

Honestly, in my opinion, the approach to logic I propose seems to be a ‘natural unity’
much more than first-order logic is, and I did what I thought was reasonable to explain
this.

Further investigations on this approach will be conducted, in the future, if and when
possible, by the author and/or other people. If any claim of this introduction would seem
inappropriate, the author is ready to reconsider and possibly fix it. In any case he believes
the most important part of this paper is not in the introduction, but in the subsequent
chapters.

The paper is quite long but the time required to get an idea of the content is not very
high. In fact, the author has chosen to include all the proofs, but quite often these are
simple proofs. In addition, the most complex parts are the two definitions [2.7] and [1.16]
These have a certain complexity, but at first reading it is not necessary to care of all the
details.
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2. Language: symbols, expressions and sentences, and their
meaning

We begin to describe our language and then the expressions that characterize it. In the
process of defining expressions we also define their meaning and the context to which
the expression refers. The expressions of our language are constructed from some set of
symbols according to certain rules. Expressions are sequences of symbols with meaning,
‘sentences’ are specific expression whose meaning has the property of being true or false.
We begin by describing the sets of symbols we need.

First we need a set of symbols V. V members are also called variables and just play
the role of variables in the construction of our expressions (this implies that ¥ members
have no meaning associated).

In addition we need another set of symbols C. C members are also called ‘constants’
and have a meaning. For each ¢ € C we denote by #(c) the meaning of c.

Let f be a member of C. Being f endowed with meaning, f is always an expression of
our language. However, the meaning of f could also be a function. In this case f can also
play the role of an ‘operator’ in the construction of expressions that are more complex
than the simple constant f.

Not all the operators that we need, however, are identifiable as functions. Think to
the logical connectives (logical negation, logical implication, quantifiers, etc..), but also
to the membership predicate ‘€’ and to the equality predicate ‘=’. The meaning of these
operators cannot be mapped to a precise mathematical object, therefore these operators
won’t have a precise meaning in our language, but we’ll need to give meaning to the
application of the operator to objects, where the operator is applicable.

In mathematics and in the real world objects can have properties, such as having a
certain color, or being true, or being false. A property is therefore something that can
be assigned to an object, no object, more than one object. For example, with reference
to color, one or more objects are red or have the property ‘to be of red color’. But more
generally one or more objects have a color. Suppose to indicate, for objects = that have
a color, the color of z with C'(x). So we can say that C is a property applicable to a class
of objects. On the same object class we can indicate with R(z) the condition ‘x has the
red color’. R is in turn a property applicable to a class of objects, with the characteristic
that for all  R(x) is true or false. A property with this additional feature can be called
a ‘predicate’.

The class of objects to which a property may be assigned may be called the domain
of the property. The members of that domain may be individual objects or sequences of
objects, for example, if x is an object and X is a set, the condition ‘x € X’ involves two
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objects, and then the domain of the membership property consists of the ordered pairs
(x,X), where x is an object and X is a set.

Generally we are dealing with properties such that the objects of their domain are all
individual objects, or all ordered pairs. Theoretically there may also be properties such
that the objects of their domain are sequences of more than two items or even the number
of items in sequence may be different in different elements of the domain.

As mentioned above the concept of ‘property’ is similar to the concept of function, but
in mathematics there are properties that are not functions. For example, the condition
‘z € X’ just introduced can be applied to an arbitrary object and an arbitrary set, so
the ‘membership property’ has not a well determined domain and cannot be considered
a function in a strict sense.

So to build our language we need another set of symbols F, where each f in F
represents a property Pr. Symbols in F are also called operators or ‘property symbols’.
We will not assign a meaning to operators, because a property cannot be mapped to a
consistent mathematical object (function or other). However, for each f

e for each positive integer n and z1,...,z, arbitrary objects we must know the con-
dition Af(z1,...,x,) that indicates if Py is applicable to z1,...,z, ;

o for each positive integer n and z1, ..., x, arbitrary objects such that As(x1,...,z,)
holds we must know the value of Ps(z1,...,2,) .

Since the concept might be unclear we immediately explain it by specifying what are
the most important operators that we may include in our language, providing for each
of them the conditions Af(z1,...,z,) and Ps(x1,...,z,) (in general Pr(x1,...,x,) is a
generic value, but in these cases it is a condition, i.e. its value can be true or false).

e Logical conjunction: it’s the symbol A and we have
for n #£ 2 Ax(x1,...,2,) is false
An(z1,22) = (271 is true or x; is false ) and ( x5 is true or x5 is false ),
Ph(z1,22) = both x1 and x5 are true ;

e Logical disjunction: it’s the symbol V and we have
forn #£2 Ay(x1,...,2,) is false |
Ay (z1,22) = (21 is true or x; is false ) and ( x5 is true or x5 is false ),
Py (z1,22) = at least one between x; and x5 is true ;

e Logical implication: it’s the symbol — and we have
forn #£2 A (x1,...,x,) is false |
A (x1,29) = (@1 is true or x; is false ) and ( x5 is true or x5 is false ),
P_(x1,x9) = x is false or x5 is true ;

e Double logical implication: it’s the symbol <> and we have
forn #£2 A (xq,...,x,) is false |
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Ag(z1,22) = (271 is true or x4 is false ) and (@9 is true or x5 is false ),
Py (x1,22) = P (x1,72) and P, (22, 71) ;

e Logical negation: it’s the symbol = and we have
forn>1 A_(x1,...,2,) is false ,
A_ (1) is true,
P_(x1) = x7 is false ;

e Universal quantifier: it’s the symbol V and we have
forn > 1 Ay(z1,...,z,) is false ,
Avy(z1) = x1 is a set and for each = in z; (z is true or z is false),
Py(x1) = for each z in 7 (z is true) .

e Existential quantifier: it’s the symbol 3 and we have
forn > 1 Ag(xy,...,x,) is false ,
Az(x1) = x1 is a set and for each = in x; (z is true or x is false),
P5(x1) = there exists x in x; such that (x is true) .

e Membership predicate: it’s the symbol € and we have
forn #2 Ac(xq,...,2,) is false |
Ac(z1,22) = x2 is a set,
Pc(z1,22) = x1 is a member of g ;

e Equality predicate: it’s the symbol = and we have
forn #£2 A_(xq,...,x,) is false ,
A_(x1,z9) is true,
P_(x1,22) = 1 is equal to xa .

We can think and use also other operators, for instance operations between sets such
as union or intersection can be represented through an operator, etc. .

In the standard approach to logic, quantifiers are not treated like the other logical
connectives, but in this system we mean to separate the operation of applying a quanti-
fier from the operation whereby we build the set to which the quantifier is applied, and
therefore the quantifier is treated as the other logical operators (altogether, the universal
quantifier is simply an extension of logical conjunction, the existential quantifier is simply
an extension of logical disjunction).

With regard to the operation of building a set, we need a specific symbol to indicate
that we are doing this, this symbol is the symbol ‘{}’ which we will consider as a unique
symbol.

Besides the set builder symbol, we need parentheses and commas to avoid ambiguity
in the reading of our expressions; to this end we use the following symbols: left parenthe-
sis ¢(

) [

, right parenthesis )’; comma ,” and colon

R

> We can indicate this further set of



12 M. Avon
symbols with Z.

To avoid ambiguity in reading our expressions we require that the sets V, C, F and
Z are disjoint. It’s also requested that a symbol does not correspond to any chain of

more symbols of the language. More generally, given aq,...,a, and B1,..., By, symbols
of our language, and using the symbol ‘||’ to indicate the concatenation of characters and
strings, we assume that equality of the two chains a1]| ... |la, and Bi]| ... ||Gm is achieved

when and only when m = n and foreachi=1...n a; = f3;.

While the set Z will be always the same, the sets V, C, F may change according to
what is the language that we describe. To describe our language it is required to know
the sets V, C, F and the function # which associates a meaning to every element of C. In
other words, our language is identified by the 4-tuple (V, F,C, #). Since the ‘meaning’ of
an operator is not a mathematical object, operators must be seen as symbols which are
tightly coupled with their meaning.

Before we can describe the process of constructing expressions we still need to in-
troduce some notation. In fact in that process we’ll use the notion of ‘context’ and the
notion of ‘state’. Context and states have a similar form, and here we want to define their
common form.

We define D = {0} U{{L,...,m}| m is a positive integer}.

Suppose z is a function whose domain dom(z) belongs to D. Suppose C € D is such
that C' C dom(x). Then we define z,¢ as a function whose domain is C' and such that
for each j € C x,c(j) = x(j) .

Suppose x and ¢ are two functions with the same domain D, and D € D. Then we
say that (z, ) is a ‘state-like pair’.

Given a state-like pair k = (z, ) the domain of x will be also called the domain of k.
Therefore dom(k) = dom(z) = dom(p).

Furthermore dom(k) € D and given C' € D such that C C dom(k) we can define
ke = (x/c,¢/c). Clearly k¢ is a state-like pair.

We define R(k) = {k,c| C € D,C C dom(k)}.

Given another state-like pair h we say that h C k if and only if h € R(k) .

Suppose h € R(k), then there exists C' € D such that C' C dom(k), h = k;c =
(z,c,,c). Therefore dom(h) = C and k/gom ) = k/c = h.

Suppose h € R(k) and g € R(h). This means there exist C € D such that C C
dom(k), h = ko, and there exist D € D such that D C dom(h), g = h/p. So
D C dom(h) = C C dom(k), g = (k/c)/p = (¥)0,¢/¢)/p = (¥/p,9/p) = k/p. There-
fore g € R(k).
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Suppose k = (z, ) is a state-like pair whose domain is D. Suppose (y, 1) is an ordered
pair. Then we can define the ‘addition’ of (y,) to k.
Suppose D = {1,...,m}, then we define D’ = {1,...,m+ 1}. We define 2’ as a function
whose domain is D’ such that for each a = 1...m 2'(a) = z(a), and 2’ (m + 1) = y. We
define ¢’ as a function whose domain is D’ such that for each « = 1...m ¢'(a) = p(«),
¢'(m +1) = 4. Then we define k + (y,¢) = (2',¢"). Obviously (k + (y,%))/{1,...m} = Kk,
so k € R(k+ (y,%)).
If D = () then clearly D' = {1}. We define 2’ as a function whose domain is D’ such that
2'(1) = y. We define ¢’ as a function whose domain is D’ such that ¢’(1) = ¢. Then we
define k + (y,) = (2/,¢"). Obviously (k + (y,v))0 =0 =k, so k € R(k + (y,¢)).
In both cases k + (y, ) is a state-like pair, and k € R(k + (y,v)).

We also define € = (0, 0), so € is a state-like pair.

In the next lemma we prove that, when a state-like pair is obtained as k+ (y, %), then
k, y, and v are univocally determined.

LEMMA 2.1. Suppose k1 = (x1,¢1) is a state-like pair whose domain is D1, and (y1,11)
is an ordered pair. Suppose ko = (xa,p2) is a state-like pair whose domain is D, and
(y2,12) is an ordered pair. Finally suppose ki + (y1,¥1) = ka + (y2,%2). Under these
assumptions we can prove that k1 = ko, y1 = y2,%1 = Ys.

Proof.
We define h = k1 + (y1,%1) = k2 + (y2,%2). Since h = k1 + (y1,1) we can have two
possibilities:

e Dy = (,D} = {1} and there exist two functions z} and ¢} whose domain is D}
such that h = (2}, ¢)) ;

e there exists a positive integer m; such that Dy = {1,...,m;}, D} ={1,...,m1+1}
and there exist two functions z} and ¢} whose domain is D} such that h = (2, ¢}).

Similarly, since h = ks + (y2,%2) we can have two possibilities:

e Dy = (,D}) = {1} and there exist two functions z/, and ¢}, whose domain is DY,
such that h = (x}, ¢}) ;

o there exists a positive integer my such that Dy = {1,...,ms}, D ={1,...,ma+1}
and there exist two functions x4, and ¢}, whose domain is D} such that h = (z%, ©}).

It follows that (2], ¢]) = h = (2}, ¢5), so 2} = 24 and ¢} = ¢}, and D} = Dj}.

Suppose Dy = (). This implies that D} = D] = {1}, thus Dy = 0.
In this case k1 = € = ko, y1 = 21 (1) = 25(1) = y2, 1 = @1 (1) = ©h(1) = 1 .

Suppose there exists a positive integer my such that Dy = {1,...,m;}. This implies
that DIQ = Dll = {1,...,7’77,1 + 1}7 thus Dg = {1,...,7’7’},1}.
In this case for each @ = 1...m; z1(a) = 2} (a) = z5(a) = z2(a), p1(a) = ¢i(a) =
wh(a) = pa(a) . So k1 = (x1,91) = (x2,p2) = ko; and moreover y; = xj(my + 1) =
zo(m1+1) =y2, Y1 = @1 (m1 +1) = gh(m1 +1) =2 . =
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Other useful results are the following.

LEMMA 2.2. Suppose h = (z,¢), k = (z,v¢) are state-like pairs such that h € R(k)
and for each i,j € dom(k) i # j — z; # zj. Then, for each i € dom(k), j € dom(h)
zlzx]—H/)l:@]

Proof. Let ¢ € dom(k), j € dom(h) and z; = x;. Clearly j € dom(k), z; = z;, thus
Zi:Zjai:j7 410]:,(/)_]:,(/)1 L]

LEMMA 2.3. Suppose h = (x, ) is a state-like pair, (y, @) is an ordered pair and define
kE=h+ (y,¢). Suppose g € R(k) is such that g # k. Then g € R(h).
Proof.

Let D = dom(h).

Suppose m is a positive integer and D = {1,...,m}. Then k = (2/, ¢’) has a domain

{1,...,m+1}. Moreover there exists C' € D such that C C {1,...,m+ 1} and g = k/¢.
Since g # k we must have C' C {1,...,m}. We have

g=kic= (ffl/c#?//c) = ((90//0)/07 (QDI/D)/C) = (v/0y¢70) = hyc -

Now suppose D = ). Then k = (2, ¢') has a domain {1}. Moreover there exists C' € D
such that C' C {1} and g = k/¢. Since g # k we must have C' =) and g = (0,0) = h.

In both cases g € R(h). u

LEMMA 24. Let z be a function such that dom(x) € D, let C;D € D such that
C C D Cdom(z). Then we can define x,c and (x,p)/c, and we have (x/p),c = T ;c-

Proof. Define y = x,p, we have dom(y) = D and for each j € D y(j) = x(j). Moreover
dom(y,c) = C = dom(x,¢) and for each j € dom(C) y,c(j) = y(j) = 2(j) = x/c(j). =

LEMMA 2.5. Let g,h and k = (x,¢) be state-like pairs such that g,h € R(k),
dom(g) € dom(h). Then g € R(h).

Proof. There exists C' € D such that C' C dom(k), g = k;c. And there exists D € D such
that D C dom(k), h = k/p. It results C' = dom(g) C dom(h) = D. Then, clearly

9= (z,9)c = (x/c,¢,c) = ((x/p)/c: (¢/D))c) = (/s 0 D) )0 = hyC

We also need some notation referred to generic strings, this notation will be useful
when applied to our expressions, which are non-empty strings. If ¢ is a string we can
indicate with £(t) ¢’s length, i.e. the number of characters in t. If £(¢) > 0 then for each
a€{1,...,4(t)} at position a within ¢ there is a character, this symbol will be indicated
with t[a]. We call ‘depth of « within t’ (briefly d(¢,«)) the number which is obtained by
subtracting the number of right round brackets ‘)’ that occur in ¢ before position « from
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the number of left round brackets ‘(’ that occur in ¢ before position « .
The following lemma will be useful later within proofs of unique readability. Its proof is
so simple that we feel free to omit it.

LEMMA 2.6. Let 9, ¢, n be strings with £(9) > 0, £(p) > 0, and let t = I||p||n; let also
a€e{l,....lp)}. The following result clearly holds:

d(t, 09) + o) = d(t, £(9) + 1) + d(p, a).

We can now describe the process of constructing expressions for our language £. This
is an inductive process in which not only we build expressions, but also we associate them
with meaning, and in parallel also define the fundamental concept of ‘context’. This pro-
cess will be identified as ‘Definition 2.7] although actually it is a process in which we give
the definitions and prove properties which are needed in order to set up those definitions.

2.1. Definition process. This section contains only definition[2.7] This definition is an
inductive definition process within which we have assumptions, lemmas etc.. Symbols like
m within this definition are not intended to terminate the definition, they just terminate
an assumption or lemma etc. which is internal to the definition. Within the definition
there are also internal tasks in which we verify some expected condition. We’ll use the
symbol ¢ to mark the end of each of those tasks.

DEFINITION 2.7. Since this is a complex definition, we will first try to provide an informal
idea of the entities we’ll define in it. The definition is by induction on positive integers,
we now introduce the sets and concepts we’ll define for a generic positive integer n (this
first listing is not the true definition, it’s just to introduce the concepts, to enable the
reader to understand their role).

K (n) is the set of ‘contexts’ at step n. A context k is a state-like pair of the form
(x, ) where z and ¢ have the same domain D = {1,...,m} € D, and foreachi=1...m
x; is a variable and (; is an expression.

For each k € K(n) Z(k) is the set of ‘states’ bound to context k. If n > 1 and
k € K(n — 1) then Z(k) has already been defined at step n — 1 or formerly, otherwise it
will be defined at step n.

If k£ = (z,¢) is a context, a state on k is a state-like pair ¢ = (z, s) where (roughly
speaking) for each 4 in the domain of x, ¢ and s s; is a member of the meaning of the
corresponding expression @; .

For each k € K(n) E(n, k) is the set of expressions bound to step n and context k.

E(n) is the union of E(n, k) for k € K(n) (this will not be explicitly recalled on each
iteration in the definition).
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For each k € K(n), t € E(n, k), o € Z(k) we’ll define #(k,t,0) which stays for ‘the
meaning of ¢t bound to kand ¢’. If n > 1, k € K(n—1) and t € E(n—1,k) then #(k,t,0)
has already been defined at step n — 1 or formerly, otherwise it will be defined at step n.

For each k € K(n), t € E(n, k)
Vi(t) is the set of the variables that occur within ¢, bound to a quantifier ;
V¢(t) is the set of the variables that occur within ¢, not bound to a quantifier ;
V'(t) is the set of the variables that occur within ¢ (of course V(t) = V;,(¢t) UV¢(t), so V (¢)
will not be explicitly defined each time).
Ifn>1,ke K(n—1)andt € E(n—1,k) then V4(t) and V(t) have already been defined
at step n — 1 or formerly, otherwise they will be defined at step n.

We'll also use some sets that will be defined in the same way at each step, we put
here their definition and we’ll avoid to repeat those definitions each time.
For each k € K (n) we define Es(n, k) = {t|t € E(n,k),Vo € E(k) #(k,t,0) is a set}.
For each k € K(n), t € Ey(n, k) we define M(k,t) = U, ez #(k,t, 0).
For each k € K(n) we define M(n, k) = U,cp, (o1 M(k,t) .
We finally define M (n) = Uyeg(n) M (n, k).

We have seen that some entities may have been defined before step n, and in this case
we are not to define them at step n, however at step n we need to check the definition
that has been given is consistent with what we would expect.

We are now are ready to begin the actual definition process, so we perform the simple
initial step of our inductive process.

We define K (1) = {e}, =(e) = {e}, E(l,¢) =C.
For each t € E(1,¢€) we define #(e,t,€) = #(t), Vo (t) =0, Vy(t) =0 .

The inductive step is much more complex. Suppose all our definitions have been given
at step n and let’s proceed with step n + 1. In this inductive step we’ll need several as-
sumptions which will be identified with a title like ‘Assumption 2.1.x’. Each assumption
is a statement that must be valid at step 1, we suppose is valid at step n and needs to
be proved true at step n + 1 at the end of our definition process.

The first assumption we need is the following.

AsSUMPTION 2.1.1. For each k € K(n) such that k # € and for each o € = (k) there exist
a positive integer m, a function z: {1,...,m} = V, a function ¢: {1,...,m} = E(n), a
function s: {1,...,m} — M(n) such that

o foreachi,j e {1...m} (i #j — x; # z;)

o k=(z,¢)
o 0= (z,5)
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This assumption ensures that for each k € K(n) such that k # € k is a state-like pair,
and for each o € Z(k) o is a state-like pair.

Given k = (z,¢) € K(n) we define var(k) as the image of the function z. In other
words if k = € then x = (), so var(k) = 0, otherwise x has a domain {1,...,m} and
var(k) ={z;li=1...m}.

We can go on with the inductive step and define

K(n)* ={h+(y,0)|h € K(n),¢ € Es(n,h),y € (V —var(h))},

Kn+1)=K(nm)UK(n)".

Let k € K(n)*. Then there exist h € K(n),¢ € Es(n,h),y € (V —var(h)) such that
k=h+ (y,¢). By lemma we know that h, ¢,y are univocally determined.

We can assume that Z(k) is defined for k € K(n), and we need to define this for
ke Kin+1)— K(n). If k € K(n+ 1) — K(n) then clearly k € K(n)"™ and so there
exist h € K(n),¢ € Es(n,h),y € (V —wvar(h)) such that k = h + (y, ¢); and h, ¢,y are
univocally determined. So we can define

E(k) = {0+ (y;8)|o € E(h),s € #(h,$,0)} .
We need to prove that this definition of Z(k) holds for all k € K(n)*. To prove this
we need a second assumption.
ASSUMPTION 2.1.2. For each k € K(n)
(k=¢)
V(n>1)A3ge K(n—1),z€V —wvar(g),y € Es(n—1,g) :
k=g+ (z,¥) NE(k) ={o + (2,5)| 0 € E(9), s € #(9,¢,0)})

Thanks to this assumption we can prove the following lemma.

LEMMA 2.1.3. For each k € K(n)",h € K(n),¢ € Es(n,h),y € (V —var(h)) such that
k= h+ (y,¢) we have

=E(k)={oc+ (y,s)|oc € E(h),s € #(h,d,0)}.
Proof. If k ¢ K(n) this is true by definition. If k¥ € K(n) we can apply the former lemma.
Since k # ¢ we have n > 1 and there exist g € K(n— 1),z € V —wvar(g),v € Es(n—1,9)
such that k = g+ (2,9) ANZE(k) = {0 + (2,8)| 0 € Z(g9),s € #(g,¢,0)} .
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Since k = h + (y, ¢) we have g = h, z = y,1 = ¢, and therefore

E(k) = {o + (y.5)| 0 € Z(h), s € #(h, 6,0)}.

Another consequence of lemma[2.1]is the following: for each k € K (n)* and o + (y, s)
in 2(k), o, y and s are univocally determined.

To ensure the unique readability of our expressions we need the following assumption
(which is clearly satisfied for n = 1).

ASSUMPTION 2.1.4. For each t € E(n)

o tl(B)] #°(;
o if t[4(t)] =)’ then d(t,L(t)) =1, else d(t, £(t)) =0;
o for each a € {1,...,0(t)} if (t[a] = ") V (t[a] =) V (t[e] = ¢)’) then d(t,a) > 1.

It is time to define E(n+ 1, k), for each k in K(n+ 1). Then for each ¢t in E(n+1,k)
and o in E(k) we need to define #(k,t,0), and also we need to define Vj(t) and Vy(t).

We have to warn that the definition of #(k,t,0), V4(t) and V¢(t) is not an easy matter.

In fact, E(n+ 1, k) will be defined as the union of different sets. Consider for instance
the situation where k € K(n). One of these sets is E(n, k), the old set of expressions
bound to context k. But of course there are also new sets. If an expression ¢ belongs
just to E(n, k), and not to the new sets, then we don’t need to reason about #(k,t, o),
because simply it has already been defined.

However, if ¢ belongs both to E(n,k) and to one or more of the new sets, we’ll have a
proposed definition of #(k,t,0) for each of the new sets, and we’ll have to check that
this proposed definition is equal to the real definition.

If ¢ belongs to just one new set and not to F(n, k) then we’ll simply define #(k, t, o) with
the proposed definition of #(k,t, o) for the new set.

If ¢ belongs to more than one new set, and not to E(n, k), we’ll need to check that the
proposed definitions of #(k,t, o) for each new set are equal to each other, and then we’ll
be authorized to set #(k,t,0) with one of these proposed definitions.

When k ¢ K(n) the discussion is simpler: it cannot be t € E(n, k), so we just have to
consider the other situations. For the definition of V;(¢) and V(t) the reasoning is similar
but slightly different.

At this point we can proceed to formally define the new sets of expressions bound to
context k, and for expressions in each of them we define the proposed values of #(k, t, o),
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Vi(t) and V(@)
For each k = h + (y,¢) € K(n)" we define
E.(n+1,k) ={t|t € E(n,h) ANy & Vu(t)}.

For each t € Eo(n+ 1,k), 0 = p+ (y,s) € Z(k) we define the proposed values of
#(k,t,0), Vu(t) and Vi(t):

#(k7 tv U)(n—l—l,k,a) = #(h7 ta p)7
Vi) (n41,k,0) = Vi(): Vo(t) (nt1,k,a) = Va(2).

For each k = h + (y,¢) € K(n)" we define

Ey(n+1,k) = {y}.

For each t € Ey(n+1,k), 0 = p+ (y,s) € E(k) we define:

H#(kt, ) (g 1,k,0) =
Vi)t 1.k0) = 19} Vo) (ns1,k) = 0

As a premise to the following definition of E.(n 4 1, k), we specify that, given a pos-
itive integer m and a set D, we call D™ the set D X --- x D where D appears m times
(when m = 1 of course D! = D), and a function whose domain is a subset of D™ is called
a function with m arguments.

For each k € K(n) we define E.(n + 1,k) as the set of the strings (¢)(¢1,-..,®m)
such that:

e 1 is a positive integer;

® P, P15 Pm € E(”ak)v

e for each o € E(k) #(k, p,0) is a function with m arguments and
(#(k,p1,0),...,#(k, om,0)) is a member of its domain.

This means that for each t € E.(n + 1,k) there exist a positive integer m and
0,01,y ©m € E(n) such that t = (¢)(¢1,.-.,%©m). In the following lemma we’ll show
that m, ¢, ¢1,.. ., ©m are uniquely determined. Within this complex definition this proof
of unique readability may be considered as a technical detail, and can be skipped at first
reading. The proof will often exploit lemma and assumption they will not be
quoted each time they are used.

LEMMA 2.1.5. Let t € E.(n + 1, k) and suppose

e there exist a positive integer m and ©, p1,...,0m € E(n): t = (p)(©1,-- -, Om)-
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o there exist a positive integer p and ¥,v1,...,¢, € E(n): t = (¥) (1, ..., ¥p).
Then p = m, ¢ = ¢ and for each i € {1,...,m} ¥; = ¢;.
Proof.

If we know m we can provide an ‘explicit representation’ of ¢. In fact if m = 2 then
t = (p)(p1,92),if m = 3 thent = (¢)(p1, p2, 3) and so on. In this explicit representation
we can see explicit occurrences of the symbols ‘,” and ). There are explicit occurrences
of .’ only when m > 1. We indicate with ¢ the position of the first explicit occurrence
of )’, and the second explicit occurrence of ‘)’ is clearly in position £(¢). It m > 1 we
indicate with ¢, ..., ¢n_1 the positions of the explicit occurrences of *,’.

In the same way, if we know p we can provide another ‘explicit representation’ of ¢.
In fact if p = 2 then t = (¢) (11, ¥2), if p = 3 then ¢t = (¥)(¥1, 12, 13) and so on. In this
explicit representation we can see explicit occurrences of the symbols ‘> and ¢)’. There
are explicit occurrences of ‘,” only when p > 1. We indicate with r the position of the first
, and the second explicit occurrence of ¢)

£(t). If p > 1 we indicate with rq,...,7,_1 the positions of the explicit occurrences of *,”.

) )

explicit occurrence of ‘) is clearly in position

We have d(t,q — 1) =d(t, 1+ £(p)) =d(t, 1+ 1) + d(p, £(¢)) = 1+ d(p, £(p)).

If tlg — 1] = [t(p)] = )" then d(t, q) = d(t,q — 1) — 1 = d(p, £(p)) = 1.
Else tlg — 1] = ¢[t(p)] ¢ {*(’,*)'}, so d(t,q) = (t q—1) =1+d(p {(p))

Suppose ¢ < 7. Obviously ¢ > 1, g—1>1,¢g—1<r—2=4L1); Y[g—1] =t[q] =)
Sod(t,q) =d(t,1+ (¢ —1)) =d(t,2) +d(s,q —1) =1+ d(p,qg — 1) = 2.
This is a contradiction, because we have proved d(t,q) = 1. Thus g > r.

1.

In the same way we can prove that r > ¢, so we have r = q.

Clearly ¢(¢) =r—2=q—2 = {(p), and for each a = 1.. . £(p) p[a] = tja+1] = ¢Y[a].
In other words ¢ = .

Of course we have also d(t,r) =d(t,q) =1, d(t,r+2) =d(t,r) —1+1=1,
d(t,q+2)=d(t,q) —1+1=1.

We still need to show that p = m and for each i € {1,...,m} ¥; = ¢;.
First we examine the case where m = 1. We want to show that p = 1.

Suppose p > 1. In this situation we have
dit,r1 — 1) =d(t,r+1+(r1—1—(r+1)))=dt,r+1+L(¢1)) =
=d(t,r +2) +d(¥1, (1)) = 1+ d(1,£(¢1)).

If t[’/’l — 1] = ¢1 [é(’l/)l)] = ‘)’ then d(t,?"l) = d(t,?"l — 1) —1= d(¢1, (1/)1)) =
Else t[r1 — 1] = ¢1[l(¢1)] € {'(,)'} so d(t,r1) = d(t,r1 — 1) = 1+ d(¢1,£(¢p1)) =
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Moreover we have to consider that

lpr) =L(t) —1—(g+1) =£(t) —q -2,

ry < L(t) — 1
ri—(g+1)<Llt)—1—(qg+1)=LEt) —qg—2={e)
T1 2 q+ 2,
(g+1) =1,
el —(g+ )] =tr] =",

L=d(t,r) =d(t,q+2) +d(p1,m1 — (g +1)) = 1+d(p1,m1 — (¢ +1)).

This causes d(¢1,7m — (¢ + 1)) = 0, but by assumption we must have
d(¢1,71 — (¢ +1)) = 1. So it must be p = 1.

Of course
() =) 1= (r+ 1) =Lt) —r =2=L(t) — ¢ = 2= l(p).
For each a« = 1...4(p1) p1]a] = tlg+1+a] = tfr+1+a] = ¢1[a]. Therefore ¢ =

Now let’s discuss the case where m > 1.
First we want to prove that foreachi=1...m—1p > i, d(t,q;) = 1,7 = ¢;, ¥; = ;.
Let’s show that p > 1,d(¢t,q1) = 1,71 = q1,¢1 = ¢1
If p =1 of course m =1, so p > 1 holds.
We have that
d(t,q1 = 1) =d(t,qg+ 1+ L(g1)) =d(t,qg+ 1+ 1) +d(e1,L(e1)) =1+ d(p1,£(p1))-
If tlgr — 1] = p1[€(p1)] = ) then d(t,q1) = d(t,q1 — 1) — 1 = d(1, (1)) = 1 :
Else tlg1 — 1] = ¢1[l(p1)] ¢ {°(,)"} so d(t,q1) = d(t,q1 — 1) = L+ d(p1,L(p1)) =
Suppose ¢q; < 71, we have
Z(’(/)1>:7"1—1—(7“+1):T1—7“—2,
g —r—1<ri—r—1,
q1 —-r—1 <£(¢1)5
q1 > (I+ ]-7
q>r+1,
g1 — T — 1 2 17
and then
lzd(tvch) :d(t,T+1+(q1 _T_l)) :d(tar+2)+d(wlaq1 —-r—= 1) =
:1—|—d(1/}1,ql —7‘—1).

So d(¢1,q1 —r — 1) = 0. But since ¥ [q1 —r — 1] = t[g1] = *,’, by assumption we
must have d(¢1,q1 —r — 1) > 1, so we have a contradiction.
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Hence ¢; > 1 and in the same way we can show that r; > ¢q, therefore r; = ¢.

At this point we observe that
Lpr)=q—1—(¢g+1)=qu—q—2=r1 —r—2=4L(y).

Moreover, for each o =1...0(¢1) p1[a] =tlg+ 1+ a] =t[r+ 1+ a] = ¢P1]a].
Therefore 11 = ¢

We have proved that p > 1,d(t,q1) = 1,71 = ¢1,%1 = 1, and if m = 2 we have also
shown that foreachi=1...m —1p > i,d(t,q;) = 1,7 = qi, i = ;.

Now suppose m > 2, let ¢ = 1...m — 2, suppose we have proved p > i, d(t,¢q;) = 1,
Ti = @i, ¥ = @;, we want to show that p > i+ 1,d(t,¢iv1) = 1,741 = Git1, Yit1 = @it
First of all
d(t, qiv1 — 1) = d(t, qi + U(pit1)) = d(t, ¢ + 1) + d(pir1, €(pit1)) =
=14 d(pit+1, {(piv1))-

If t{gi+1 — 1] = pit1[l(pi+1)] = ) then
d(t,giv1) = d(t,qiv1 — 1) = 1 = d(pit1, l(pit1)) = 1.
Else t[git1 — 1] = pir1[l(piv1)] € {'(,*)'} so
d(t,qi+1) = d(t,giv1 — 1) = 1+ d(pi+1,l(pi1)) = 1.

Suppose p =i+ 1. We have i <m — 2, i+ 2 < m, t[git+1] =°,’. And we have also
U(p) = L(t) =1 =13,
Giv1 < L(t) — 1,
Qg1 — i <U(t) =1 —1r; = L(y),

Git1 —Ti =qit1 — G = 1,
Yplgivs — 7] = t{giv1] =,
and
L=d(t,qiv1) = d(t,mi + (qir1 — 7)) = d(t, i + 1) + d(Vp, qiv1 —1i) =
=14+d(Wp, i1 —14).

So d(¥p, ¢i+1 — ;) = 0 and this contradicts assumption 4] Therefore p > i + 1.
Now suppose ¢;+1 < 7i+1. In this case
Lit1) =rip1 — 1 =1y,
Qiv1 < Tip1— 1,
Qg1 — i <Tip1 — 1L =15 = L(2hig1),
Gi+1 — T =qi+1 — ¢ = 1,

‘

Vir1lgit1 — 7] = t{giva] =,
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and

1L =d(t, qit1) = d(t,ri + (gi+1 — 7)) = d(t, 7 + 1) + d(it1, qip1 — i) =

=1+ d(iv1, i1 — 1i)-
So d(¥i+1, ¢i+1 —1i) = 0 and this contradicts assumption Therefore ¢;11 > rit1.
In the same way we can prove that ¢;+1 < r;+1, hence r;4+1 = ¢;41 is proved.
Moreover
Upiv1) = i1 — 1 — g = rip1 — L =1 = L(Pis1),
and for each o =1...0(¥;y1)
Yipi[a] = tr; + o] = tlg; + o] = pir1[al.
We have proved that for each i =1...m —1p > i,d(t,q;) = 1,7 = ¢;,¥; = ;.
So p = m, and in the same way we could prove m > p, therefore p = m.
We have seen that 7,1 = ¢m_1, it follows
pm) =L(t) =1 = gm-1 =L(t) =1 =11 = L(thm),
and for each a = 1...£(¢y,)
Ymla] =t

therefore ¥, = vum,.

[Tm—1 + 0‘] = t[Qm—l + Of} = gam[a],

So also in the case m > 1 it is shown that p =m and foreachi=1...m ¢; = p;. »

For each t = (¢)(¥1,...,0m) € Ec.(n+ 1,k) we define

#(ka t, U)(n—i—l,k,c) = #(k7 2 U)(#(k, ¥1, J)a sy #(kv Pm; 0))’
Vf(t)(n+1,k,c) = Vf((p) U Vf(@l) U---u Vf(@m%
Vo) (nt1,k,0) = Vol) U Vi(p1) U+ U Vi (@m).

For each k € K(n) we define E4(n + 1,k) as the set of the strings (f)(¢1,...,%®m)
such that:

e f belongs to F
e m is a positive integer;
® V1,...,om € E(n, k);
o for each o € E(k) Af(#(k,1,0),...,#(k, pm,0)) is true.

For instance, this means that if the ‘logical conjunction’ symbol ‘A’ belongs to F, 1,
2 belong to E(n, k) and for each o € Z(k) both #(k, ¢1,0) and #(k, @2, 0) are true or
false, then (A)(¢1, p2) belongs to Ey(n + 1, k).
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This implies that for each ¢t € E4(n + 1,k) there are f in F, a positive integer m and
©1y- -y om € E(n) such that t = (f)(t1,...,tm). We will now show that f,m,¢1,...,¢om
are uniquely determined. Within this complex definition this proof of unique readability
may be considered as a technical detail, and can be skipped at first reading. The proof
will often exploit lemma [2.6] and assumption they will not be quoted each time
they are used.

LEMMA 2.1.6. Let ¢t € E4(n+ 1, k) and suppose

= (f)(‘ply s a‘ﬂm)-
= (9) (WY1, -, Pp)-

e there exist f € F, a positive integer m and ¢1,..., 9, € E(n):

t
o there exist g € F, a positive integer p and 91,...,¢, € E(n): t

Then g = f, p=m and for each i € {1,...,m} ¥; = p;.

Proof.

If we know m we can provide an ‘explicit representation’ of ¢. In fact if m = 2 then
t = (f)(p1,p2),ifm =3thent = (f)(p1,p2,s) and so on. In this explicit representation
we can see explicit occurrences of the symbols ‘,” and ‘). There are explicit occurrences
of *,” only when m > 1. The explicit occurrences of ‘)’ are clearly in positions 3 and £(t).
If m > 1 we indicate with ¢q,...,gn_1 the positions of the explicit occurrences of *,’.

In the same way, if we know p we can provide another ‘explicit representation’ of ¢.
In fact if p = 2 then t = (g)(¢¥1,¢2), if p = 3 then ¢t = (g)(41,12,13) and so on. In this
explicit representation we can see explicit occurrences of the symbols ‘> and ¢)’. There
are explicit occurrences of ¢ only when p > 1. The explicit occurrences of ‘)’ are clearly
in positions 3 and ¢(t). If p > 1 we indicate with 71,...,r,_1 the positions of the explicit
occurrences of ‘.

It is immediate to see that g = t[2] = f.
We still need to show that p = m and for each i € {1,...,m} ¢; = ¢;.
First we examine the case where m = 1. We want to show that p = 1.

Suppose p > 1. In this situation we have

d(t,ry —1) = d(t, 4+ (r1 — 1 —4)) = d(t, 4+ (1)) =
=d(t,4+1) +d(¥n, €(¢n)) = 1+ d(¢r, £(¢n))-

If t[’/’l — 1] = ¢1 [é(’l/}l)] = ‘)’ then d(t,?"l) = d(t,?"l - 1) —1= d(¢1,€(1/)1)) =1.
Else t[r1 — 1] = ¥1[(y1)] & {*(, )’} so d(t,r1) = d(t,r1 — 1) = 1+ d(¢1, (1)) = 1.
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Moreover we have to consider that

(lpr) = £(t) =1 =4 =L(t) =5,

r < 0(t) — 1,

i —4<Ut) —1—4=1L(t) =5 =Lp1),
r1 24+1,

ri—4=1,

1:d(t,7“1) :d(t,4+1)+d(g0177‘1 —4) :1+d(<,01,7‘1 —4)

This causes d(p1,71 —4) = 0, but by assumption we must have
d(p1,m1 —4) > 1. So it must be p = 1.

Of course
() = £(t) — 1 — 4 = U(g).
For each a =1...4(p1) p1la] = t[4 + a] = ¥1]a]. Therefore 11 = ;.

Now let’s discuss the case where m > 1.
First we want to prove that foreachi =1...m—1p > i, d(t,q;) = 1,7 = q;, Vi = @;.
Let’s show that p > 1,d(t,q1) = 1,71 = q1,%1 = ¢1.
If p =1 of course m =1, so p > 1 holds.
We have that
d(t,qr — 1) = d(t, 4+ £(e1)) = d(t,4 +1) + d(p1,£(p1)) = L+ d(p1, £(p1))-
If tlgr — 1] = @1 [l(pr)] =) then d(t, q1) = d(t,q1 — 1) = 1 = d(p1, (1)) = 1.
Else t[qy — 1] = @1[l(e1)] ¢ {*(,)} so d(t, 1) = d(t,q1 — 1) = 1+ d(p1, £(p1)) = 1.
Suppose ¢1 < 71, we have
1) =rm —1—4=r -5,
g —4<r —4,
q1 —4 < L(Y1),
o >4,
n—4=21,
and then
1=d(t,q1) =d(t, 4+ (1 — 4)) =d(t, 4+ 1) +d(¢1,q1 —4) =
=1+d¥1,q1 —4).

So d(¢1,q1 — 4) = 0. But since 91[q1 — 4] = t[q1] = ¢, by assumption we must
have d(¢1,q1 —4) > 1, so we have a contradiction.

Hence ¢; > 1 and in the same way we can show that r; > ¢;, therefore r; = ¢;.
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At this point we observe that £(p1) =q1 —1—4=r1 —1—4=£(¢).

Moreover, for each o = 1...£4(p1) p1[a] = t[4 + a] = ¥1]a].
Therefore ¢ =

We have proved that p > 1,d(t,q1) = 1,71 = ¢1,%1 = 1, and if m = 2 we have also
shown that foreach i =1...m —1p>i,d(t,q;) = 1,7 = qi, i = ;.
Now suppose m > 2, let i = 1...m — 2, suppose we have proved p > i, d(t,q;) = 1,
Ti = @i, Vi = @i, we want to show that p > i+ 1,d(t,¢iy1) = 1,7i11 = qiv1, Yiv1 = Piy1-
First of all
d(t, gi+1 — 1) = d(t, ¢ + L(pi+1)) = d(t, ¢ + 1) + d(@it1, L(pit1)) =
=14 d(pit+1, {(piv1))-

If t{giv1 — 1] = pit1[l(pi+1)] = ) then
d(t,giv1) = d(t,qiv1 — 1) = 1 = d(pit1, l(pit1)) = 1.
Else t[gi+1 — 1] = pir1[l(pi+1)] € {*(,*)} so
d(t,giv1) = d(t,qiv1 — 1) = 1+ d(piy1, L(pit1)) = 1.

Suppose p =i+ 1. We have i <m — 2, i+ 2 < m, t[git+1] =°,’. And we have also
U(pp) = £(t) =1 =14,
qiv1 <L) — 1,
Giv1 — 1 SUE) = 1 =1 = £(Yy),
Git1 —7Ti = qit1 — ¢ = 1,
Vplgitr — i) = tgi+a] =",
and
1=d(t,gi+1) =d(t,ri + (g1 — 1)) = d(t, i + 1) + d(Wp, i1 — 7i) =
=1+d(p, giy1 — 13).
So d(%p, ¢i+1 — ;) = 0 and this contradicts assumption Therefore p > i + 1.
Now suppose ¢;+1 < ri+1. In this case
(iv1) = rig1 — 1 =i,
Git1 < Tip1 — 1,
Qg1 — i < Tip1 — L =15 = L(2hig1),
Gi+1 —Ti = Giv1 — G = 1,
Vit1ldivr — i) = tlgipa] =,
and
L=d(t,qiv1) = d(t,ri + (qiv1 — 7)) = d(t,rs + 1) + d(Yig1, Gipr —13) =
=1+ d(Yit1,qiy1 —1i)-
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So d(;+1, qi+1—7i) = 0 and this contradicts assumptionm Therefore ¢;11 = rit1.
In the same way we can prove that ¢;+1 < r;+1, hence r;4+1 = ¢;+1 is proved.
Moreover
Upiv1) =git1 — 1 — g = rip1 — L =1 = (Y1),
and for each o =1...0(¥;y1)
Yipi[a] = tr + o] = tlg; + o] = ir1[a].
We have proved that for eachi=1...m —1p > i,d(t,q;) = 1,7 = ¢;,¥i = ;.
So p > m, and in the same way we could prove m > p, therefore p = m.
We have seen that r,,_1 = ¢,_1, it follows
Upm) =L(t) =1 = gm-1 = L£(t) =1 = rm_1 = L(thm),
and for each a = 1...£(ty)
Ymlo] = tlrm-1 + o] = tlgm-1 + o] = omlal,
therefore ¥, = vm,.

So also in the case m > 1 it is shown that p =m and foreachi=1...m ¢; = p;. »

For each t = (f)(¢1,...,9m) € Eq(n+ 1,k) we define
#(k,t,0) (ng1,0,0) = Pr(#(k, 01,0), ..., #(k, om,0)),
Vi) mrikay = Viler)U---UVi(pm),
Vo(t) (nt1,k,0) = Vo) U= U Vi (@m)-

Let k € K(n), m a positive integer, x a function whose domain is {1,...,m} such
that for each i = 1...m a; € V —wvar(k), and for each i,j = 1...m i # j — x; # x;,
¢ a function whose domain is {1,...,m} such that for each i = 1...m ¢; € E(n), and

finally let ¢ € E(n). We write
g(n’ k7 m? x? L)O) ¢)

to indicate the following condition (where kf = k + (z1,¢1), and if m > 1 for each
i=1..m—1 k’ZI-Jrl = k§+(m¢+1,g0i+1)):

L4 soleES(n7k)7
e if m > 1then foreachi=1...m—1k, € K(n) A piy1 € Es(n, k});
o k. e K(n)\No € E(n,kl,).

For each k € K (n) we define E.(n + 1, k) as the set of the strings

{}(xl P, Tt (pm7¢)
such that:

e m is a positive integer;
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e 1 is a function whose domain is {1,...,m} such that for each i = 1...m z; €
V —wvar(k), and for each 4,5 =1...m i # j — x; # xj;

e ¢ is a function whose domain is {1, ...,m} such that foreach i =1...m ¢; € E(n);

* ¢ € E(n);

hd g("? k’ m7 x’ <)07 ¢)'

This implies that for each t € E.(n+ 1, k) there exist a positive integer m, a function
x whose domain is {1,...,m} such that for each i = 1...m z; € V, a function ¢ whose
domain is {1,...,m} such that for each i = 1...m ¢; € E(n), and ¢ € E(n) such that
t={}z1: o1, -, Tm : Om, ). We will now show that m,z, ¢, ¢ are uniquely deter-
mined. Within this complex definition this proof of unique readability may be considered
as a technical detail, and can be skipped at first reading. The proof will often exploit
lemma [2.6] and assumption they will not be quoted each time they are used.

LEMMA 2.1.7. Let ¢t € E.(n + 1,k) and suppose

e there exist a positive integer m, a function z whose domain is {1,...,m} such that
for each i =1...m z; € V, a function ¢ whose domain is {1,...,m} such that for
eachi=1...my; € E(n), and ¢ € E(n) such that t = {}(z1: ¢1,...,Tm : ©m, P);

e there exist a positive integer p, a function y whose domain is {1,...,p} such that

for each i = 1...p y; € V, a function ¢ whose domain is {1,...,p} such that for
eachi=1...p¢; € E(n), and ¥ € E(n) such that ¢t = {}(y1 : ¥1,...,yp : VYp, V);

Then p =m,y = x,v% = ¢ and ¥ = ¢.
Proof.

If we know m we can provide an ‘explicit representation’ of ¢. In fact if m = 2 then
t ={}(z1: p1,22 : p2,0), if m =3 then t = {}(z1 : 1,22 : 2,23 : ¢3,¢), and so on.
In this explicit representation of ¢ we can see explict occurrences of the symbols ‘,” and
‘’. We indicate with ¢1,..., g, the positions of the explicit occurrences of ‘> and with
71 ...7ry the positions of the explicit occurrences of *,’.

In the same way, if we know p we can provide another ‘explicit representation’ of ¢t. In

fact if p = 2 then t = {}(y1 : ¥1,y2 : o, 9),if p =3 thent = {}(y1 : ¥1,y2 : V2, ys3 : ¥3,9),
and so on. In this explicit representation of ¢ we can see explict occurrences of the symbols
‘. and ‘. We indicate with ¢, ..., ¢/, the positions of the explicit occurrences of ¢’ and
with r{ ...7] the positions of the explicit occurrences of ‘.

We want to show that for eachi=1...m

p 2 Z7y1 = ‘Thq; = QHd(tvrl) = 1aT; = T’iv’lpi = Pj-

The first step is to show that y1 = x1,q; = q1,d(¢,71) = 1,7] = 71,91 = 1.
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Of course y; = t[3] = 1, ¢§ = 4 = q1. Moreover

dit,r1 = 1) =d(t,q + (11 —1—q)) =d(t,q1 +le1)) = d(t,q1 + 1) +d(p1,L(p1)) =
=1+d(p1, (1))

If t[ry — 1] = o1[€(p1)] = ¢) then d(t, 1) = d(t,r1 — 1) — 1 = d(¢1, (1)) = 1.
Else t[r1 — 1] = o1[l(e1)] ¢ {*(,*)} so d(t,r1) = d(t,m1 — 1) = 14+ d(p1,0(p1)) = 1.

Now suppose r; < rj. This would mean that

and

1= d(t7’r1) = d(tyqll + (Tl - QS)) = d(t7q/1 =+ 1) + d(wlﬂrl - (Ji) =1+ d(wlﬂ‘l - qll)

So d(t1,71 —¢;) = 0 and this contradicts assumption [2.1.4] Hence 71 > 7/, and in the
same way we can show that r] > rq, therefore ry = r}

At this point we observe that ¢(
Moreover, for each v = 1..

1) =11 —1—q =£(¢1).
A1) Prla] = tlgy + o] = t{q1 + o] = pi[a], hence Py = ¢y
We have proved that y1 = x1,q¢] = q1,d(¢t,r1) = 1,7}, = r1,¢1

= 1. As a consequence,
if m = 1 we have proved that for eachi=1...m

p 2 Zvyl = xmq; = q’iad(t7ri) = 177“'; = Ti7wi = Soi'

Consider the case where m > 1. Let i = 1...m — 1, we suppose

p 2 i7yi = ‘T’iaqg = qi7d(tvri) = 1arg = Tiv’l/)i
and want to show that

= i

p=i+ 1 yiv1 = Tig1, g1 = Gir1, At 1) = 1,700 = Tig1, Vi1 = Qi1

We can immediately show that d(t,7;,11) = 1. In fact d(¢, ;41 + 1) = d(t,r;) = 1,

d(t,riz1 — 1) =d(t, gis1 + (rig1 — 1 — qit1)) = d(t, qip1 + U(pit1)) =

=d(t,giy1 + 1) + d(wir1, l(pir1)) = L+ d(@it1, L(pit1))-
If tfriv1 — 1] = iy1[l(piy1)] =)’ then
d(t,riy1) = d(t,rip1 — 1) = 1 = d(pit1, l(pit1)) = 1.
Else t[rit1 — 1] = pir1[l(piv1)] € {*(",)} so
d(t,riz1) = d(t,rip1 — 1) = 1+ d(piy1, L(pit1)) = 1.

Suppose p = i. In this case
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09) = £(t) — 1 — 14,
ric1 — 1 <A(t) — 1 =71l =£(09),
=

Tigl — Ty =Tip1 — T 2 1,
Oriya =il = tlripa] =,
and
1=d(t,riv1) = d(t, 7, + (rigr —7y)) = d(t,r + 1)+ d(9, 741 — 1) =
=1+d(W,riz1 —1)).
So d(9, ri41 — 7)) = 0, and this contradicts assumption 4] Therefore p > i+ 1.
It follows immediately that y;+1 = t[r] + 1] = t[r; + 1] = 2441 and Q1 =7+ 2= qiy1.

Now we suppose ;1 < rj, ;. This would mean that

L(Yig1) = T;+1 -1- qz/‘+1’
Titl = Gig1 < T — 1= gy = Liga),
Titl — Qip1 = Tig1 — Qg1 = 1,
Viy1[rivr — giqpa) = tlriq] =<,
and
L=d(t,ri+1) = d(t, gipy + (rivr — ¢ig1)) = d(t, @y + 1) + d(Wig1,Ti1 — i) =
=14+ d(it1,Ti41 — Gipy)-
So d(thit1,7i+1 — ¢j4,) = 0 and this contradicts assumption m Hence 7341 > 7} ;.
In the same way we can show that r;;1 <7j,,, therefore r; 41 =7} ;.

At this point we observe that £(¢;+1) = ri01 — 1 — ¢ie1 = £(Yi11)-
Furthermore, for each o = 1...0(pi41) Yiy1la] = g + o] = tlgiy1 + o] = pip1]a],
hence ¢i+1 = Qi+1-

It is shown that foreachi=1...m

Py =2, 4 = g, d(t, 1) = 1,7 =i = ¢

So p = m. In the same way we could prove that m > p, so p = m. At this stage we
have shown that y = x and ) = ¢, we just need a final step, which is proving that ¥ = ¢.
This clearly holds because of

) =L(t) =1 =1, =L(t) =1 —rp = L£(¢),
and for each a = 1...4(¢)

Ia] = t[r, + a] = t[rm + o] = ¢[a].
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For every t = {}(21 : ©1,.. ., Tm : Pm, @) € Ee(n+ 1, k) we define
#(kvt’a>(n+1,k,8) = {#(k:m(é?U;n)l U;n € E(k:;n),a C O':n}v
where k} = k+ (21, 1), and if m > 1foreach i =1...m—1kj , = kj+ (Tiy1, Piy1)-

Notice that the set {#(kL,, ¢, 00,)| or, € E(kl,),0 C o}, } is specified using a standard
mathematical notation. We could specify it using a notation closer to the one of our for-
mulas, in this case it could have been written as {} (o}, € E(k},) : 0 C o}, # (ki &, 00,))-

It might still be a bit unclear what is the intended meaning of the expression
{}(l’l Py Tt @m7¢)

This is the same meaning that the expression
{¢| Tr1 € QP1,...,Tm € gam}

is intended to have when used in most mathematics books.

If m = 1 we also define
Vi) (nr1ke) = Vi) U (Vi(9) — {z1}),
Vo(t) (nt1,k,e) = 121} U Vi (01) U Vi (90).

If m > 1 we define

Vi) (ni1ke) = Vi) U (Vi(p2) ={z1}) U U (Vi(om) —{Z1,. ., @m-1}) U
U V(o) —{z1,...,Zm}),
Vo(t) (nt1,k,e) = {215+ -, B } U V(1) U+ U Vi (om) U Vi (9).

We have terminated the definition of the ‘new sets’ (of expressions bound to context
k) and the related work, we are now ready to define E(n + 1,k).

If k € K(n)* we define E/(n+1,k) = E,(n+ 1,k), El(n+ 1,k) = Ey(n + 1, k),
else we define E/(n+1,k) =0, Ej(n+ 1,k) = 0.

If k € K(n) we define E'(n, k) = E( k), El(n+1,k) = E.(n+1,k), Ej(n+1,k) =
Eisn+1,k), El(n+1,k) = E.(n+ 1,k),
else E'(n, k) =0, El(n+1,k) =0, E\(n+1,k) =0, E.(n+ 1,k) = 0.

Finally we define
E(n+1,k) = E'(n,k)UE., (n+1,k)UE;(n+1,k)UE.(n+1,k)UE,(n+1,k)UE.L(n+1, k).

For every k € K(n+1),t € E(n+1,k) and o € Z(k) we need that #(k, t, o) is defined.
But we also need that the definition is such that for each k € K(n+1), w € {a,b,¢,d, e},
te E,(n+1,k) and o € Z(k) #(k,t,0) (nt1,k,0) = #(k,t,0).
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Given k € K(n+1),t € E(n+1,k) and o € Z(k) there are three possibilities.

1. tis in E’(n, k): then #(k,t,0) is already defined; if ¢ is in one or more of the sets
E;,(n+1,k) then for each w we need to verify that #(k,t,0) = #(k,t,0) (n11,k,w)-

2. tis not in E'(n,k) and t is in just one of the sets E! (n+ 1,k): then we just define
#(k’ t O) = #(kv 2 U)(nJrl,k,w)-

3. tis not in F’'(n,k) and ¢ is in more than one of the sets E/ (n+ 1,k): in this case
we choose w such that ¢t € Ej(n + 1,k) and define #(k,t,0) = #(k,t,0) (nt1,1,0)-
We also need to verify that for each w such that t € £, (n+1,k) #(k,t,0) (nt1,5,w) =
#(kv t 0)(n+1,k,w)~

By point 1. we are required to verify that for each k € K(n + 1), w € {a,b,c,d, e},
te B'(n,k)NE,(n+1,k) and 0 € E(k) #(k,t,0) = #(k, 1,0) (nt1,k,0)-

By point 3. we are required to verify that for each k € K(n+1), wy,ws € {a,b,c,d, e} :
wy #wo, t € B, (n+1,k)NE, (n+1,k) and o € Z(k)

#(kv t, 0)(n+1,k,w1) = #(ka t, 0)(n+1,k,wz)'

It’s easy to see that if these properties are verified then we can state that for each
ke K(n+1),w € {a,b,c,d,e}, t € E (n+1,k), 0 € Z(k) #(k,t,0) (nt1,6,0) = #(k, t,0).

With respect to the definitions of V,(t) and V;(¢) we can make a similar argument.
For every k € K(n+1) and t € E(n+ 1, k) we need that V;(t) and V(t) are defined. But
we also need that the definition is such that for each k € K(n+ 1), w € {a,b,¢,d, e} and
te E{U(n + 1, k) Vb(t)(n—&-l,k,w) = W,(t) and Vf(t)(n—i-l,k,w) = Vf(t).

Given t € E(n + 1) there are three possibilities.

1. tis in E(n): then V4(t) and V¢(t) are already defined; if ¢ is in one or more of the
sets [, (n+1, k) then for each k£ and w we need to verify that V;(t) = Vi (£) (n41,k,0)
and Vf(t) = Vf(t)(nJrl’k’w).

2. t is not in E(n) and ¢ is in just one of the sets E/ (n + 1,k): then we just define
Vo(t) = Vo(t) (nt1,k,w) and Vi (t) = Vi(t) (nt1,k,u) -

3. ¢ is not in F(n) and there are more than one k € K(n + 1) and w € {a,b,c,d, e}
such that t is in E/,(n + 1,k). In this case we arbitrarily choose k and w such that
tisin B (n+ 1,k) and define V;(t) = Vo) (nt1,5.0)5 Vi) = Vi(t) (nt1,5,0)-

Here we need to verify that for each k,w such that ¢ is in E/ (n + 1,k)
‘/b(t)(n—i-l,lc,w) = ‘/Ii(t)(n+1,E,w)7 Vf(t)(n+l,k,w) = Vf(t)(n+1,E,m)'

By point 1. we are required to verify that for each k € K(n + 1), w € {a,b,c,d, e},
te E(n)NE,(n+1,k) Vo(t) = Vo(t) (nt1,5,w) and V() = Vi) (nt1,,w)-
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By point 3. we are required to verify that for each ki,ks € K(n + 1), wy,ws €
{a,b,c,d,e}, t € B}, (n+1,k1) N E,, (n+1,ks) such that ¢ ¢ E(n) we have
Vo) (nt 1.k 01) = Vo(E) (nt1,k200)
Vi) (nt1,k1,w1) = V() (041, kg,2) -

It’s easy to see that if these properties are verified then we can state that for each
ke Kn+1), we {a,bc,dye} and t € E (n + 1,k) Vis(t)(nt1,k0) = Vo(t) and
Vf(t)(n+1,k,w) = Vf(t)'

We now have to perform the required verifications. These verifications require a further
set of assumptions. We’ll list those assumptions, and also significant consequences to them
and other results that will in turn be used in our verification process.

ASSUMPTION 2.1.8. if n > 1 then K(n —1) C K(n).

ASSUMPTION 2.1.9. Let k = (z,¢),h = (y,v) € K(n) such that for each i € dom(k),
j € dom(h) x; = y; = v; = ;. Let t € E(n,k) N E(n,h). Let 0 = (z,5) € Z(k),
p = (y,r) € E(h) such that for each ¢ € dom(o), j € dom(p) x; = y; = s; = rj. Then
#(k7tﬂ0) = #(h,ﬂp).

The next assumption has a central role in our verification process.
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AssuMPTION 2.1.10. For each k € K(n), t € E(n,k) one and only one of these five

alternative situations is verified:

a.
t€C, Vo € Z(k) #(k,t,0) = #(1), Vi(t) =0, Vo(t) = 0.
b.
n>1,
if we set k = (x, ) then Ji € dom(k) : (t = z;, Yo = (x,s) € E(k) #(k,t,0) = s;),
Vi(t) = {t}, Vi(t) = 0.
c.

n>1,
Jh e K(n—1): hC k,3Im positive integer , ¢, ¢1,...0m € E(n—1,h) :

t=(¢)(@1,--,¢m), t € E(n,h),
Vp € E(h) ( #(h, ¢, p) is a function with m arguments,
(#(h,01,p), ..., #(hy©m,p)) is a member of the domain of #(h,

(h
#(hvta ,0) = #(ha @,p)(#(h, Qolvp)v SRR #(hv (vap)) )a
Vi(t) = Vi(e) UVi(pr) U+ U Vi(om),
Vo (t) = Vo) U Velpr) U+~ U Vi (om),
).

Vo € Z(k),p € E(h) : p C o it results #(k,t,0) = #(h,t,p

©,p),

n>1,
EhEK(n— 1) : hC k,3f € F, m positive integer , @1, ...pm € E(n—1,h):

( (@15, om), t € E(n,h),

()( r@F#(ho1,p0), - #(hy oms p)),
#(h.t,p) = Pr(#(h, o1,p), .-, #(h, om, p)) ),
( 1) U U Vi(om),

Vo(pr) U= U Vo (om),
(k),p € 2(h) : p C o it results #(k,t,0)

)

Vi(t)
Vi (t)
€

= #(hatap)

[1]

Yo
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n>1,
there exist
he K(n—1):hCk,
a positive integer m,
a function x whose domain is {1,...,m} such that for each i =1...m
xz; €V —wvar(h), and for each ¢, =1...m i # j = x; # z;,
a function ¢ whose domain is {1,...,m} such that foreach: =1...m
@i € E(n—1),
peEn—1)
such that
E(n—1,h,m,x, ¢, d),
t={}z1:01, ..., Tm : Om,P), t € E(n,h),
for each p € E(h) #(h.t,p) = {#(hin, &. )| Py € E(R), 0 E P}
(where by = h + (x1,1), and if m > 1 foreachi=1...m — 1
i1 = R+ (@i, 0i41) ),
if m=1Ve(t) = Vi(pr) U (Vi(@) —{z1}), Vo(t) = {21} U Ve(pr) UVe(9),
ifm>1
Vi(t) = Vi(p1) U (Vi(p2) = {z1}) U U (Vi(om) — {21, ., 2m-1})U
U (V3() — {1, 2m)),
Vo(t) ={z1,.. ., 2m} UVi(p1) U--- U Vi (om) U Vi(9),
Vo € Z(k),p € E(h) : p C o it results #(k,t,0) = #(h,t, p).

AssuMPTION 2.1.11. Let n > 1, k€ K(n), h € R(k) : h # k. Then h € K(n — 1), for
each o € Z(k) if we define p = 0/gom(n) then p € Z(h).

ASSUMPTION 2.1.12. If n > 1 then for each g € K(n — 1) E(n —1,9) C E(n,g).

LEMMA 2.1.13. Suppose h,k € K(n), y € V —wvar(h), ¢ € Es(n,h), k = h+ (y,9).
Moreover let p € E(h), o € Z(k) such that p C o. Then there is s € #(h, ¢, p) such that

o=p+(y,5).
Proof.
We can apply our assumption and get
(n>1)Adge K(n—1),z€V —wvar(g),y € Es(n—1,g) :
k=g+(2,9) NE(k) ={o + (2,5)|0 € E(g),5 € #(g,¢¥,0)}
Soh+(y,¢) =k =g+ (2v¢) and by lemmaR.Ih =g, y =z ¢ =1
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Therefore (k) = {¢/ + (4, 5)| ¢/ € S(h), s € £(h, &, ')}.
Hence there exist p’ € E(h), s € #(h, ¢, p’) such that o = p' + (y, 3).
Now dom(p) = dom(h) = dom(p'), and since both p, p’ € R(c) we have

P = 0 /dom(p) = O /dom(p') = pl'
Therefore there is s € #(h, ¢, p) such that o = p+ (y,s). m

LEMMA 2.1.14. Suppose h,k € K(n), y € V —wvar(h), ¢ € Es(n,h), k = h+ (y,9).
Moreover let p € E(h) and 0 = p+ (y, s) with s € #(h, ¢, p). Then o € Z(k), and clearly
pEo.

Proof.
We can apply our assumption 2.1.2) and get

(n>1)Adge K(n—1),z€V —wvar(g),y € Es(n—1,g) :
k=g+(z¢)NE(k) ={o+(25)0 €E(g),s € #(g9,9,0)}
So h+ (y,9) =k =g+ (2,v) and by lemmah:g, y==z, ¢=n1.
Therefore Z(k) = {p" + (y,8)| p' € Z(h), s € #(h,d,p')}.
It follows immediately that o € Z(k), and clearly pC 0. m

LEMMA 2.1.15. Let g = (y,9), h = (2,¢) € K(n); m a positive integer; z a func-
tion whose domain is {1,...,m} such that for each i = 1...m x; € (V — var(g)) N
(V —var(h)), and for each 4,57 = 1...m i # j — x; # x;; ¢ a function whose do-
main is {1,...,m} such that for each i = 1...m ¢; € E(n); ¢ € E(n). Let also
E(n,g,m,x,0,0), E(n,h,m,x, @, d).

Moreover we suppose that for each ¢ € dom(g), j € dom(h), y; = z; = ¥; = 9;. Let
also p = (y,7) € E(g), 0 = (z,u) € E(h) be such that for each i € dom(p), j € dom(o),
Yi = 2j = 1; = u;. If as usual we define

e gy =g+ (z1,¢1),and if m > 1foreachi=1...m—1g/ , =g, + (Tit1, Pi+1),
o Wi =h+(x1,¢1),and if m > 1foreach i =1...m —1 hj | = h] + (Tip1, Pit1),

then we have
{#(hip, &, 07)] 03 € E(hy), 0 E 00} = {#(90: &5 0| P € E(G1n), 0 E P}
Proof.

By assumption h = € or there exists a positive integer p such that dom(h) =
{1,...,p}. In the case where h = ¢ we define p = 0. At this point we can notice that for
each i = 1...m dom(h;) = {1,...,p+i}. In fact dom(h}) = {1,...,p+ 1} . If m > 1
we need an inductive step. Let ¢ = 1...m — 1, suppose dom(h}) = {1,...,p +i}. Then
dom(hj ) ={1,...,p+i+1}.

Let u € {#(hl,,¢,00,)| o, € E(h),),0 C o), }, we want to show that

w € {#(grns & Pr)| P € B(grn): 0 E pr }-
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There exists o7, € E(h!,) such that o C o), and u = #(h!,, ¢,00,).

If m > 1 then for each i = 1...m — 1, since dom(o,,,) = dom(h.,) ={1,...,p+m} ,
we can define o = (07,) /dom(n!)-

We also define h(y = h, o = 0.

We can prove that for each i = 1...m o} € Z(h}) and there is s; € #(h}_y,i,00_1)
such that o} = ol_; + (24, 8:).

We’ll prove this by induction on i. Let us perform the initial step.

If m = 1 then 0] = 0y, € Z(h}). Otherwise 01 = (07,) /dom(n})- Since hy € R(h;,) we
can apply assumption [2.1.11f and determine that of € Z(h}).

At this point we need to show that of € R(c}]). We have that o C o7,,.
If m = 1 this means precisely that o}, € R(o}).
Otherwise there exists C' € D such that C C dom(o],) and o (01.)/c- We have

C = dom(o) = dom(h) C dom(h}) = dom(c}). Suppose o/, = (z},,sr,), then
(01) ¢ = (1) 1domnt)) 1 = ((21) jdom(nt)s (Sn) dom(ny)) jo =
= (((21) ydom(n)) /s ((81) jdomny)) jo) = () 15 (1) j) = (03,) )0 = 0.
Therefore of, € R(0}).
We observe that h,h} € K(n), z1 € V —wvar(h), 1 € Es(n,h), b} = h + (21, ¢1),

and also of, € Z(h), o] € E(h}), o{ C o} as already seen. By lemma [2.1.13] there is
s1 € #(hy, v1,04) such that o] = of + (z1, s1).

If m > 1 we need an inductive step. Let i = 1. — 1. We suppose o} € E(h}) and
there is s; € #(h}_,, i, 0;_) such that o] = oj_; + (xz, 8i)-

Ifi+1 = m then o}, = o}, € E(hj ;). Otherwise o}y = (07,)/dom(nz,,)- Since
hi,, € R(h;,) we can apply assumptlon 2.1.11{ and determine that o;,, € Z(hj ;).

At this point we need to show that o € R(oj,,). Consider that dom(oj, ,) =
dom(hi, ) ={1,...,p+ i+ 1}. We have

(@i41) /41, iy = (Om) fdom(ny, ) /40,0 p+i} =

m) fdom(ht, 1)> (Sm) fdom(hy 1)) /{1,..pti} =

(
(=
() faom(ny, ) /11,eeptiys (St pdom(nt, ) /41, pti) =
((z

Z) [{Leeptiys () /(1eptiy) = (000) /11, pri} = O
This proves o] € R(0j, ;).
We then observe that h/ h'+1 € K(n ), Tiy1 € V—var(h’) <pl+1 € Eg(n,hj), hj,, =

hi 4+ (ziy1,pit1), and also o} € E(h}), oj, € E(hj,,), of E O'H_l as already seen. By
lemma [2.1.13| there is s;11 € #(h}, wiy1,0;) such that o}, = 0] + (Tig1, Sit1)-

We have proved that for each i = 1...m o} € Z(h;) and there is s; € #(h;_y, i, 0;_4)
such that o} = o}_; + (i, 8:).
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We now define pj = p + (x1,s1), and, if m > 1, for each ¢ = 1...m — 1
Pip1 = Pi + (Tig1, Siv1)-

By assumption m g = € or there exists a positive integer ¢ such that dom(g) =
{1,...,¢}. In the case where g = € we define ¢ = 0.

For each ¢ = 1...m we define y,, 9,7, as functions whose domain is {1,...,¢q + i} such
that

o for each j =1...q y;(j) = y(5), ;(j) =9(), ri(5) =r();

o foreach j=1...iyj(q+J) =z, 0i(g+J)=j, ri(q¢g+])=s;.

For each i = 1...m we also define 2}, ¥}, u
such that

o for each j =1...p 2[(j) = 2(J), ¥i(j) = ¢(4), ui(§) = u(j);
o foreach j=1...7 Zl(p+j) =x;, Yilp+j)=;, up+j)=s;.

We now prove that for eachi=1...m

gi = (Wi 07), By = (2,90), pi = (yi,m5), o7 = (2, uj).

7, u) as functions whose domain is {1,...,p+1i}

We see that
g1 =g+ (z1,01) = (,9) + (21, 1) = (¥1,97),
h/l = h + (thOl) (va) ($1,§01) = (levwll)v
pll :,0+(2171,S ) (y,T’) (Ilvsl):(yllarll)a

0/120’+($E‘1,8 )= ( su) + (xlasl):(ziﬁull)'

If m > 1 our proof needs an inductive step. In this case, given i =1...m — 1, we see
that

9iv1 = 9i + (@it1, 0ir1) = Wi, 95) + (Tir1, 0iv1) = Wi, Vig1)s
i1 = hi + (@ig1, 0im1) = (2590 + (@i, 0i1) = (21, Yi),

Piv1 = i+ (Tiv1, sit1) = (W5, 77) + (Tit1, $i41) = (Yig1:7i41),s

Oiy1 = 0; + (i1, 8it1) = (25, 67) + (@it1, 8i41) = (2i410, Uig)-

We also can prove that for each a =1...m

o for each i € dom(g),), j € dom(hl,) (y,)i = (2,,); —
o for each i € dom(pl,), j € dom(al,) (yh)i = (24); — (10)i = (ul);.

In fact, let = 1...m. We notice that
dom(gy) =A{1,...,q+ a} = dom(p,,),
dom(hl) ={1,...,p+a} = dom(dl).
Letie{1,...,q+a}, j€{l,....,p+a}.

Ifg>0,i<q, p>0, j<pandy = (y)): :(z'a)jzzjthen
(U6)i = Vi = = (¥); and (1) = ri = uj = (uy);-
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/

If ¢ >0,i1<gq, j>pthen (y,); = yi € var(g), (z,); = xj—p € V —var(g) so
(Wa)i # (2a);-

Ifi >q, p>0, j<pthen (y,)i = zi_qg € V —wvar(h), (2,); = z; € var(h) so
(a)i # (2a);-

Ifi>q,j>pand z,—g = (y,)i = (2,); =2j—p theni—qg=j—p, so
(V)i = Pimqg = ©j—p = (Va); and (r3)i = si—q = $j—p = (ug);-

We’ll now show that for each i =1...m p, € Z(g}).

We begin by showing that pj € E(g}). We intend to use assumption to show
that S1 € #(QNPMP)

We consider that g,h € K(n), for each ¢ € dom(g), j € dom(h), y; = z; = ¥; = ¥,
1 € E(n,g) NE(n,h), p e =(g), o € E(h), for each i € dom(p), j € dom(o), y; = z; =
ri = uj. By assumption 2.1.9) #(g, 01, p) = #(h,¢1,0), s0 s1 € #(g, ¢1,p)-

We can now use lemma [2.1.14] to show that pj € Z(g¢}). In fact g,9; € K(n),
x1 €V —war(g), ¢1 € Es(n,g), 91 = g+ (x1,01), p € E(9), o = p+ (21,51),
s1 € #(g,¢1,p). So by [2.1.14 we get p} € E(g7).

If m > 1 we need an inductive step. Let « = 1...m — 1, we suppose that p/, € Z(g.,)
and want to show that pl,,; € Z(g,,, ). First we intend to use assumptionm to show

that sat1 € #(9%, Pat1s Ph)-

We consider that ¢/,,h!, € K(n), for each i € dom(gl’l), Jj € dom(hl), (v,): =
() = ()i = (WL)js Ya+1 € En,gl) N E(n,h,), p., € Z(g,), o, € Z(h.,), for
cach i € dom(p),), j € dom(dl,) (yh)i = (24,); — (r4)i = (ul,);. By assumption [2.1.9)
#(9as Pat1s Po) = #(Mos Pat1,04), 50 Sat1 € #(as Part1s Pa)-

We can now use lemma to show that pl,.; € ZE(g,41). In fact
Jor o1 € K(n), zay1 € V —war(g,), at1 € Es(n90), gorr = 96 + (Tat1, Pat1),
P € 2(90)s Pat1 = P+ (Tat1,Sat1)s Sat1 € #(gas Pat1, ). So by R.1.14] we get
Pat1 € E(Gat1)-

We can conclude that p, € E(g,,). By [R.1.9 we can derive that
#(gh, b, 0m) = #(h,,0,00.). In fact gm,h’ € K(n), for each i € dom(g.,),
j € dom(hy,), ()i = (z,); = ()i (V)i ¢ € E(n,gy,) N E(n,hy,),
o € Z2(g.,), o, € E(hl,), for each i € dom( s § € dom(ol,) (yn)i = (25,); —
(rm)i = (up,);- Therefore #(gy,, ¢, p7,) = #(h1n, 6, 07,).-

It follows that u = #(g.,, @, pl,), and since pl,, € Z(g.,), p E pl, also hold, we have
proved that

u € {#(grs & Pr)| P € E(g10): 2 E pr }-

With a perfectly analogous proof we can show the converse implication i.e. that if
w € {#(9m> &> i)l P € E(g), p E P} then
u € {#(hsn, &, 00)| 07y € E(hyy,), 0 T ooy}
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LEMMA 2.1.16. Let b = (z,9) € K(n), ¢ € Es(n,h), y € V — var(h) and
k=h+(y,¢). Let p = (z,s) € E(h), r € #(h,¢,p) and 0 = p+ (y,7). Then k is a
state-like pair (2/,¢’) and o is a state-like pair (z/, s"). Moreover

~

o for each i € dom(k), j € dom(h) =} = z; — ¢, = p;.
o for each i € dom(o), j € dom(p) =} = z; — s, = s;.

Proof. 1f dom(h) = () then dom(p) = () and the statements are trivially satisfied.

ol

Otherwise there exists a positive integer m such that dom(p) = dom(h) = {1,...,m},
and dom(o) = dom(k) = {1,...,m + 1}.

Let ¢ € dom(k), j € dom(h). If i = m + 1 then z} = y ¢ var(h), so =} # ;. Else
x; = ®;, so x = z; implies x; = z;, which implies ¢ = j and ¢} = ¢; = ;.

Let i € dom(o), j € dom(p). If i = m + 1 then 2} = y ¢ var(h), so =} # x;. Else
x, = x;, so & = x; implies x; = x;, which implies i = j and s}, = s; = 5;. =

We now start with the verifications required to define #(k,t, o). There we have to
verify that
o foreach k € K(n+ 1), w € {a,b,¢,d,e}, t € E'(n, k) NE.,(n+1,k) and o € E(k)
#(kv i, J) = #(kv L, U)(n+1,k,w)§
e for each k € K(n + 1), wy,we € {a,b,c,d,e} : wy # wo, t € E}, (n+ 1,k)N
E;, (n+1,k) and 0 € Z(k) #(k,t,0) (n41,k01) = F(E 1, 0) 041,k 00) -

We begin by verifying the first statement.

Suppose ¢t € E'(n,k) NE,(n+ 1,k), and so t € E(n,k) N Ey(n + 1,k). As a conse-
quence of t € E,(n+1,k) we have that k € K(n)™, so there exist h € K(n), ¢ € Es(n,h),
y € V —var(h) such that k = h + (y, ¢). We also have t € E(n, h). Given o € Z(k) there
exist p € E(h), s € #(h, ¢, p) such that o = p+(y, s), and #(k,t,0) (n41,k,0) = #(h, 1, p).

We want to apply assumption We observe that h = (z, ), k= (2/,¢") € K(n),
for each ¢ € dom(k), j € dom(h) x} = x; = ¢, = ¢;. Moreover t € E(n,k) N E(n,h),

p=(z,r) € E(h), 0 = (2/,r") € E(k), for each i € dom(0), j € dom(p) z; = x; = 1, =r;.
At this point by assumption we have #(k,t,0) = #(h,t,p) = #(k,t,0) (n+1,k,a)-

Suppose t € E'(n,k) NEy(n+ 1,k), and so ¢t € E(n, k) N Ey(n + 1,k). As a conse-
quence of t € Ey(n+1,k) we have that k € K(n)*, so there exist h € K(n), ¢ € Es(n,h),
y € V —wvar(h) such that k = h + (y, ¢). We also have t = y. Given o € =(k) there exist
p € E(h), s € #(h, ¢, p) such that o = p + (y,s), and #(k,t,0) (n41,k,) = 5

Suppose h = (x, ) and p = (z,r), then we can also set k = (2/,¢’), o = (2/,7'). By
assumption Ji € dom(k) such that t = z}, #(k,t,0) = r}. There exists an integer
m > 0 such that dom(k) = {1,...,m + 1}. Since y = ¢t = 2 it must be i = m + 1, so
#(k7t’ 0) = T;n—i-l =85= #(katv U)(n+17k,b)~
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Let’s examine the situation in which ¢ € E'(n, k) N EL(n + 1,k), and then ¢ belongs
to E(n,k) N E.(n+ 1,k). As a consequence of t € E.(n + 1, k) there exist ¢, ¢1,...,¢om
in E(n, k) such that ¢t = (¢)(¢1,.-.,om) and

#(ka t, U)(n—i—l,k,c) = #(k7 2 U)(#(k, $1 J)a sy #(kv Pm; 0))

Since t € E(n, k) we can apply assumption [2.1.10]and obtain that n > 1, there exists
he K(n—1):hCk,p,01,...0m € E(n—1,h),t € E(n, h), for each p € Z(h) #(h, ¢, p)
is a function with m arguments, (#(h, v1,p), - - ., #(h, ©m, p)) is a member of the domain

of #(h, ¢, p), #(h.t,p) = #(h, @, p)(F(h, ¢1,p), - - -, #(hy P, p))-
Moreover, given o € Z(k) and p € E(h): p C o it results #(k,t,0) = #(h, 1, p).

Given o € E(k) we have dom(h) € D and dom(h) C dom(k) = dom(o), so we can
define p = 0 /4om(n)- If h =k then p = 0 € Z(h). Otherwise by assumption [2.1.11| we still
get p € E(h). Therefore

#(k,t,0) = #(h,t,p) = #(h, 0, 0)(#(h, 1, 0), - - -, #(hy Oy p))-

We want to apply assumption We observe that k = (x,9), h = (y,v¢) € K(n),
h € R(k), for each i,j € dom(k) i # j — x; # x;. Then (by lemma for each
i € dom(k), j € dom(h) z; = y; — ¥; = ;. Moreover 0 = (z,5) € E(k),
p = (y,r) € E(h), p € R(0), for each i,j € dom(o) i # j — z; # x;. Then for
each i € dom(o), j € dom(p) z; = y; — s; = r;. Since p € E(n,k) N E(n,h) and for
eacha=1...m ¢, € E(n,k) N E(n,h) by [2.1.9 we obtain

#(h, 2 p)(#(h, $1, p)v (RS #(hv Pms P)) = #(kv 2 J)(#(ka P1 U)a R #(ka Pms 0—))’
and therefore #(k,t,0)m11,5,c) = #(k, 1, 0).

Let’s examine the situation in which ¢ € E'(n,k) N Ej;(n+ 1,k), and then ¢ belongs
to E(n, k)NEg(n+1, k). As a consequence of t € Eg(n+1, k) there exist f € F, ©1,...,0m
in E(n, k) such that t = (f)(¢1,-..,9m) and

#(katu U)(n—‘,—l,k,d) = Pf(#(ku 90170-)7 sy #(ku (,Dm,O')).

Since t € E(n,k) we can apply assumption [2.1.10] and obtain that n > 1, there
exists h € K(n—1): h C k, p1,...¢m € E(n—1,h), t € E(n,h), for each p € E(h)
Af(#(h> ¥1, p)7 LN #(h7 Pm p))a #(h7 t, p) = Pf(#(h7 ¥1, p>7 LR #(h7 Pm P)) Moreover,
given o € Z(k) and p € E(h): p C o it results #(k,t,0) = #(h,t, p).

Given o € E(k) we have dom(h) € D and dom(h) C dom(k) = dom(o), so we can

define p = 0 /4omn)- If h =k then p = o0 € E(h). Otherwise by assumption [2.1.11| we still
get p € E(h). Therefore

#(k7t50) = #(h’ t? p) = Pf(#(h’ wlﬁp)’ N "#(h’ (pm’p))'

We want to apply assumption We observe that k = (x,9), h = (y,v) € K(n),
h € R(k), for each i,j € dom(k) i # j — x; # zj. Then (by lemma for each
i € dom(k), j € dom(h) z; = y; — ¥; = ;. Moreover ¢ = (z,5) € Z(k),
p = (y,r) € E(h), p € R(0), for each i,j € dom(o) i # j — z; # x;. Then for each
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i € dom(c), j € dom(p) v; = y; — s; = rj. Since for each « = 1...m
Yo € E(n, k)N E(n,h) by [2.1.9 we obtain
Pf(#U%@l,p), .- ~7#(ha¢map)) = Pf(#(kacplvo—)a' . w#(kjawmvo—))v
and therefore #(k,t,0)mt1,5,0) = #(k, t,0).

In this part of our verification we just need to examine the case in which ¢ is in
E'(n, k) NEL(n + 1,k), and then ¢ belongs to E(n,k) N E.(n + 1,k). As a consequence
tot € Ec(n+ 1,k) there exist

e a positive integer m,

e a function z whose domain is {1,...,m} such that for each ¢ = 1...m
x; €V —wvar(k), and for each 4,5 =1...m i # j — x; # x;,

e a function ¢ whose domain is {1,...,m} such that for each i =1...m ¢; € E(n),

* ¢ € E(n)

such that

° 5(n,k‘7m,x,g0,(;5)7
e t={}z1:01,- -, Tm : Om, D).

For a fixed o € Z(k) we have

#(k7t70)(n+1,k,e) = {#(k‘;n,qb?U;n” O—;n € E(k:n)70' - O—;n}7
where k} = k+(21,¢1), and if m > 1foreach i =1...m—1kj , = kj+ (Tiy1, Piy1)-

Since t € E(n, k) we can apply assumption [2.1.10] and obtain that n > 1, there exists
h € K(n — 1) such that

hCk,

foreachi=1...m ¢; € E(n—1),

b€ Bn—1),

En—1,h,m,x, 0, ),

t € E(n,h),

for each o € Z(k), p € E(h) : p C o it results #(k,t,0) = #(h, t, p),
for each p € (h) #(h,t,p) = {# (s 6, 1)| Pl € Z(H0),p C Pl

where b} = h+(21,¢1), and if m > 1foreachi=1...m—1hj | = hj+ (Tiy1, Piy1)-

Given ¢ € Z(k) we have dom(h) € D and dom(h) C dom(k) = dom(c), so we can
define p = 0 /4om(n)- If h = k then p = o € Z(h). Otherwise by assumption we still
get p € Z(h). Therefore

#(k,t,0) = $(h,t, p) = {# (W, 6, P)| P € E(hin), p E P}
We clearly need to show that
{# (B> &, Pr)| P € E(h), 0 T P} = {37, 6, 070)| 07, € Elkyy) 0 T ooy, )

To show this we need lemma [2.1.15] To apply that lemma we observe that
h = (y,9), k = (2,¢) € K(n), since E(n — 1,h,m,x,p,¢) holds then also
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E(n,h,m,x,p,¢) holds, and E(n,k, m,z,¢,$) holds too. We have h € R(k), so by
lemma we obtain that for each i € dom(k), j € dom(h) z; = y; — ¥, = 9,.
Moreover o = (z,s) € Z(k), p = (y,r) € Z(h), and since p € R(c) by lemma [2.2] we also
obtain that for each i € dom(o), j € dom(p) z; = y; — s; = r;. At this point we can
apply lemma from which it follows

{# (s &, )| i € E(Rin) s p E pr} = {# (K, 6,00 07, € ERyy), 0 E 07,

and this clearly causes #(k,t,0)n11,5,e) = #(k,t,0).

We now need to verify the other statement, i.e.:
for each k € K(n+ 1), w1, ws € {a,b,c,d, e} : w1 #wo, t € B, (n+1,k)NE,, (n+1,k)
and o € E(k) #(katva)(n-l—l,k,wl) = #(katva)(n-‘rl,k,wz)'

Fortunately for wus, for many values of wi,wy it’'s easy to see that
E, (n+1,k)NE, (n+1,k)=0.

In fact, consider all the cases in which wy, ws € {b, ¢, d, e} and w1 # ws. It is immediate
to see that B, (n+1,k)NE,, (n+1,k) = 0 (actually, assumption [2.1.10] is needed to
prove E/(n+1,k) N E)(n+ 1,k) = 0).

We miss to consider the cases where w; = a and wq € {b, ¢, d, e}.
We can easily prove that E/(n+1,k) N Ej(n+ 1,k) = 0.

Suppose t € E!,(n+1, k)NE](n+1, k). This means that t € E,(n+1,k) and k € K(n)™,
so there exist h € K(n), ¢ € Ex(n,h), y € V —var(h) such that k = h + (y, ). We also
have ¢ € E(n,h), and since t € Ey(n + 1,k) we have t = y. Since t € E(n,h) we can
apply assumption 2.1.10} situations a,c,d,e can not occur, so situation b must occur. This
means that y = ¢ € var(h) and so we have reached a contradiction.

Therefore we just need to examine three cases: t € E/(n + 1,k) N El(n + 1,k),
te El(n+1,k)NE)(n+1,k),te E,(n+1,k)NE.(n+1,k).

We start with the case where t € Ej(n+1,k)NE,(n+1,k), and so
te E,n+1,k)NE.(n+1,k).

As a consequence of t € E.(n + 1,k) there exist ¢, ¢1,...,0m in E(n,k) such that
t = (¢)(¥1,--.,9m) and for each o € Z(k)

#(ka t, U)(n—i—l,k,c) = #(ka 2 U)(#(ka $1 0)7 EEEE #(ka Pm; 0))

As a consequence of t € F,(n+1,k) we have that k € K(n)™, so there exist h € K(n),
¢ € Es(n,h), y € V —wvar(h) such that & = h + (y,$). We also have t € E(n,h).
Given o € Z(k) there exist p € E(h), s € #(h,,p) such that ¢ = p + (y,s), and
#(kvt’ 0)(n+1,k,a) = #(h,t,p).

Since t € E(n, h) we can apply assumption [2.1.10] and obtain that n > 1, there exists
gEK(n—1):gCh,o,¢1,...0m € E(n—1,9),t € E(n,g), for each § € Z(g) #(g, ¢, 0)
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is a function with m arguments, (#(g, ¢1,0), .., #(g, ©m,d)) is a member of the domain

of #(g7 ®, 6)7 #(gat76) = #(ga ®, 6)(#( , P1, )7 LR #( 9, Pm, ))
Moreover, given p € E(h) and § € E(g): 6 T p it results #(h, t, p) = #(g,t,9).

We have seen that given o € Z(k) there exist p € Z(h), s € #(h,d,p) such that
o =p+(y,8), and #(k,t,0) (nt1,k,a) = #(hs L, p).

We have dom(g) € D and dom(g) C dom(h) = dom(p), so we can define § = p,gom qg)-

If g = h then § = p € Z(g). Otherwise by assumption [2.1.11| we still get § € Z(g).
Therefore

#(kvta U)(n-i—l,k,a) = #(hvta ,0) = #(g7ta 6) = #(ga @76)(#(97 50176)5 R #(gv Pm 6))

We have g = (z,9), k = (2,¢) € K(n), with ¢ € R(k). By lemma we obtain
that for each i € dom(k), j € dom(g) z; = x; = ; = ¥;. Moreover o = (z,s) € Z(k),
0 = (z,7) € E(g), 6 € R(c) and so by lemma we obtain that for each i € dom(o),
j € dom(8) z; = xj — s; = r;. Furthermore we can see that ¢, ¢1,...,¢0m € E(n, k) N
E(n,g). By assumption we can state

#(9,0,0)(#(9,1,0), ..., #(9, om, 6)) = #(k, 0, 0)(#(k, p1,0), ..., #(k, om, 7)),
and therefore
#(kv t, U)(n—l—l,k,a) = #(kv t, U)(n—i—l,k,c)'

Consider now the case where ¢ € E,(n+1,k)NEj(n+1k), and so
te€ E,(n+1,k)NEqs(n+1,k).

As a consequence of t € Eq(n + 1,k) there exist f € F, ¢1,...,0m in E(n,k) such
that t = (f) (41, ..., pm) and for each o € E(k)

#(kvta 0)(n+1,k,d) = Pf(#(kv 50170-)7 ceey #(ka meaa))'

As a consequence of t € F,(n+1, k) we have that k € K(n)™, so there exist h € K(n),
¢ € Es(n,h), y € V —var(h) such that & = h + (y,¢). We also have t € E(n,h).
Given o € Z(k) there exist p € E(h), s € #(h,¢,p) such that ¢ = p + (y,s), and
#(k7ta U)(n+1,k,a) = #(h7t7,0)

Since t € E(n,h) we can apply assumption and obtain that n > 1, there
exists g € K(n—1): g C h, ¢1,...0m € E(n—1,g9), t € E(n,g), for each § € Z(g)
Af(#(ga@h )77#( 9, Pm, ))a #(gataé) = Pf(#(ﬂa‘ﬁla )a7#( 9, Pm,; )) Moreover,
given p € Z(h) and 6 € Z(g): § C p it results #(h, t, p) = #(g,t,9).

We have seen that given o € Z(k) there exist p € Z(h), s € #(h,d,p) such that
oc=p+ (y7 5)7 and #(kvta a)(nJrl,k,a) = #(hatap)

We have dom(g) € D and dom(g) € dom(h) = dom(p), so we can define § = p,gom qg)-

If g = h then § = p € Z(g). Otherwise by assumption [2.1.11] we still get § € Z(g).
Therefore

#(kvta U)(n-‘,—l,k:,a) = #(hvta /0) = #(g7ta 5) = Pf(#(g7 90176)5 R #(gy ‘vad))-
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We have g = (z,9), k = (2,¢) € K(n), with g € R(k). By lemma we obtain
that for each ¢ € dom(k), j € dom(g) z; = x; — ¥; = ¥;. Moreover 0 = (z,s) € Z(k),
0 = (z,7) € E(g), 6 € R(o) and so by lemma we obtain that for each i € dom(o),
j € dom(d) z; = x; — s; = rj. Furthermore we can see that ¢1,...,¢, € E(n,k)N
E(n,g). By assumption we can state

Pf(#(ga 90176)a ) #(g; ‘szé)) = Pf(#(k7 ©1, 0)7 DR} #(ky @m70))7
and therefore
#(kv ta U)(nJrl,k,a) = #(k7 ta U)(n+1,k,d)-

Finally we examine the case where t € Ej(n+1,k)NE,(n+1,k), and so
te E,(n+1,k)NE.(n+1,k).

As a consequence to t € E.(n + 1, k) there exist

e a positive integer m,

e a function x whose domain is {1,...,m} such that for each ¢ = 1...m
z; €V —var(k), and for each 4,5 =1...m i # j — x; # x;j,

e a function ¢ whose domain is {1,...,m} such that for each i =1...m ¢; € E(n),

* ¢ € E(n)

such that

hd €(n7k7m7xa§07¢)7
o t= {}(xl PPy It Qamagb)

For a fixed o € Z(k) we have
#(k, 1, 0) (na1 k,e) = {#(Krn, 6,07, 07, € Eky), 0 E oy},
where k] = k+ (21, 1), and if m > 1foreach i =1...m—1kj , = kj+ (Tiy1, iy1)-
As a consequence of t € F,(n+1, k) we have that k € K(n)™, so there exist h € K(n),
¢ € Es(n,h), y € V —wvar(h) such that & = h + (y,¢). We also have ¢t € E(n,h).

Given o € Z(k) there exist p € E(h), s € #(h,¢,p) such that ¢ = p + (y,s), and
#(k7t7 U)(n+1,k,a) = #(h7t7,0)

Since t € E(n, h) we can apply assumption [2.1.10] and obtain that n > 1, there exists
g € K(n — 1) such that

e gLl h,

o foreachi=1...m ¢; € E(n—1),

e g€ E(n—1),

e E(n—1,9,m,z,0,0),

e t € FE(n,g),

o for each p € Z(h), § € Z(g) : 6 C p it results #(h,t, p) = #(g,t,0),
e for each 6 € E(g) #(9,t,6) = {#(95,: ¢, ;)| 07, € E(91): 6 T 0y, 1



46 M. Avon

where g7 = g+ (z1,¢1), and if m > 1 foreach i =1...m—1g;, | = g; + (Tiy1, Pit1)-

We have seen that given o € Z(k) there exist p € E(h), s € #(h,d,p) such that
o=p+ (yv 8)7 and #(k,ta J)(n-}-l,k,a) = #(h,tap)
We have dom(g) € D and dom(g) C dom(h) = dom(p), so we can define § = p,gom qg)-

If g = h then § = p € Z(g). Otherwise by assumption [2.1.11] we still get § € Z(g).
Therefore

#(k,t,0) (ns1,0,0) = #(hot,p) = #(g,1,6) = {#(grn, &, 61,)| 61, € E(gy,), 6 E 07, )

We clearly need to show that
{H#(Grms &5 0)| 01 € E(gpn), 0 T 0} = {# (K, b,00)| 07 € E(RY), 0 E 07}

To show this we need lemma [2.1.15] To apply that lemma we observe that
g = (y,¥), k& = (z,¢) € K(n), since En — 1,9,m,x,p,¢) holds then also
E(n,g,m,x,p,¢$) holds, and E(n,k,m,x,p,¢) holds too. We have g € R(k), so by
lemma [2.2] we obtain that for each i € dom(k), j € dom(g) z; = y; — 1; = ¥;. Moreover
o =(z5) € E(k), d = (y,7) € E(g), and since § € R(c) by lemma [2.2] we also obtain
that for each i € dom(o), j € dom(d) z = y; — s; = r;. At this point we can apply
lemma R.T.T5] from which it follows

{#(Gms 650)| 07 € E(91),0 T 67,3 = {# Ky, b, 07,)| 07, € Ek7,), 0 oo, )
and this clearly causes #(k,t,0)n11,k,0) = # (5,1, 0) (nt1,k,0)-
o

Let’s now proceed with the verifications required to define Vj(¢) and V;(t). We have
to verify that

o foreachk € K(n+1), w € {a,b,¢c,d, e}, t € E(n)NE,, (n+1,k) Vi(t) = Vu(t) (n41,k,w)
and Vi (t) = Vi(t)(n+1,k,0)

o for each ki, ky € K(n+1), wi,ws € {a,b,c,d,e}, t € E, (n+1,k1)NE;, (n+1,ks)
such that ¢t ¢ FE(n) we have Vi(t)(nsikrw) = Vo) (nt1ksws) and
Vi) (i1 krwn) = V) (n41,k2,w00) -

Suppose t € E(n) N E,(n+ 1,k). As a consequence of t € E,(n + 1, k) we have that
k € K(n)*, so there exist h € K(n), ¢ € Es(n,h),y € V—wvar(h) such that k = h+(y, ¢).
We also have t € E(n,h), Vo(t)(nt1,k,0) = Vo(t) and Vi(t) mt1,k,0) = Vi ().

Suppose t € E(n) NE{ (n+ 1,k). As a consequence of t € Ey(n + 1, k) we have that
k € K(n)*, so there exist h € K(n), ¢ € Es(n,h),y € V—wvar(h) such that k = h+(y, ¢).
We also have t =y, Vi()(ni1.46) = {4} Vo) (ny1r) = 0.
There exists g € K(n) such that ¢ € E(n, g). By assumption [2.1.10]

Vi(t) = {t} = {y} = Vi) ms1.k.0), Vo(t) =0 = Vi() (g 1,k.8)-
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Suppose t € E(n) NEL(n+ 1,k). As a consequence of t € E.(n + 1,k) there exist
Oy 01,y ©m in E(n, k) such that t = (¢)(©1,- -, ©m),

Vf(t)(n-‘rl,k,c) = Vf(cp) U Vf(gol) U---u Vf(QDm),
Vo () (nt1,k,0) = Vo) U V(1) U=+ U Vo (o).

There exists k € K(n) such that ¢ € E(n, ). By assumption [2.1.10| we get n > 1,
Jhe K(n—1):hC Kk, p,p1,...0m € E(n—1,h), t € E(n,h),

Vi(t) = Vi(e) UVi(o1) U---UVi(om) = Vi) (ns1,k,0)s
Vi (t) = Vo(p) U Vo(p1) U+ U Vi(m) = V() (ns1,k.0)-

Suppose t € E(n) NE;(n+ 1,k). As a consequence of ¢t € E4(n + 1,k) there exist
fEF, o1,...,0m in E(n, k) such that t = (f)(o1,...,0m)

Vi) ng1,k,a) = Vi(pr) U UVi(om),
Vo () (nt1,k,0) = Volp1) U= U Vi(om)-

There exists k € K(n) such that ¢ € E(n,x). By assumption [2.1.10| we get n > 1,
Jhe K(n—1): hC K, 1,...0m € E(n—1,h), t € E(n,h),

Vi(t) = Vi(e1) U~ UVi(om) = Vi(t) (ni1,k.d)
V() = V(1) U+ UVi(om) = Vo(t) (nt1,k.a)-

Suppose t € E(n) NE,(n + 1,k). As a consequence to ¢t € E.(n + 1, k) there exist

e a positive integer m,

e a function z whose domain is {1,...,m} such that for each ¢ = 1...m
x; € V —war(k), and for each i,j =1...m i # j = z; # x;,

e a function ¢ whose domain is {1,...,m} such that for each i =1...m ¢; € E(n),

* ¢ € E(n)

such that

hd 5(n,k,m,x,gp,¢)7
e t={}z1:01,- -, Tm : Om, D).

If m = 1 we have also
Vi(t) (ng1,k,e) = V(1) U (Vi(9) — {z1}),
Vo) (n41,k,e) = {1211 U Vi(01) U Vi ().

If m > 1 we have
Vi) (na1ke) = Vile1) U(Vi(p2) = {ziH) U U (Vi(pm) — {z1,. . ;2m—1}) U
U V(@) —{z1,.. ., Zm}),
Vo) nt1,k,e) = {215+ T f U V(1) U - U V(o) U V().

There exists k € K(n) such that ¢t € E(n, ). By assumption [2.1.10| we obtain that
n > 1, there exists h € K(n — 1) such that
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o hCr,

o foreachi=1...m ¢; € E(n—1),
e pcE(n—1),

e E(n—1,h,m,z,p,0),

e t € E(n,h).

Moreover, if m =1
Vi(t) = Vi(p1) U (Vi(®) = {z1}) = Vi(t) (nt1,k,e)
Vo(t) = {21} U V(1) U V(@) = V(1) (nt1,k,e)-
Ifm>1
Vi(t) = Vi) U (Vi(p2) = {z1}) U U (Vi(pm) = {21, Zm1})
U (Vf(¢) - {1’1, sy xm}) = Vf(t)(n+1,k,e)§
%(t) = {1‘17 s ’xm} U %(901) U---u ‘/b(@m) U ‘/17(¢) = %(t)(n+1,k,e)~
o

We now need to verify that for each ki,ky € K(n + 1), wy,ws € {a,b,c,d, e}, t €
E,, (n+1,ki)NE;, (n+1,ky) such that ¢t ¢ E(n) we have

Vo) (n41,k1,01) = Vo) (1. ks ,9)> VEE) (g 1,kr,00) = Vi) (nt1,kws) -

First of all we observe that for each k € K(n+ 1), t € El(n+ 1,k) we have that
k € K(n)*, so there exist h € K(n), ¢ € Es(n,h),y € V—wvar(h) such that k = h+(y, ¢).
We also have ¢t € E(n, h), this means that t € E(n). This implies that we just need to
verify
o for each ki, ky € K(n+ 1), wy,wa € {b,c,d,e}, t € B, (n+1,k1)NE, (n+1,ks)
such that ¢ ¢ E(n) we have

‘/;)(t)(n-&-l,kl,wﬂ = ‘/b(t)(TH-l,kQ,wz)V Vf(t)(n"l‘Lk’hwl) = Vf(t)(n+1,k2,w2)‘

For each ki, ks € K(n+ 1), wy,ws € {b,¢,d, e} if wy # ws then
Ei/i)l (ﬂ + 17k1) N E:UQ(n + la k2) = (Z)

So we just need to verify

o for each k1,k2 € K(n+1), w € {b,c,d,e}, t € El,(n+ 1,k1) N E! (n+ 1,k2) such
that ¢ ¢ F(n) we have

V() (n+1,k1,0) = Vo) (nt1,ka,w)s Vi) (et 1,k1,0) = V) (nt1,k,0) -

Suppose t € E(n+1,k1) NEL(n+ 1, ko).
From ¢t € Ey(n + 1,k1) we obtain that k; € K(n)", so there exist h; € K(n),
¢1 € Es(n,h1), y1 € V —wvar(hy) such that ky = hy + (y1, $1). We also have t = y,
Vi) tnr1kr,0) = {91} Vo) (na1,k ) = 0
From t € Ey(n + 1,ks) we obtain that ko € K(n)", so there exist hy € K(n),
@2 € Es(n,ha), yo € V —wvar(hy) such that ks = ho + (y2, ¢2). We also have t = yo,
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Vi(t) (ng1,k0,0) = 102} Vo) (ng1,k0,0) = 0
Hence V(1) (nt1,k1,0) = 0 = Vo(t) (nr1,k0.0)5 Vi) (g 1,0,0) = 18} = Vi) (0 1,k 1)

Suppose t € E.(n+1,k1) NE,(n+ 1,k2).
As a consequence of t € E.(n + 1,k1) there exist ¢, 1,...,¢m in E(n, k1) such that
t=(0)(p1,--- m);
Vi) (nt1,k1,e) = VE(@) U V(1) U - U Vi(om),
V() (nt1,k1,0) = V(0) U V(1) U+ U Vi (o).
As a consequence of ¢ € E.(n + 1, ka) there exist ¢,91,...,19, in E(n, ks) such that
t=)W1,-..,¥p),

<

F) (nt1,k,0) = V(@) U V(1) U -+ - U Vi (¢hy),
V() (n+1,k2,0) = Vo(¥) U Vi(3h1) U~ - U Vi (2y).
So (@)(@1,---som) =t = (¥)(¢n1,...,1p), it follows p =m, ¢ = ¢, ¥; = ¢;, hence
Vi) (nt1,k1,e) = Vi(@) U Vi(1) U= UVE(0m) = Vi) (ng1,k2.0)5
V() (nt1,k1,0) = Vol) U V(1) U+ U Vi(om) = Vo) (n41,k0,0)-

Suppose t € Ej(n+1,k1) NE;j(n+1,ks).
As a consequence of t € Ej(n+1, k) there exist f € F, ¢1,...,¢m in E(n, k) such that
t=(fle1,..- om)
Vi) sty = Vilpr) U= U Vi(om),
Vo(t) (n41,k1,0) = V(1) U+ U Vi (@m).
As a consequence of t € E4(n + 1, ko) there exist g € F, ¢1,...,9, in E(n, ks) such
that t = (g)(¢1,...,¢p)

V@) (n1kanay = V(b)) U - UV (¥p),
Vo () (nt1,k2,0) = V(1) U - U Vo (p).
So (f)(@1s--rom) =t =(9)(W1,...,1yp), if follows g = f, p =m, ¥; = ¢;, hence
Vi) ng1,kr,a) = V(1) U UVi(0m) = Vi) (ng1,k0,4)
Vo) (nt1,k1,0) = Vo(e1) U= UVo(0m) = Vo(t) (n41,k2,0) -

Suppose t € E,(n+ 1,k1) N E,(n + 1,ka).
As a consequence to t € E.(n+ 1, k;) there exist

e a positive integer m,

e a function x whose domain is {1,...,m} such that for each i = 1...m
z; €V —var(k), and for each 4,5 =1...m i # j — z; # x;,

e a function ¢ whose domain is {1,...,m} such that for each i =1...m ¢; € E(n),

* ¢ € E(n)

such that

L] S(n,khm,x,%(b)a
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e t={}x1:01,- -, Tm : Om, D).

If m = 1 we have also

Vi) (n41,kr.e) = Vilor) U (Vi(@) — {1}),
Vo) (ng1,k1,e) = 121} U Vi (1) U Vi(9).

If m > 1 we have

Vi) (ni1kr.e) = Vile1) U (Vi(p2) —{z1}) U U (Vi(om) — {21,y Tm-1}) U
U (Vo) —{z1,...,Zm}),

‘/b(t>(n+17k1,€) = {mh e ’xm} u %(901) U---u %((Pm) U %((b)

As a consequence to t € E.(n + 1, k) there exist

e a positive integer p,

e a function y whose domain is {1,...,p} such that for each ¢ = 1...p
y; € V —wvar(ks), and for each i,j =1...m i # j — y; # yj,

e a function ¢ whose domain is {1,...,p} such that for each i =1...p ¢; € E(n),

o ¥ € E(n)

such that

L g(n7k2ap7yawaﬁ)a
o t={}(y1:¢1, .., yp:Yp, ).

If p =1 we have also

Vi) (nt1,k2.e) = V(1) U (VE(D) = {y1}),
Vo (t) (n1,k,e) = {91} U Vo (1) U V3 (9).

If p > 1 we have

Vi) (nt1,hae) = Vi) U (Vi(h2) = {pnH U--- U (Vi) = {1, 9p1}) U
U (Vf(ﬁ) - {yla cety yp})7

%(t)(n+1,k2,e) = {yh e 7yp} ) %(wl) U---u ‘/b(z/Jp) U %(19)
So {Hx1 : @1, Tm t omy @) =t = {Hy1 : Y1,...,yp  Yp, ), it follows p = m,
y=ux, 1 =p, 9 =¢. Henceif m =1

Vi) (nt1,kare) = V(1) U (VE(D) — {1 }) = V(1) U (V3 () — {z1}) = Vi) (4101 0)
Vu(t) (nt1,ka,e) = Y1} U Ve (1) U Vi(9) = {z1} U Vi(p1) UVi(d) = Vu(t) (nt1,k1,e)-
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Ifm>1

Vi) ns1ka,e) = V(1) U (VE(2) ={pn}) U=+ U (Ve (¥p) = {y1,- - gp-1 HU
U V@) ={y1, - up})
= Vilp) U (Vi(p2) ={zi}) U U (Vi(om) — {21, 2ma U

(¢) —{z1,...,xm})

= Vi) (n+1,k1,0)

Vo(t) (n+1kae) = {155 yp} U Vo(h1) U - U V() U V(D)
={z1,. . 2 UVe(p1) U U Vi(om) U V(0)
= Vo (t) (n+41,k1,¢)-
o

In the last part of our definition we need to prove that all the assumptions we have

made at step n are true at step n 4+ 1. The order in which we’ll provide these proofs is
not the same in which we have listed the assumptions, but this of course is not a problem.

Proof of (assumption) (at level n+1).
We need to prove that K(n) C K(n + 1), this is obvious by definition. m

Proof of [2.1.13
We need to prove that for each k € K(n) E(n,k) C E(n+ 1,k).
For each k € K(n) we have k € K(n + 1) and
E(n+1,k)=FE'(n,k)UE,(n+1,k) UE,(n+ 1,k) U EL.(n + 1,k) U E(n + 1, k)U
UEL(n+1,k)
=En,k)UE,(n+1,k)UE,(n+1,k)UE.(n+ 1,k)UE})(n+1,k)U
UE.(n+1,k).

Proof of [2.17)
We need to prove that for each k € K(n+1), t € E(n+1,k)
o t[tt)] #°C;
o if t[4(t)] =)’ then d(t, £(t)) =1, else dt, e(t)) =
o for each @ € {1,...,0(t)} if (t[a] = ) V (t[a] = ‘,’) V (tla] = ¢)) then d(t,a) > 1.
We recall that
E(n+1,k) = E'(n,k)UE., (n+1,k)UE;(n+1,k)UE.(n+1,k)UE,(n+1,k)UE.(n+1, k).

Let t € E'(n, k), this means that ¢ € E(n,k) C E(n). In this case we just need to
apply assumption 2.1.4]
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Let t € E(n+ 1,k). As a consequence of t € F,(n + 1,k) we have that k € K(n)™,
so there exist h € K(n), ¢ € Es(n,h), y € V —var(h) such that k = h + (y, ¢). We also
have t € E(n, h), so we can apply assumption to finish.

Let t € Ep(n+ 1,k). As a consequence of t € Ey(n + 1, k) we have that k € K(n)",
so there exist h € K(n), ¢ € Ex(n,h), y € V —var(h) such that k = h + (y, ). We also

P A

have t = y, so ¢ has just one character, t[1] differs from ‘(’, ‘", *,’, )’ and d(¢, £(¢t)) =

Let t € EL(n+ 1,k). As a consequence of t € E.(n + 1,k) there exist ¢, ©1,...,0m
in E(n, k) such that ¢t = (¢)(p1,--.,Om)-

If we know m we can provide an ‘explicit representation’ of ¢t. In fact if m = 2 then
t = (©)(p1,92),if m = 3 thent = (¢)(¢1, P2, ¢3) and so on. In this explicit representation
we can see explicit occurrences of the symbols ¢,” and ¢)’. There are explicit occurrences
of ‘) only when m > 1. We indicate with ¢ the position of the first explicit occurrence
of ), and the second explicit occurrence of ‘)’ is clearly in position ¢(t). If m > 1 we
indicate with ¢1,...,¢n_1 the positions of the explicit occurrences of ‘,’.

We have d(t,q — 1) =d(t, 14+ () =d(t, 1+ 1) + d(w, £(¢)) = 1+ d(p, (p)).

If tlg — 1] = ¢[l(p)] = ) then d(t, q) = d(t,¢ — 1) — 1 = d(p, () = 1.
Else tlg — 1] = o[t(p)] ¢ {*(, ‘)}Sod(tq)fd(,qfl)—1+d( t(p)) =

If m > 1 we can prove that for each i = 1...m — 1 d(t,q;) = 1.

First of all we agree that d(¢,q +2) =d(t,q) —1+1=1.

We have also that

d(t,qn —1) = d(t, g + 1+ (1)) = d(t, g + 1+ 1) +d(p1, (1)) = L+ d(p1, (1))

If tfgy — 1] = @1[(p1)] =)’ then d(t,q1) = d(t,q1 — 1) — 1 = d(p1,£(p1)) = 1 :
Else t[gy — 1] = @1[l(e1)] ¢ {*(,) '} so d(t, q1) = d(t,q1 — 1) = 1+ d(ep1, (1)) =

If m = 2 we have finished this step. Now suppose m > 2. Let i = 1...m — 2 and
suppose d(t,q;) = 1. We'll show that d(¢,¢;+1) = 1 also holds.

In fact
d(t,qiv1 — 1) = d(t,qi + L(pit1)) = d(t,qi + 1) + d(piv1, {(piv1)) =
=1+ d(pir1, U(pitr1))-
If t[giv1 — 1] = piy1[l(piy1)] = ©)’ then
d(t,qiv1) = d(t,qiy1 — 1) — 1 = d(pir1,l(pit1)) = 1.

Else t[giy1 — 1] = @it [l(pir1)] € {(,¢)’} so
d(t,git1) = d(t,qiv1 — 1) = 1+ d(piy1, L(pit1)) = 1.

So it is shown that for each i =1...m — 1 d(¢,¢q;) = 1.

We now want to show that d(¢,4(t)) = 1.
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If m =1 then
d(t, (t) = 1) = d(t,q + 1+ L(p1)) = d(t,q +2) + d(e1, (1)) = d(t,q) + d(p1,£(p1)) =
=14 d(@m, £(¢m))-

If m > 1 then
d(tag(t) - 1) = d(ta m—1*+ E((pm)) = d(ta gm—-1 + 1) + d(‘ﬁmag(@m)) =1+ d(‘)omyg(@m))'
IE¢E(t) — 1] = pm[l(pm)] = )7 then d(t, £(t)) = d(t, £(t) — 1) = 1 = d(om, (pm)) = 1.
Else t[£(t)—1] = [ ()] & {°C, )} so d(t, £(t)) = d(t, £(t) =1) = 1+d(pm, ((m)) = 1.
Let’s now examine the facts we have to prove. It is true that ¢[£(¢)] # ‘(. It’s also true
that t[¢(t)] =) and d(¢,£(t)) =1
Now let v € {1,...,4(t)} and ( t{a] = " or t[a] =", or tla] =) ).

Ifae{qq,. .. qm-1,L(t)} we have already shown that d(t,«) = 1. Otherwise there
are these alternative possibilities:

Ala>qg+1)A(a< (),
/\(a>q+1)/\(a<q1),
AFi=1. —2:(a>q)N(a<git1)),
A (> G- 1)/\(a<€())
In the situation a. p[a — 1] = t[q],

dit,a) =d(t,1+ (a—1)) =d(t,2) +d(p,a—1) =1+ d(p,a — 1) > 2.
In the situation b. we have

g+ 1<a< ),
O<a-—(g+1)<L(t)—(¢g+1),
I1<a—(g+1) <t)—q—2=1L(p1),
pila— (g +1)] = t[a],
dt,a) =d(t,q+1+ (= (q+1))) =d(t,q+2) +d(p1, 0 — (¢ +1)) =
=1+d(p1,a—(g+1)) =2
In the situation c. we have
g+1<a<aq,
O0<a—(¢g+1)<q —(¢+1),
I<a—(¢+1)<qu—q—2=L(p1),
e1la = (¢ +1)] = t[a],

dt,o) =d(t,q+1+ (a = (¢+1)) =d(t,q+2)+d(pr,a— (¢ +1)) =

=1+d(p1,a—(g+1)) > 2.
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In the situation d. we have
g < o < iy,

0<a—4q <qgit1— G,
I<a—q < g1 — ¢ — 1= piv1),
Pir1lo — qi] = t[al,
dt, o) = d(t,qi + (o — q;)) = d(t, ¢; + 1) + d(piv1, 0 — ¢) =
=1+d(pir1,a—q) > 2.
In the situation e. we have
Gm—1 < a < L(1),
0 <a— dm—1 < £<t) — 4gm—1,
I<a—gn-1 < E(t) —qm1—1= E(‘Pm)a
Pl — gm—1] = tlal,
d(t, a) = d(QO—l + (OZ - Qm—l)) = d(tv(Im—l + 1) + d(‘ﬁmya - Qm—l) =
=1+ d(@mva - mel) = 2.
Let t € Ej(n+1,k). As a consequence of t € Eg(n + 1,k) there exist f € F,
D1,y @m 0 E(n, k) such that t = (f)(p1,...,0m).

If we know m we can provide an ‘explicit representation’ of ¢. In fact if m = 2 then
t = (f)(¢1,92),if m =3 thent = (f)(p1,p2, v3) and so on. In this explicit representation
we can see explicit occurrences of the symbols ‘,” and ‘). The occurrences of ‘)’ are clearly
in positions 3 and £(t). There are explicit occurrences of ‘,” only when m > 1. If m > 1
we indicate with q1,...,¢mn_1 the positions of explicit occurrences of *,’.

It is immediate to see that d(t,3) = 1.
If m > 1 we can prove that for each i =1...m — 1 d(t,¢;) = 1.
We have d(t,q1 — 1) = d(t, 4+ (1)) = d(t, 4+ 1) + d(p1, (1)) = 1+ d(v1,L(p1)).

If tfgy — 1] = @1[b(p1)] =)’ then d(t,q1) = d(t,q1 — 1) — 1 = d(p1, (1)) = 1.
Else tlg1 — 1] = ¢1[b(p1)] ¢ {*(,)}s so d(t, qu) = d(t, g1 = 1) = 1+ d(p1, L)) = 1.

If m = 2 we have finished this step. Now suppose m > 2. Let ¢ = 1...m — 2 and
suppose d(t,q;) = 1. We'll show that d(¢,¢;+1) = 1 also holds.

In fact
d(t, i1 — 1) =d(t, ¢ + l(@iy1)) = d(t,q + 1) + d(@it1,l(@iv1)) =
=1+ d(pir1, L(pir1))-

If tlgiv1 — 1] = @it1[l(pit1)] =) then
d(t,qiv1) = d(t,qiy1 — 1) — 1 = d(pit1,l(pit1)) = 1.
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Else t[gi+1 — 1] = pit1[l(pit1)] € {‘(,)’} so
d(t, qiv1) = d(t, giv1 — 1) = 1+ d(pit1, L(pit1)) = 1.
So it is shown that for each i =1...m — 1 d(t,¢;) = 1.
We now want to show that d(t, £(t)) = 1.
If m =1 then

d(t,£(t) — 1) = d(t,4 + €(p1)) = d(t,4 + 1) + d(p1,€(p1)) = 1 + d(p1, (1)) =
=1 +d((pm7€(@m))'

If m > 1 then
d(t,0(t) —1) = d(t, gm-1 + L(om)) = d(t, gm-1 + 1) + d(om, L(om)) = 1 + d(©m, £(om))-
I£¢[0(t) — 1] = pm[l(pm)] =) then d(t, £(t)) = d(t,£(t) — 1) = 1 = d(pm, {(pm)) = 1.
Else t[¢(t)—1] = [ (em)] & {°C,°) '} sod(t, £(t)) = d(t, £(t) —1) = 1+d(pm, l(om)) = 1.

Let’s now examine the facts we have to prove. It is true that ¢[£(¢)] # ‘(. It’s also true
that ¢[¢(t)] =) and d(¢,£(¢t)) =

Now let v € {1,...,4(t)} and ( t{a] =" or tla] =", or tla] =) ).

Ifae€{3,q1,--,qm-1,£(t)} we have already shown that d(t,«) = 1. Otherwise there
are these alternative possibilities:

a. (m=1)A(a>4)A(a <)),

b. (m>1)A(a>4) A (a<q),

c. m>2)AFi=1..m—=2:(a>q¢)A(a<qgi1)),
d. (m>1)A(a>gm-1) A (e <L(2)).

In the situation a. we have
4 < a<t),

O<a—4<(t)—4,
1<a—4<Ut)—4—1=py),
p1la — 4] = t[al,
d(t,0) =d(t, 44 (« —4)) = d(t, 4+ 1) + d(p1, a0 — 4) =
=1+d(p1,a—4) =2
In the situation b. we have
4<a<q,
O<a—-4<q —4,
I<a—4<q—4—-1=1{p1),
p1[a —4] = t[a],
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dt,a) =d(t, 4+ (a—4)) =d(t,4+ 1) + d(p1,a — 4) =
=1+d(p1,a—4) >2.
In the situation c. we have
qi < < (¢it1,
0<a-—¢q <qit1— ¢,
I1<a—q <qit1— ¢ — 1 =0(pig1),
pit1la —qi] = t[a],
dt,a) =d(t,q + (o — ¢;)) = d(t,¢; + 1) + d(pir1, a0 — q;) =
=1+d(pit1,0—q) > 2.
In the situation d. we have
Gm-1 < o < L(t),
0<a—gmo1 <lt) = Gm-1,
1 <a-— dm—1 < f(t) —Gqm-1— 1= g(ﬂpm),
Omla = gm—1] = t[al,
d(tv a) = d(t»qul + (OZ - qul)) - d(tv(Jmfl + 1) + d(SDmaa - qul) -
Let t € E,(n+ 1,k). As a consequence to t € E.(n + 1, k) there exist

e a positive integer m,

e a function z whose domain is {1,...,m} such that for each i = 1...m
z; €V —var(k), and for each 4,5 =1...m i # j — x; # x;,

e a function ¢ whose domain is {1,...,m} such that for each i =1...m ¢; € E(n),

* ¢ € E(n)

such that t = {}(z1 : ©1,..., Tm : ©m, D).

If we know m we can provide an ‘explicit representation’ of ¢. In fact if m = 2 then
t={Hx1:p1,22 1 p2,0), if m =3 then t = {}(z1 : v1,22 : p2,23 : p3,¢), and so on.
In this explicit representation of ¢ we can see explict occurrences of the symbols ‘,” and
‘. We indicate with ¢1,..., g, the positions of the explicit occurrences of ‘> and with
r1...7m the positions of the explicit occurrences of ‘,’. The only explicit occurrence of )’
has the position £(t). We want to show that for each i = 1...m d(t,q;) = 1,d(t,r;) =1
and that d(¢, £(t)) = 1.

It is obvious that d(t,q;) = 1. Moreover
dit,ri —1)=d(t,q + (r —1—q)) =d(t,q1 + £(e1)) = d(t,q1 + 1) + d(p1, (1)) =
= 1+d(p1, £(p1))-

If t[ry — 1] = o1[€(p1)] =) then d(t,m1) = d(t,r1 — 1) — 1 = d(¢1,4(p1)) = 1.
Else t[r1 — 1] = p1[l(e1)] ¢ {°(",)"} so d(t,r1) = d(t,r1 — 1) =1 +d(p1,L(¢1)) = 1.
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If m = 1 we have shown that for each ¢ = 1...m d(t,¢;) = 1,d(t,r;) = 1. Now
suppose m > 1, let ¢ = 1...m — 1 and suppose d(t,q;) = 1,d(t,r;) = 1. We show that
d(t,giv1) = 1,d(t,rip1) = 1.

We have ¢;+1 = 7; + 2 and it is immediate that d(¢, ¢;+1) = 1. Moreover

d(t,rip1 — 1) = d(t, qiy1 + (ric1 — 1 — qiy1)) = d(t, qig1 +L(0iy1)) =
=d(t, gi+1 + 1) + d(pit1, L(pit1)) = L+ d(pit1, € pit1)).

If t[rips — 1] = is1[(pig1)] = )" then
d(t,riy1) = d(t,rigr — 1) = 1 = d(pig1, (pir1)) = 1.

Else t[rit1 — 1] = @it [l(pit1)] ¢ {*(, )} so
d(t,riy1) = d(t,rip1 — 1) = L+ d(pit1, l(pit1)) = 1.

Furthermore
d(t,e(t) — 1) =d(t,rm + (L) =1 —1p)) =d(t,rm + () =
=d(t,rm +1) +d(¢,£(9)) = 1+ d(¢,£())-

If t[L(t) — 1) = P[l(@)] = *)’ then d(t, £(t)) = d(t,0(t) — 1) — 1 =d(¢,£(d)) = 1.
Else t[((t) — 1] = ¢[t(¢)] ¢ {*(", )"} so d(t, £(t)) = d(t, £(t) — 1) = 1+ d(¢,((¢)) = 1.

Let’s now examine the facts we have to prove. It is true that t[¢(¢)] # ‘(. It’s also true
that t[¢(t)] =) and d(¢, £(t)) = 1.

Now let v € {1,...,4(t)} and ( t{a] = " or tla] =", or tla] =) ).

Ifae{q,. . ..,qm,"1,. .. ,"m,L(t)} we have already shown that d(t,a) = 1. Otherwise
there are these alternative possibilities:

a. 3i=1...m such that ¢; < a < 71y,
b. 1 < a < L(1).

In the situation a. we have
g < a<ryg,

0<a—gq <ri—g,
I<a—q <ri—q —1=1~0(p),
pila — qi] = t[a],
d(t,a) = d(t,qi + (o — q;)) = d(t,qi + 1) + d(pi,a — q;) =
=1+d(p;,a—q) = 2.
In the situation b. we have
T < a < £(1),
0<a—ry <L(t)—Tm,
1< a—ry <L) —rm—1=10¢),

Ploc — ] = t[a],
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d(tva) = d(tvrm + (a - rm)) = d(t,?“m + 1) + d((b, o — rm) =
=14+d(¢,a—1y) = 2.

Proof of2.1.1].
We need to prove that for each k € K(n + 1) such that k # € and for each o € Z(k)
there exist a positive integer m, a function z: {1,...,m} — V, a function

w: {1,...,m} — E(n+1), a function s: {1,...,m} = M(n+ 1) such that

o foreachi,j € {1...m} (i #j — x; # z;),
o k= (z,9),
o 0= (x,s).

We can observe the following facts.

Em)= |J Emk < |J En+1,k) CEMn+1),
keK (n) ke K (n)
for each k € K(n)
Es(n,k) = {t|t € E(n,k),Yo € E(k) #(k,t,0) is a set} C
C{tlt € E(n+1,k),Yo € Z(k) #(k,t,0) is a set} = Es(n+ 1, k),

Mnk)= |J MEHCS |J Mkt)=Mn+1,k),

teEs(n,k) teEs(n+1,k)
M(n) = U M(n, k) C U M(n+1,k) C M(n+1).
keK(n) keK(n)

Now let k € K(n+ 1) such that k # ¢, 0 € Z(k).

If ¥ € K(n) by our assumption there exist a positive integer m,
a function x: {1,...,m} — V, a function ¢: {1,...,m} — E(n), a function
s: {1l,...,m} — M(n) such that

o foreachi,j € {1...m} (i #j — x; # x;),

o k=(z,9),

o 0= (z,s).

This completes the proof in the case k € K(n).

Now suppose k ¢ K(n), i.e. k € K(n)". Then there exist h € K(n), ¢ € Es(n,h),
y € (V —war(h)) such that k = h + (y, ¢).

By lemma there exist p € E(h), s € #(h, ¢, p) such that o = p + (v, s).

We can observe that ¢ € E(n) C E(n+ 1), s € M(h,¢) € M(n,h) C M(n) C
M(n+1).
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If dom(h) = 0 then h = ¢,p = ¢ and dom(p) = 0. So we can define three functions
x,p,u over the domain {1} by setting 2(1) = y, ¢(1) = ¢, u(l) = s. It clearly results
k= (z,¢), 0 = (x,u), and in this case the proof is finished.

We still need to examine the case where dom(h) # () and so h # e. We can ap-
ply our assumtpion to h and p and determine that there exist a positive integer m,
a function z: {1,...,m} — V, a function ¢: {1,...,m} — E(n), a function
u: {1,...,m} = M(n) such that

o foreachi,j € {1...m} (i #j — z; # z;),

° h=(z,9),
° p=(z,u).
We define three new functions z/, ¢’, v’ over the domain {1,...,m + 1} as follows:

for each a = 1...m 2'(a) = z(a), ¢'(a) = ¢(a), v(a) = u(a), '/(m + 1) = y,
dm+1)=¢, v(m+1)=s.

Since k = h+ (y, @) we have k = (2/,¢’), and since 0 = p+ (y, 8) we have o = (2, u').
We also observe that y ¢ wvar(h) so for each ¢ = 1...m y # x;. This completes the
proof. m

Proof of [2.1.2
We need to prove that for each k € K(n + 1)
(k=e¢)
V(3g € K(n),z €V —wvar(g),y € Eq(n,g) :
k=g+(z9) NE(k) ={o+ (2,5)| 0 € E(g),s € #(g9,¥,0)}).
If k € K(n) we can apply assumption and get
(k=¢)
V(n>1)Adge K(n—1),z€V —var(g),y € Es(n—1,9) :
k=g+ (z,¥) NE(k) = {0 + (2,5)| 0 € Z(g9),s € #(g,v¢,0)}).

In the case k # € we have g € K(n), ¢ € Es(n,g). Therefore when k € K(n) our
result is verified.

Now suppose k ¢ K(n), i.e. k € K(n)". There exist h € K(n), ¢ € Eq(n,h),
y € (V —wvar(h)) such that k = h + (y, ¢). By lemma we have also

E(k) = {O' + (y75)| S E‘(h)’ S #(hv¢ag)}7

and this completes the proof. m

Proof of |2.1.11]

We need to prove that for each k € K(n + 1), h € R(k): h # k we have h € K(n)
and for each o € Z(k) if we define p = 0/gom(n) then p € Z(h).
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If k € K(n) since k # € (and therefore n > 1) we can exploit assumption and
say that h € K(n —1) C K(n) and for each o € Z(k) if we define p = 0/gom(n) then
p € Z(h).

Now suppose k ¢ K(n), ie. k € K(n)*. There exist ¢ € K(n), ¢ € Eq(n,g),
y € (V —wvar(g)) such that k = g + (y, ¢). By lemma we have also

E(k) ={0+ (y,s)| 6 € E(g), s € #(g,0,0)} .

By lemma h € R(g) and we can distinguish two cases: h = g and h # g.

If h = g then h € K(n). Let 0 € E(k) and we define p = 0/4om(n). There exist
0 € E(g), s € #(g,¢,0) such that 0 =6 + (y, s). We have

0 = 0/dom(5) = O /dom(g) = T /dom(h) = P>
so p € E(h).

If h # g then we can apply assumption[2.1.11|to g and h and obtain that h € K(n—1),
for each § € Z(g) if we define p = 0,gom(n) then p € Z(h). So h € K(n). Moreover, let
o € E(k) and define p = 0/gom(n). There exist 0 € E(g), s € #(g,¢,0) such that
o =406+ (y,s), so (with the assumptions that o = (24, ¢, ), 0 = (25, ¢s))

P = 0/dom(h) = (('ra')/dom(h)a (900')/d0m(h)) =
= (((zo) jdom(s)) jaom(n)s ((Po) /dom (8)) dom(n)) =
= ((xts)/dom(h)’ (@5)/dom(h)) = 6/dom(h) € E(h)
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Proof of|2.1.10.

We need to prove that for each k € K(n + 1), t € E(n + 1,k) one and only one of
these five alternative situations is verified:

a.
LeC, Yo € S(k) 4(k,t,0) = £(), Vy(t) = b, Vi(t) =0.
b.
if we set k = (x, ) then Ji € dom(k) : (t = z;, Yo = (x,s) € E(k) #(k,t,0) = s4),
Vi(t) = {t}, Vi(t) = 0.
c.
Jh € K(n) : h C k,3m positive integer , v, p1,...pm € E(n,h) :
( @1y sm), t € E(n+1,h),
€ Z(h) ( #(h,p, p) is a function with m arguments,
(#(h,01,p), ..., #(hy ©m, p)) is a member of the domain of #(h, ¢, p),
#(h,t, p) = #(h,0,p)([#(h,01,p), -, #(h Om; p)) )
Vo(t) = Vo) U Ve(o1) U -+ U Vi(om),
Vo € 2(k),p € E(h) : p C o it results #(k,t,0) = #(h,t, p).
d.

Jh e K(n): hC k,3f € F, m positive integer , @1,...0m € E(n,h) :
t=(f)p1,---s0m), t € E(n+1h),
p € E(h) (Ar(#(h,o1,p), ..., #(h, Om, p)),
#(h,t,p) = Pr(#(h, 1,0), -, #(h, om, p)) ),
Vi(t) = V(1) U= U Vi(om),
Vo(pr) U=+ U Vi(om),
Vo € E(k),p € Z(h) : p C o it results #(k, t,0) = #(h, t, p).

<

=
—~
o~
~—
I
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there exist

he K(n):hCk,

a positive integer m,

a function x whose domain is {1,...,m} such that for eachi=1...m
x; €V —wvar(h), and for each ¢, =1...m i # j = x; # z;,

a function ¢ whose domain is {1,...,m} such that for each it =1...m
i € E(n),

¢ € E(n)

such that

E(n,hym, z, p, ),

t={Hz1: 01, Tm : Pm, @), t € E(n+1,h),

for each p € E(h) #(h,t,p) = {#(hin, &, )| Py € E(R) 0 E P}
(where b} = h + (x1,p1), and if m > 1 foreachi=1...m —1

1 = hi (@i, i) ),

ifm=1V(t) = Vi(p1) U (Vi(9) —{z1}), Vo(t) = {21} UVi(o1) UVi(9),

ifm>1
Vi(t) = Vi(p1) U (Vi(p2) —={z1}) U U (Vi(om) — {21, ., 2m-1})U

U(VH(6) = {51, 2},

Vo(t) = {1, 2m} UVo(pr) U--- U Vi(om) U Vi(9),

Vo € Z(k),p € E(h) : p C o it results #(k,t,0) = #(h,t, p).

We recall that

E(n+1,k) = E'(n,k)UE, (n+1,k)UE,(n+1,k)UE.(n+1,k)UE,(n+1,k)UE.L(n+1, k).

So we need to prove that

o for each t € E(n, k) one of the five alternative situations is verified;

o for each w € {a,b,c,d,e} and t € E} (n+ 1,k) one of the five alternative situations

is verified.

Suppose t € E'(n, k), this means that ¢t € E(n, k) and k € K(n). This case is easily
solved, in fact we apply assumption [2.1.10|and obtain that one of the five situations holds

at level n, but this means the situation is also verified at level n + 1.

Let t € Ej(n+ 1,k), this means that ¢t € E,(n+ 1,k) and k € K(n)". There exist
he K(n), ¢ € Es(n,h),y € (V —wvar(h)) such that k = h + (y,¢). We have t € E(n,h),
so we can apply assumption to h and ¢. Assumption [2.1.10] says that one of five
alternative situations (referred to h,n) is true; we need to show that the corresponding

situation, referred to k,n + 1 is also true.
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Let’s consider the situation in which

teC, Vo e E(h) #(h,t,p) = #(1), Vi(t) =0, Vi(t) = 0.

In this case for each 0 = p + (y,s) € Z(k)
#(kat70) = #(k7t7 U)(n+17k,a) = #(h’a t7p) = #(t)

So one of the five alternative situations at level n + 1 is satisfied.

Consider the situation where n > 1, if we set h = (z,¢) then Ji € dom(h) :
(t =z, Yp=(z,u) € E(h) #(hﬂf,p) = ui)7 Vf(t) = {t}a %(t) = 0.

If we set k = (2/,¢') then, since & = h + (y,¢), we have i € dom(k),
x, = x; = t. Moreover given o = (2/,u’) € E(k) there exist p € E(h), s € #(h,¢,p)
such that o = p + (y, s), therefore #(k,t,0) = #(k,t,0) (n41,k,0) = #(h t, p) = u; = .

Consider the situation where

n>1,
dg € K(n—1) : g C h,3Im positive integer , ¢, ©1,...pm € E(n—1,g) :
t=(p)(p1,---,m), t € E(n,g),
V6 € E(g) ( #(g,,9) is a function with m arguments,
(#(gv #1, ) LR #(gv Pm 6)) is a member of the domain of #(gv 90’5)3
#(gvta 6) = #(ga <p76)(#(g7 30176)7 ceey #(gv @Wu(s)) )7
Vi) UVi(p1) U=+ U Vi (om),
Vo(t) = Vi(p) UVi(p1) U+ U Vi(om),
Vp € Z(h),d € E(g) : § C p it results #(h,t, p) = #(g,t,9).

-

—~
~

~—
|

We have

g € K(n): g C k,3Im positive integer , @, ¢1,...om € E(n,g) :
t=()(#1,---,¢m), t € E(n+1,9),

Vo € E(g) ( #(g, 9, ) is a function with m arguments,
(#(9,¢1,9),...,#(g, m,9)) is a member of the domain of #(g, ¢, ),
#(9,t,0) = #(g,,0)(#(g, #1,0), - .., #(9, om, 9)) ),

Vi(t) = Vile) UVi(p1) U--- U Vi(om),

Vo (t) = Vi) U Vo(p1) U -+ - U Vi (om).-

Moreover, given o = p + (y,s) € 2(k), § € E(g): 6 C o by lemma [2.3| we have § C p
and so it results #(k,t,0) = #(k,t,0) (n41,k,0) = #(h, 1, p) = #(9,1,6).
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Consider the situation where
n>1,
ngK(n 1): g C h,3f € F, m positive integer ,p1,...0om € E(n—1,9) :
( )(@1,- -+ om), t € E(n,g),
€E(y ) (Af(#(9,¢1,6), ..., #(g, m,9)),
#(9,t,0) = Pr(#(9,91,0), ..., #(g, m, 9)) ),
Vi(t) = f( 1) U UVi(om),
Vo(t) = Vo(p1) U+ U Vi (om),
Vp € E(h),d € E(g) : 6 C p it results #(h,t, p) = #(g,t,0).
We have
g€ K(n):gCk,3f € F, m positive integer , 1,...om € E(n,g) :
t=(f)p1,. -y pm), t € E(n+1,9),
Vo € E(g) (Ar(#(9,91,0), .., #(g, om,9)),
#(9,t,0) = Pr(#(9,91,9), ..., #(g, om, 0)) ),
Vi(t) = V(1) U U Vi(om),
Vo(t) = Vo(p1) U+ U Vi (om).-

Moreover, given o = p + (y,s) € E(k), § € E(g): 6 C o by lemma [2.3| we have § C p
and so it results #(k,t,0) = #(k,t,0) (n41,k,0) = #(h, 1, p) = #(9,1,0).
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Consider the situation where
n>1,
there exist
geEK(n—1):gCh,
a positive integer m,
a function z whose domain is {1,...,m} such that for eachi =1...m
x; €V —var(g), and for each 4,j =1...m i # j — z; # z;,
a function ¢ whose domain is {1,...,m} such that for each i =1...m
@i € E(n—1),
peEMn-1)
such that
En—1,9,m,z,9,9),
t={}z1: 91, Tm : Pm, P), t € E(n,g),
for each & € Z(g) #(g,t.0) = {#(gp &, 07| 01, € E(97,),0 07}
(where g7 = g + (z1,¢1), and if m > 1 foreach i =1...m — 1
Giv1 = 9i + (Tir1, 0it1) ),
ifm = 1 V() = Vilg1) U (Vi(9) — {m1}), Vo(t) = {1} U Vilpr) U Vi(6),
ifm>1
Vi(t) = Vi) U (Vi(gz) — Lo} U s+ U (Vi) — {1, -2t DU
U V(@) —{z1,. . am}),
Vo(t) = {1, zm} UVi(p1) U=+ U Vo(om) U Vi(9),
Vp € Z(h),d € E(g) : § C p it results #(h,t, p) = #(g,t,9).
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We have

geEK(n):gCk,
a positive integer m,
a function « whose domain is {1,...,m} such that for each i =1...m
xz; €V —wvar(g), and for each 4,j =1...m i # j — x; # x;,
a function ¢ whose domain is {1,...,m} such that for each i =1...m
@i € E(n),
¢ € E(n)
such that
E(n, 9,1, 0, 8),
t={}z1: 01, -, Tm : Om,P), t € E(n+1,9),
for each § € Z(g) #(g,t,0) = {#(gp &, 7)| 00 € E(91n), 6 E 07}
(where ¢f = g+ (z1,¢1), and if m > 1 foreachi=1...m —1
Giv1 = 9i + (Tir1, Pit1) ),
i = 1 V5 (8) = V(1) U (Vi(0) — {m1}), Vo(®) = {21} U Vilpr) UV (6),
ifm>1
Vi) = Vi(91) U (Vi) — {o1]) U+ U (Vy(om) — {1, -1 DU
UVi(8) = {z1,.. . zm}),
Vo(t) ={a1, .. @m} U Vi(p1) U U Vi(om) U Vi(0).

Moreover, given 0 = p+ (y,s) € Z(k), § € Z(g):  C o by lemmawe have § C p
and so it results #(k,t,0) = #(k,t,0)(n+1,k,0) = #(h, L, p) = #(g,1,9).

Let ¢ € Ej(n+ 1,k), this means that ¢ € Ey(n+ 1,k) and k € K(n)*. There exist

h € K(n), ¢ € Es(n,h),y € (V —wvar(h)) such that k = h + (y,¢). Let k = (¢, ¢'),

there exists a positive integer m such that dom(k) = {1,...,m}, sot =y = . Let

o= (2',u’) € E(k), there exist p € Z(h), s € #(h, ¢, p) such that o = p+ (y, s). We have
#(kvta 0) = #(k7ta U)(n+1,k:,b) =85= u;n

Moreover

Vi(t) = Vi) 1,k = 10} = {t} Vo(t) = Vo) (ng1,k,0) = 0

Let t € E.(n + 1,k), this means that ¢t € E.(n+1,k) and k € K(n). As a consequence
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oft € Ec(n+1,k):
dm positive integer , p, ©1,...om € E(n, k) :
= (@)1, om), t € E(n+1k),
Vp € E(k) ( #(k, ¢, p) is a function with m arguments,
(#(k,01,p), -, #(k, ©m, p)) is a member of the domain of #(k, ¢, p),
#(kst,p) = # (ks ) (nt1,kie) = # (K0 0)(F# Ry 01, 0), - # (K o 0)) ),

Vi) = Vi) marke) = Vi() UVi(p1) U U Vi(om),
(t):% (n+1,k,c) = VE)( )U‘/IJ(QD1>UUVE7(()DM)5
Vo € E(k),p € E(k) : p C o it results p = o and obviously #(k,t,0) = #(k,t, p).

Let t € Ej(n + 1,k), this means that t € E4(n+1,k) and k € K(n). As a consequence
of t € Eg(n+1,k):

3f € F, m positive integer , @1,...om € E(n, k) :
t=()p1,. - yom), t € E(n+1,k),
Vp € E(k) ( As(#(k, 01,p), .. #(k, om, p)),
#(k,t,p) = #k, t, p) (nt1,k,0) = Pr(# (K, 01,0), o # (K ©ms p)) ),
Vi) = Vi) mt1ka) = Vilp1) U U Vi(om),
Vi(t) = Vo () (nt1,k,0) = Volpr) U+ U Vi (om),
Vo € E(k),p € E(k) : p C o it results p = o and obviously #(k,t,0) = #(k,t, p).
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Let t € EL(n + 1,k), this means that t € E.(n+1,k) and k € K(n). As a consequence
oft € Ec(n+1,k):
there exist

a positive integer m,

a function = whose domain is {1,...,m} such that for each i =1...m
x; €V —var(k), and for each ¢,j =1...m i # j = x; # x;,

a function ¢ whose domain is {1,...,m} such that for each i =1...m
¢i € E(n),

¢ € E(n)

such that

E(n,k,m,z,0,9),

t={}z1: 01, -, Tm : Om, D), t € E(n+1,k),

for each p € E(k)
#(k,t,p) = #(k,t, ) (i 1,k,e) = {F# (K & 00)| P € E(K7,), 0 E pr,}
(where k] =k + (x1,¢1), and if m > 1 foreach i =1...m —1

ir1 = K+ (@i, i) ),

itm=1
Vi) = Vi Ot = Viler) U (V3(6) — {1},
Vo(t) = Vo) (ni1.ke) = {21} U Vo(01) U Vi(9),

itm>1
Vi) = Vi) (nt1,ke) = Vile1) U (Vi(p2) — {z1})U

U U (Vi) = 11, s B DU (VES) — {1, 2 D),

Vo(t) = Vo) (nt1,k,e) = {71, 2m P UVa(01) U+ U V(o) U Vi(9),

Vo € 2(k),p € E(k) : p C o it results p = o and obviously #(k,t,0) = #(k,t, p).

Proof of [2.1:9

Let k = (z,9), h = (y,x) € K(n) such that for each i € dom(k), j € dom(h)
x, =y; - V¥ = x;. Let t € E(n+ 1,k) N E(n+ 1,h). Let 0 = (z,5) € =Z(k),
p = (y,7) € E(h) such that for each i € dom(o), j € dom(p) z; = y; — s; = rj.
We need to show that #(k,t,0) = #(h,t, p).

We have proved that assumption [2.1.10]is true at level n + 1, so

e t € E(n+ 1,k) implies that one of five alternative situations is verified,
e t € E(n+ 1,h) implies that one of five alternative situations is verified.
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Suppose situation a. is the true situation caused by t € E(n + 1, k). We have
t€C, #(k,t,0) =#(1).
This causes situation a. is also the true situation due to t € E(n+ 1,h), so

#(]Lt,p) = #(t) = #(katvg)'

The same kind of reasoning applies for the other situations. We now analyze the case
where situation b. is the true situation caused by t € E(n + 1, k). We have

i € dom(k) : (t = x;, #(k,t,0) =s;)
3j € dom(h) : (t = y;, #(h,t,p) =1;)
Since z; =t = y; we have #(k,t,0) = s; =r; = #(h,t,p).

We turn to examine the case where situation c. is the true situation caused by
t € E(n+1,k). We have
Jk € K( ) : k C k, Im positive integer , @, ¢1,...om € E(n, k) :
( )1,y om), t € E(n+1,kK),
€ 2(k) ( #(k,,n) is a function with m arguments,
Ky ©1,1), - -y #(K, ©m,n)) is a member of the domain of #(k, ¢, n),

(#(~,
# (5, t,m) = (8, 0, n) (F (K, 01,m); -+ # (K Pms 1)) ),
Vi(t) = Vi(p) UVi(p1) U+ U Vi(om),
Vo(t) = Vi(p) UVe(p1) U+ U Vo(om),
Vn € E(k) : n C o it results #(k, t,0) = #(k, t, 7).

Jdg € K(n) : g C h,3p positive integer , ¢, ¢1,...9¥, € E(n,g) :
t= )W, ..., ¥p), t€ E(n+1,9),
V5 € E(g) ( #(g,,9) is a function with p arguments,
(#(9,%1,9),...,#(g,1p,0)) is a member of the domain of #(g, 1, 9),
#(g’ t7 6) = #(97’(/}76)(#(9717[)176)7 MR #(.9777[)1)7 6)) )7
Vi) UVi(1) U--- UV (1),
Vo(t) = V(1) U Vi (1) U=+ U Vi(thp),
Vo € Z(g) : d C p it results #(h, t, p) = #(g,t,9).

=

—
~

=
Il

Of course p=m, v =, Vi=1...m ¢; = ;.
Let 7 = 0/dom(x) @a0d 6 = p/dom(g)- By assumption we get n € E(k) and

0 € E(g). Therefore
#(k,t,0) = #(k,t,n) = #(k, ¢, 1) (#(K, o1
#(h,t,p) = #(g,t,0) = #(g, ¥, 0)(#(g, 11

0, Ky Oms 1)),
)7"'7#(971/)107 ))

7
)
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70
We have £ = (% /dom(x)s U /dom(x))s 9 = (Y/dom(g)» X/dom(g))- For each i € dom(k),
j € dom(g) if (x/dom(n)) (y/dom(g)) then Ti = Yj, 19 = Xj» (ﬁ/dom(n)) (X/dom(g))j~
We have also 7 = (Z/dom(x), 5/dom(x))s 0 = (Y/dom(g)s T /dom(g))- For each i € dom(k),
(y/dom(g)) then z; = Yjs Si =Ty, (s/dom(/{)) (T/dom(g))

j € dom(g) if (x/dom(n))
Moreover ¢, 91, ...¢om € E(n,x) N E(n,g). By assumption we get

#(katag) = #(R,
= #(g,9,0)(#(9,¢1,0), - .-

%77)(#( y P17 )a#( s Pmy 1] ))

7#( g, Pm; )) :#(h"t?p)'

is the true situation caused by

Next we examine the case where situation d

t € E(n+1,k). We have
Jk € K( ):k C k,3f € F, m positive integer , p1,...om € E(n, k) :
=(He1,---,0m), t € E(n+1,k),
Vi € B(k )( F@F# (R 01,m), - #(K omy ),
#(k,t,n) = Pr(#(k, 01,1m), - - # (K, 0m, M) ),
Vi(t) = ( 1)U "'UVf(SDm)
Vo(t) = Vo(p1) U+ U Vi (om),
Vn € Z(k) : n C o it results #(k, t,0) = #(k,t,n).
HgE K(n):gC h,30 € F, p positive integer ,v1,...1, € E(n,g) :
( (b1, ), t€ E(n+1,9),

(9 )( 0(#(9,v1,6), .-, #(g,¥p, 0)),
#(9,t,0) = Po(#(9,¥1,0), ..., #(9,¥p,9)) ),
Vi(t) = ( 1)U "'UVf(¢p)
Vo(t) = Vi(v1) U+ U Vi(yp),
Vo € Z(g) : § C p it results #(h,t, p)

m Y; = ;.
E(k) and

Of course p=m, 0= f, Vi=1.
Let 7 = 0/dom(x) and 6 = pgom(g)- By assumption 2.1.11] we get n € =

0 € E(g). Therefore
#(Hatan) = Pf(#(ﬁa 901777), DR #(K:, @m/’?))»

#(kvtao—) =
#(h?t7 ) #(g,t,é) (#(nga )7"'7#(971/)1075))'

We have x = (:L'/dom(n)aﬁ/dom(fc)) g = (y/dom(g) X/dom(g)) For each i € dom( )’
(y/dom(g)) then Ty =Yy, 19 = Xj> (ﬁ/dom(n)) (X/dom(g))j~

—_
—
=

= #(g,t,0).

[1]

j € dom(g) if ($/dom(n))
We have also 7 = (2 /qom(x)> 5/dom(x))s 0 = (Y/dom(g)s T /dom(g))- For each i € dom(k),
= 9))i-

JE dom( ) if (x/dom(n))z = (y/dom(g)) then z; = Yjs Si =Ty, (S/dom( ))1 = (T/dom(q))
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Moreover @1, ...om € E(n,) N E(n,g). By assumption we get

#(k,t,o) = Pf(#(’%@lﬂ?), ceey #(K’a Sﬁm,ﬂ))
= Pf(#(g7901a6)7 .- 7#(.9’()0771’6)) = #(h7tap)

We still need to examine the case where situation e. is the true situation caused by
t € E(n+1,k). We have the following.

There exist

k€ K(n):kCk,

a positive integer m,

a function z whose domain is {1,...,m} such that for each i =1...m
zi €V —wvar(k), and for each i,j =1...m i # j — z; # z;,

a function ¢ whose domain is {1,...,m} such that for eachi=1...m
¢i € E(n),

¢ € E(n)

such that

E(n, 5y, 2,9, ),

t={}(z1:01,- s 2m : Om,P), t € E(n+1,K),

for each 1 € S(x) #(s, 1) = {#(, 6,7 1 € S060),7 € 1}
(where k] = Kk + (21,¢1), and if m > 1 foreachi=1...m —1

Kip1 = K7+ (Zi41, 0it1) ),

if m=1V(t)=Vi(e1) U(Vi(d) = {z1}), Vo(t) = {z1} U V(1) UVi(9),

ifm>1
Vi) = Vrle1) U (Vy(02) — {20 U+ U (Vi) — {210 2m 1 DU

UWVi() ~ {1, 2m s

Vo(t) ={z1,- - 2m} U Vi(p1) U~ U Vi (om) U Vo(9),

Vn € E(k) : n C o it results #(k,t,0) = #(k, t, 7).
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There exist

geK(n):gCh,

a positive integer p,

a function u whose domain is {1,...,p} such that foreachi=1...p
u; €V —war(g), and for each 4,5 =1...p i # j — u; # uy,

a function ¢ whose domain is {1,...,p} such that for each i =1...p
¥i € E(n),

£ € E(n)

such that

E(n, g,p,u,,§),

t={}(u1:¥1,...,up 1 p, &), t€ E(n+1,9),

for cach § € S(g) #(g,1,0) = {#(gpr & 8| 51 € Egh),6 € 6l
(where g5 = g + (u1,v1), andif p>1foreachi=1...p—1

Gip1 = 9i + (Uit1,Yiv1) ),

if p=1Vs(t) = Vi) U(Vr(§) = {ur}), Vo(t) = {ur} UVo(e1) UVL(E),

ifp>1
Vi(t) = Vi) U (Vy(¥2) = {ui}) U~ U (Vi(¥p) = {ur, ..., um—1})U

U(Ve(€) — {ur, ..., um}),

Vo(t) = {ur, .. um P U V(1) U=+ U Vi (4hm) U Vi(8),

V8§ € E(g) : § C p it results #(h, t, p) = #(g,t,9).

Clearly p=m, u =z, ¥ = ¢, { = ¢.

Let 7 = 0/dom(x) and & = p/dom(g)- By assumption [2.1.11) we get n € Z(x) and
0 € E(g). Therefore

#(k,t, O’) = #(Kj,t, 77) = {#(K{mv ¢77];n)| 77;;1 € E(’Q;n)vn C 77;;1}7
#(h,t, p) = #(9,t.0) = {#(g0- &, 1) 07 € E(97,),0 T 67, }-
We have r = (x/dom(n)aﬂ/dom(m))a g = (y/dom(g)aX/dom(g))' For each @ € dOTTl(/{),
.j € dom(g) if (x/dom(n))i = (y/dom(g))j then i = Yy, ﬂ’i = Xj>s (ﬂ/dom(fi))i = (X/dom(g))j'

We have also 7 = (% /qom(x)> 5/dom(x))s 0 = (Y/dom(g)s T /dom(g))- For each i € dom(k),
j € dom(g) if (x/dom(/{))i = (y/dom(g))j then Ti = Yj, Si = Ty, (S/dom(m))i = (r/dom(g))j-

By lemma [2.1.15| we get
{#(90:€:00)| 0y € E(g1), 0 T 67, } = {# (k10 )| M) € Elrir)om E 3
and thereferore #(h,t, p) = #(k,t,0). »
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2.2. Consequences of the definition process. We have finished with definition
We now prove a result that is closely related to the definition.

LEMMA 2.8. For each positive integer n, k € K(n) and t € E(n,k)
Vi(t) Cwar(k) ANVi(t) €V —var(k).

Proof.

We use induction on n.

As for the initial step, we observe that for each t € E(1,¢) =C

Vi) =0 C 0 =uvar(e); V(t) =0 CV =V —var(e) .

We now perform the inductive step. Let k € K(n+1) and t € E(n + 1, k). We have
seen that
E(n+1,k) = E'(n,k)UE., (n+1,k)UE; (n+1,k)UE.(n+1,k)UE}(n+1,k)UE.(n+1, k).

If t € E'(n,k) then k € K(n), t € E(n,k) and by the inductive hypothesis our
statement holds.

Let t € E,(n+ 1,k), this means that t € E,(n+ 1,k) and k € K(n)*. There exist
h € K(n), ¢ € Es(n,h),y € (V —wvar(h)) such that k = h + (y,$). We have also
te Bn,h), y ¢ Vilt).

Therefore V;(t) C var(h) C var(k).

We have also V4, (t) €V — var(h), and Vi(t) ¢ var(h) U {y} = var(k), so

Vo(t) CV —var(k) .

Let t € E{ (n+ 1,k), this means that ¢ € Ey(n+ 1,k) and k € K(n)". There exist

h e K(n), ¢ € Es(n,h),y € (V —wvar(h)) such that k = h + (y, ®). Moreover t = y,

Vi(t) = Vi) (nt1.k0) = {y} C var(k) .
Vo(t) = V() (ns1,6,0) = 0 SV —var(k) .
Let t € E.(n+ 1,k). As a consequence of t € E.(n + 1,k) there exist ¢, 01,...,0m
in E(n, k) such that t = (¢)(¢1,.-.,%m), and
Vi(t) = Vi) (ni1,k,e) = Vi) U Vi(o1) U=+ U Vi(om) S var(k)
Vu(t) = Vo) (n41,k,0) = V() UVi(p1) U= U Vy(pm) SV —var(k) .
Let t € Ej(n+1,k). As a consequence of ¢t € Ey4(n + 1,k) there exist f € F,
O1, -5 @m In E(n, k) such that t = (f)(p1,...,0m), and
Vi(t) = Vi) ms1ka) = Vi(pr) U--- U Vi(om) S var(k) ,
Vo(t) = V(D) (nt1,k,0) = Volpr) U - U Vi(om) SV —var(k) .

Let t € E,(n+ 1,k). As a consequence to t € E.(n + 1, k) there exist
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e a positive integer m,

e a function z whose domain is {1,...,m} such that for each ¢ = 1...m
xz; €V —wvar(k), and for each 4,5 =1...m i # j — x; # xj,

e a function ¢ whose domain is {1,...,m} such that for each i =1...m ¢; € E(n),

* ¢ € E(n)

such that t = {}(z1 : ©1,..., Zm : Pm,®) and E(n, k, m,z, v, @).
Moreover if m = 1 we have
Vi(t) = V(1) U (Vi(¢) —{z1}),
Vi(t) = {z1} U Vi) UVi(9).
If m > 1 we have
Vi) = Vi(er) U (Vi(p2) ={z1}) U U (Vilom) = {21, s 2ma}) U
U (Vi(@) = {21, zm}),
Vo(t) = {21, 2m} U Vi(pr) U+ U Vi (m) U Vi(9).
Let’s consider the case where m = 1.

By the inductive hypothesis V¢(¢1) C var(k) and Vi(¢) C var(ky) = var(k) U {z1} .
It follows that

Vi(t) = Vi(p1) U (Vi(¢) — {z1}) Cwvar(k) .

N

Moreover, the inductive hypothesis lets us state Vi(p1) V — var(k),

Vo(¢) €V —war(k)) =V — (var(k) U{z1}) CV —var(k). Therefore
V(1) = {1} U Vo) UVe() SV — war(k) .

We now turn to examine the case where m > 1.
By the inductive hypothesis V¢ (1) C var(k) and for each i =1...m — 1
Vi(pit1) Cvar(k;) = var(k) U{z1,...,2;} , so
Vi(pit1) —{z1,..., 2} Covar(k) .

Moreover
Vi(¢) Coar(k,,) =var(k)U{z1,...,Tm} , sO

Vi(p) — {z1,....,xm} Cvar(k) .
It follows V¢(t) C var(k).
The inductive hypotesis also implies V;(p1) C V —var(k) and foreach i =1...m—1
Vo(pir1) CV —var(k) CV —var(k) .
Moreover V,(¢) CV —wvar(k,,) CV —var(k) .

Therefore

Vo(t) = {x1, ..., 2m U V(1) U - U Vi(om) UVp(d) CV —wvar(k) .
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This result ensures that V;(¢) and Vy(t) are always disjoint, so a variable cannot have
both bound and free occurrences in the same expression.
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3. Introduction to the deductive methodology

In this chapter we will cover some fundamental principles that underlie our inferences.
An important target will be achieved with the proof of theorem [3.6] which is a simple
but significant step to set up our deductive methodology.

Some preliminary definitions.

Let K =5, K(n).

For each k € K let

Eky= |J EMmk),

nzl:keK(n)
E (k) = {t|t € E(k),Yo € Z(k) #(k,t,0) is a set } .
Let E = J,cx E(k); E is the set of all expressions in our language.

One expression ¢t € E(k) is a ‘sentence with respect to k’ when for each o € Z(k)
#(k,t,0) is true or #(k,t,0) is false.

We define S(k) = {t|t € E(k),t is a sentence with respect to k}.

At the beginning of chapter 2| we have introduced the logical connectives. In our de-
ductions, expressions will make an extensive use of the logical connectives, so we assume
that all of these symbols: =, A, V, —, <+, V, 3 are in our set F. For each of these operators
fAp(x1,...,z,) and Py(x1, ..., x,) are defined as specified at the beginning of chapter

For each t € E(e) we define #(t) = #(e, t, €).

On the way to theorem we need some further preliminary work, beginning with
the following lemma.

LEMMA 3.1. Let h € K, ¢ € Es(h), y € (V —wvar(h)), k=h+ (y,¢). We have k € K,
and if 9 € S(k) then

o {}y:9,9) € E(h);

e M{}y:,9))eSh), O{}y: ¢,0)) € S(h);

o VpeZ(h) #(h (V{}y: ¢, 7)), p) = Be({#(k,9,0)| o € E(k), pE 0});
o VpeE(h) #(h A}y : ¢,9)),p) = Pa({#(k,V,0)| o € E(k), pE 0}).

Proof.

Since ¢ € E4(h) there is a positive integer n such that ¢ € Es(n,h), h € K(n). This
implies that k € K(n)" C K(n+1) C K.
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Let ¥ € S(k). There is a positive integer m such that ¢ € E(m,k). We define
p = max{n + 1, m}, then we have

h € K(p)

y € (V —wvar(h))

¢ € Es(p,h)

ke K(p), 9 € E(p, k)

This implies that {}(y : ¢,9) € E.(p+1,h) C E(p+1,h) C E(h).
Moreover for each p € E(h)

#(h, My : 6,9),0) = #(h. {3 : 6,9), 0)j(p1,n0) =
— (#(,0,0)| 0 €2(k), pCa} .
We want to show that (¥)({}(y : ¢,9)) € E(p+ 2, h). To obtain this we just need to
show that for each p € Z(h) Av(#(h, {}(y : ¢,9), p)) holds.
Now Ay (#(h, {}(y : ¢,9),p)) is equal to
#(h, {}(y : $,19), p) is a set and for each u € #(h,{}(y : ¢,9), p) u is true or u is false.

Clearly #(h,{}(y : ¢,9),p) is a set, furthermore for each u € #(h,{}(y : ¢,9),p)
there is 0 € Z(k) such that p C o and u = #(k,9,0). Since § € S(k) u is true or u is

false. So Ay (#(h, {}(y : ¢,9), p)) holds.

We have proved that (V)({}(y : ¢,9)) € E(p + 2,h). Similarly we can show that
DIy : ¢,9)) € E(p+ 2,h). In fact to show this we just need to prove that for each
p € 2(h) As(#(h,{}(y : ¢,9), p)) holds, and this is proved since

Aa(#(h, {}y : ¢,9),p)) = Av(#(h, {}(y : ¢,9),p)) -
For each p € E(h)

#(h, (V) ({Hy : 6,0)), p) = #(h, (V) {}y : 6,9)), 0) /(p+2,n,0) =
Py #(ha {}(y : ¢,'l9),ﬂ)) =

(
By({#(k,0,0)| 0 € E(k), pEo}) .

#(h, ) {3 W : 9.9)),0)/(pr2.h.a) =
Ps(#(h, {}(y : ¢,9),p)) =
P3({#(k71970)| o€ E(k)v pE U]’) .

Finally, as we have seen, for each p € E(h)

#(h, V){}y : ¢,9)), p) = Pe({#(k,9,0)| o € E(K), pEa}),
and Py({#(k,9,0)| o € Z(k), p E o}) is clearly true or false.

Hence (V)({}(y : ¢,9)) € S(h). Similarly we obtain that (3)({}(y: ¢,9)) € S(h). =

#(h, Q) {}Hy : ¢,9)), )
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DEFINITION 3.2. Let z € V, p € E. We define
Hlz: o] =@ € Es(e) .
If the condition H [z : ] holds then we define k[x : ¢] = e+ (z, ¢). Clearly klz : ¢] € K
and var(k[z : ¢]) = {z}.

Let m be a positive integer. Let x1,...,Tm41 € V, with x; # x; for ¢ # j. Let
©1y- -y Pmt1 € E. We can assume to have defined H[z1 : ¢1,...,Zm : ©m] and if this
holds to have defined also k[z1 : ©1,...,2Zm : m] € K, such that

var(k[ry : @1, s Tm t Om]) = {T1,. .., Tm} .
We define
Hlxz1:01, s Tmg1 : Omt1] = H[Z1 001, oy T O
ANomi1 € Es(k[z1: 01,0, Zm t 0m]) -
If Hz1 : @1, Zmt1 : @m+1) then we define
Elx1: @1, s Tma1 : Omr1] = k[T 01,0 Tm 2 Om] + (@1, @mt1) -

Clearly k[z1 : 1, ., Tma1 ¢ pme1] € K and
var(k[z1 : @1,y Tmt1 : Oma1)) = {21,y Ting1} -
REMARK 3.3. Let m be a positive integer. Let z1, ..., 2, € V, with ; # x; for i # j. Let
©1,y -, om € F and assume H[z1 : ¢1,..., Ty : ©m]. In these assumptions we can easily

see that for each i =1...m H[z1 : p1,...,2; : p;] holds and so k[z1 : p1,...,2; : ;] is
defined, k[z1 : @1,...,2; 1 i) € K, var(k[z1 : ¢1,...,2; : @i]) = {x1,.. ., 2}

In fact this is clearly true for ¢ = m. Given ¢ = 2...m, if we suppose this is true for

i, then we have H[z1 : ¢1,...,2;-1 : p;—1], and so the remaining facts also hold.

In these assumptions we can define kg = € and for each ¢ = 1...m
ki = klz1 : p1,...,2; ¢ p;]. We have kg € K, var(kg) = (), foreach i =1...m k; € K,
var(k;) = {x1,...,z;}. Hereafter we’ll often use this kind of simplified notation.

We can also easily see that for eachi =1...m ¢; € Eg(k;—1) and k; = k;i—1 + (24, 1),
and dom(k;) ={1,...,i}.

DEFINITION 3.4. Let m be a positive integer. Let zi,...,z, € V, with z; # z; for
i # j. Let v1,...,0m € E and assume H[z1 : ¢©1,...,Tm : ©m]. Let ¢ be a member of
S(k[z1: @1,...,Zm : ©m]). Define

Vem 2 om, ] = (V){}H@m : om, ) -
By lemma 3.1 we have Y[y, : om, @] € S(km—1).

If m > 1 for each ¢ = 2...m suppose we have defined v[x; : ©i, ..., Tm : Pm,¢] as a
member of S(k;_1) and define

V[zi—l PPi—1y 0 T ¢ (107717@] = (V)({}(Iz_l : (pi—177[1‘i FPis e T @ma‘/’])) .
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By lemma Y[Tiz1 i i1y Tt Om, @] € S(ki—2).

LEMMA 3.5. Let m be a positive integer. Let x1,..., %y € V, with x; # x; fori # j. Let
Oy om € E and assume H[xy : ©1,...,Tm : pm]. Let o € S(k[z1: @1, ., Tm : Om]),
m>1,j=2...m.

We have y[xj : @j,. .y Tm : Pm, ] € S(kj—1). We can show that for eachi=1...5—1
fY[‘TZ CPhy ey T QPMWO] = V[xl 2 PRI vy CPj—l,'Y[xj CPgy ey Ty @m,@ﬂ .
Proof.
We show this by induction on . First we prove the property for i = j — 1.
VEj—1:0i—1s - Tm  oms 0] = (V({H@j-1 0 01, 7[5 0 955 T omy @])) =
=9lzi-1 0190w 0 05 T oms ]

Now we assume 7 — 1 > 2 and 2 < ¢ < j — 1. We assume the property is true for ¢
and want to show it holds also for ¢ — 1. We have

V[Zie1:0im1, - Tt Oms ] = (N (@i 0im1, V[T iy, T 2 P, 9])) =
= M @iz1 : i1, Y[Ti 1 0iy - Tjo1 101,V P T D Py P)])) =
= ’Y[xifl PPi—1y e L1 @j—l»’Y[xj PPy ey Tt Sﬁm,go]] .

THEOREM 3.6. Let m be a positive integer. Let x1,...,xm € V, with x; # x; fori # j. Let
O1,---yom € E and assume Hx1 : ©1,...,Tm ¢ pm]. Let o € S(k[z1: 01,0, Tm : ©m])-
Then
H[z1 01, Tm O, ) ©
o Py({#(k[x1 01,0y oml,0,0)] 0 €E(K[T1 01,00, Tm 2 ©m]) )

Proof.

We'll use the symbols kq, ..., k,, with the meaning specified in remark so what
we need to show is:

#O[T1 @1, Tt o, @) & Py ({# (R, 0,0)| 0 € E(kin)}) -

To this end we need to show that for each i =m...1 and for each p € Z(k;_1)
#(ki—lav[‘ri FPis e Tt sﬁm,SDLP) A PV({#(kmv(PaO—” S E(km), p C U}) :

We prove this by induction on ¢, starting with the case where ¢ = m. Here we need
to show that for each p € Z(kp,—1)

#km—1,7[Tm : om0l p) & Py({#(km, 0, 0)| 0 € E(km), pEa}) .
Actually

#(k/’mflafY[xm : @maﬁp]ap) = #(kmfla (V)<{}($m : Qoma(p))ap) =
= Py({#(km, 0,0)| 0 € Z(kn), pCo}) |
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Now suppose m > 1, let ¢ = 2...m and suppose the property holds for i, we show it
also holds for i — 1. We need to prove that for each p € Z(k;_2)

#(ki—z,Y[Tio1 : 0ic1, - T 2 om, @) p) > Pa({#(kms 0,0)| 0 € E(km), pEo}) .
We have
#(ki—2Y[@i1 1 Qim1s o Tt Py ), p) =
= #(ki—2, V({H@ic1 : pi-1,7[@i 00, T 1 om, 9))), p) =
= Py({#ki—1,7[i 0i o Tt omy ], 0)] 6 € E(kiz1), pE0}) &
o Py({Pe({#(km, 0,0)] & € Elln), 5 0})| € E(kir), pE3}) -
So it comes to showing that
Py({Py({#(km, ,0)] 0 € E(km), 6 Eo})| § € E(ki1), pE6})
< Py({#(km, p,0)| 0 € E(km), pEo}) .
Suppose Po({Py({#(kms 9, 0)| & € E(km), 6 £ o)) 8 € Z(hi_1), p C 5}).

This means that for each § € E(k;_1) such that p C ¢ and for each 0 € Z(k,,): dC o
#(km, p,0) holds.

Let 0 € Z(knm) : p E o, we need to prove #(kp,, ¢, o).

We define 0 = 0/gom(r,_,)- By assumption d € E(ki—1). Moreover 6,p € R(o)
and dom(p) = dom(ki—2) C dom(k;—1) = dom(d). By lemma we obtain p C §.
Therefore #(kn, @, o) holds.

Conversely suppose Py({#(km,p,0)] ¢ € Z(kn), p T o}), so that for each
o € ZE(km) : p C o #(km,p,0) is true. Let § € Z(k;—1) be such that p C 0 and let
o € E(ky,) be such that 6 T o. Since o € Z(k,,) and p T o we have #(kp,, p,0).

This completes the proof that for each p € Z(k;_2)

#(ki2, Y[Tio1 2 Qicty o T oy ] p) & Py({# (ki 0,0) 0 € E(km), pEa}) .
We have also finished the proof that for each i = m...1 and for each p € Z(k;_1)
F#(kim1, Vi 2 @i T 2 oms @), p) > Pe({#(km, @,0)] 0 € E(km), pEo}) .

It follows that for each p € E(ko)
#(ko, Y[Ti : @iy T Py )y p) & Po({#(kms p,0)| 0 € E(km), pCo}) .
and clearly this can be rewritten
#(e [T c iy T oms @l €) & Po({# (ks 0,0)| 0 € E(km), eCo}),
#(yzi iy T oy @) ¢ Po({#(km, 0, 0)| 0 € E(km)}) -

We'll soon apply theorem [3.6]to show its importance. First we need to prove lemmal3.7}
which is in some way similar to [3.I] but involves the other logical connectives.
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LEMMA 3.7. Let h € K, 1,92 € S(h). Then

o (N1, 92), (V)(@1,902), (=) (01, 92), (&) (@1, 02), () (01) € S(h);

o for each p € Z(h) #(h, (N)(p1,p2), p) = Pa(#(h o1, p), #(h, 02, p)) ;
o for each p € Z(h) #(h, (V)(p1,p2), p) = Py (#(h,01,p), #(h, 02, p)) ;
o for each p € E(h) #(h, (—)(v1,92),p) = P (#(h, 01, p), #(h,02,p)) ;
o for each p € Z(h) #(h, (<) (p1, ¢2), p) = Po,(#(h, 01, p), #(h, 02,p)) ;
o for each p € E(h) #(h, (=)(¢1), p) = P-(#(h, 1, p)) -

Proof.

For each p € E(h) #(h,¢1,p) is true or #(h,p1,p) is false; #(h, 2, p) is true or
#(h, pa, p) is false.

We recall that for each p € Z(h) An(#(h, 1, p), #(h, 2, p)),
AV(#(h7 ¥1 p)a #(ha P2, p))a A%(#(ha ¥1s p)v #(ha P2 p))’ AH(#(hv P1, p)’ #(h’ ¥2; p))

are all defined as
(#(h, p1, p) is true or #(h, 1, p) is false) and (#(h, w2, p) is true or #(h, @2, p) is false).

Therefore A/\(#(h7 ©1, p)a #(h7 Y2, p))7 AV(#(h’7 ©1, p)7 #(h‘7 Y2, p))7
A—)(#(h’a L1, p)) #(h7 Y2, p))a AH(#(h/7 ©1, p)7 #(h7 Y2, p)) are all true.

And for each p € E(h) A~ (#(h, ¢1,p)) is true.
There exists a positive integer n such that ¢1, s € E(n,h), so
(Mp1;@2), (VP15 92), (=) (1, 02), () (@1, 2), () (1) € E(R) -

Moreover for each p € Z(h)
(

#(h, (N) (1, 92), p) = Pa(#(h, 1, p), #(h, 02, p));

#(h, (V) (@1, 92), p) = Py (#(h, 1, p), #(h, 02, p));

#(h, (=) (p1,92), p) = P (#(h, 01, p), #(h, 02, p));

#(h, (<) (1, 92), p) = Pes (#(h, 01, p), #(h, 02, p));
#(h, (7)(1), p) = P-(#(h, ¢1,p)) -

so
©1,p2), p) is true or false;
©1,¥2), p) is true or false;

(
(

©1), p) is true or false .

©1,¥2), p) is true or false;

©1,92), p) 1s true or false;

FH H W FE
—~ Y~~~
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Therefore we get

(M) (@1, 902), (V) (@1, 92), (=) (01, 92), (<) (1, p2), (7)(p1) € S(h) .

The following lemma [3.8]is an example of how theorem [3.6] is applied.
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LEMMA 3.8. Let m be a positive integer. Let x1,...,Ty €V, with x; # x; for i # j. Let
Oly--oyom € E and assume H[Z1 : ©1,...,Tm : ©m]. Define k = k[x1 1 01,0y Tm : ©m)
and let o, 1,199 € S(k).

Under these assumptions we have (=) (@, ¥1), (=) (p, ¥2), (=) (@, (N)(¢¥1,12)) € S(k).

Moreover, if

#Oylrr s on s wm s oms (2) (@, 00)]), # (VL @1, T m, (=)@, 92)])

then
#FO[T1 @1, Tt m, () (0, (N (Y1,902))]) -
Proof.

We need to show

#Ov[T1 001, T s () (05 (A) (Y1,92))])
that is

Py({#(k, (=), (M) (¥1,92)),0) 0 € E(K)}) ,
7 (K, (N (Y1, 42),0))| 0 € E(R)})
s PA(#(k, 1, 0), #(k, 12, 0)))| 0 € E(F)}) - (3.0.1)

But we have

#(ylz1 o1, T om, (=) (0, 11)])
Py({#(k, (=)(e,¢1),0)| 0 € E(R)}) ,
Py({P- (#(k, ¢,0), #(k, ¢1,0))| o € E(K)}) -

And we have

#(’7[371 P Tm Py (_>)((P7’(/J2)]) >
Py({#(k, (=)(p,¥2),0)| 0 € E(K)}) ,
PV {Pﬁ(#(k‘lvg%o)’ #(ka¢270))| S E(k)}) .

So for each o € E(k) if #(k, p,0) holds true then both #(k,¢1,0) and #(k,2,0)
hold. This implies holds true in turn. m

(
(
)

According to this lemma, if in our reasoning we have derived the sentences

rY[xl PP T ‘va(—>)(%¢1)] and 7[m1 PP Tt QOTI’L7(—>)(§0)¢2)]’ then we
can derive ¥[Z1 : ©1,. .., Tm : ©m, (—) (@, (A)(¥1,12))]. This is a first example of how our
deductive methodology will work.

We terminate the chapter with other useful lemmas.

LEMMA 3.9. Let c € C. For each positive integer n and k € K(n) we have

e c€ E(n,k);
o for each o € 2(k) #(k,c,0) = #(c).



A different approach to logic 83

Proof.
The proof is by induction on n.

For n =1 we have k = € so ¢ € E(1l,¢) = E(n,k) and for each 0 € E(k) 0 = ¢, so

#(k,c,0) = #(e, c,e) = #(c).
Let n be a positive integer and k € K(n+1) = K(n) UK (n)™.
If k € K(n) then c € E(n,k) C E(n+ 1,k) and for each o € Z(k) #(k,c,0) = #(c).

Otherwise k € K(n)™, so there exist h € K(n),¢ € FE (n, h),y € (V —wvar(h)) such
that k = h + (y, ¢). We have ¢ € E(n,h) and for each p € E(h) #(h, ¢, p) = #(c).
It follows that ¢ € E(n + 1, k) and for each o = p+ (y, s) € E(k)

#(k,e,0) = #(h,c,p) = #(c) .

LEMMA 3.10. Let k € K, m a positive integer, o, p1,...,0m € E(k). Suppose for each
o € Z(k) #(k,p,0) is a function with m arguments and (#(k, ¢1,0),...,#(k, pm,0)) is
a member of its domain. Then

b (@)(‘plu tey (pm) € E(k):
o for each o € Z(k)

#(k> (90)(901; ceey (pm)70) = #(ka (@U)(#(k? 9017(7)7 ceey #(k, Spm7(7));
o Vi((@©) (@1, 0m)) = Vo) U V(1) U... Vi(om);
o Vi((@)(p1,---som)) = V(@) UVi(p1) U... Vi(pom).

Proof.

There exists a positive integer n such that ¢, ¢1,...,om € E(n, k). This implies that
(@) (@1y---,0m) € E(n+ 1,k) and for each o € Z(k)

#(k7 (@)(9017 e ,(,Dm)70') = #(k7 ®, U)(#(k7 ©1, 0)7 ceey #(k7 @m70)) .
Clearly the following also hold:

o Vi((0)(@1,- - 0m)) = Vo) UVi(p1) U... Vi(om);
o Vi((@)(1,--0m)) = Vi(@) UVi(p1) U... Vi(om).

LEMMA 3.11. Let k € K, f € F, m a positive integer, @1,...,pm € E(k). Suppose for
each o € Z(k) Ap(#(k,p1,0),...,#(k, om,0)) is true. Then

(f)(@lv-“v@m) EE(k);

for each o € Z(k) #(k, (f)(¢1,- -, 0m),0) = Pr(#(k,01,0),...,#(k, om,0));
Vo((£) (@155 0m)) = V1) U... Vi(om);

Vi((F)(e1, - som)) = Vi(o1) U Vi(om).
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Proof.

There exists a positive integer n such that ¢1,...,¢, € E(n,k). This implies that
(o1, om) € E(n+1,k) and for each o € E(k)

#(ka (f)(@la SRR @m)a O) = Pf(#<ka L1, 0)7 ey #(ka Pm U)) .
Clearly the following also hold:

o Vo((f)(@1s--som)) = Vilp1) U... Vo(om);
o Vi((N)p1s--yom)) = Vi(p1) U... Vi(pm).

LEMMA 3.12. Suppose the equality predicate symbol = we defined at the beginning of
chapter 9 belongs to F. Suppose k € K, 1,92 € E(k). Then (=)(¢1,p2) € S(k).

Proof.
For each o € E(k) A_(#(k, p1,0), #(k, p2,0)) is true, so (=)(v1, p2) € E(k).
Moreover for each o € Z(k)
#(k, (=)(p1,02),0) = P=(#(k, 1,0), #(k, p2,0)) =
= #(k, p1,0) is equal to #(k, ¢2,0),
so #(k, (=)(p1,¥2),0) is true or false.
Therefore (=)(¢1,92) € S(k). m

LEMMA 3.13. Suppose the membership predicate symbol € we defined at the beginning of
chapter@ belongs to F. Suppose k € K, t,p € E(k) and for each o € Z(k) #(k,p,0) is
a set. Then (€)(t,p) € S(k).

Proof.
For each o € Z(k) #(k,p,0) is a set, so Ac(#(k,t,0),#(k,¢,0)) holds. Therefore,
by lemma B.11] (€)(t,¢) € E(k).
Using lemma we also obtain that for each o € Z(k)
#(k, (€)(t,9),0) = Pe(#(k, t,0), #(k, ,0)) = #(k,t,0) belongs to #(k, ¢, 0).
So #(k, (€)(t,¢),0) is true or false and (€)(t,¢) € S(k). m

LEMMA 3.14. Let m be a positive integer, x1,...,Tm € V, with x; # x; for i # j. Let
Oly--oyom € B, assume H[x1 : @1,...,Tm : m], define k = k[x1 : ©1,...,Zm : om] and
as usual ko = € and for each i =1...m k; = klx1 : 01,...,2; : pi].

Leti=0...m—1 and let ¢ € E(k;) such that for each j =i+ 1...m x; ¢ V,(¢).
Then v € E(k) and for each o € Z(k) there exists p € Z(k;) such that p C o and
#(k7d)7g) = #(klaq/}ap)
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Proof.

We prove by induction on j that for each j =i...m ¢ € E(k;) and for each o € Z(k;)
there exists p € E(k;) such that p C o and #(k;,v¥,0) = #(ki, ¥, p).

The initial step of the proof is obvious, so let j = ¢...m—1 and assume ¢ € E(k;) and
for each o € Z(k;) there exists p € Z(k;) such that p C o and #(k;, ¢, 0) = #(k;, ¢, p).

We have @;1 € Es(kj) and kjp1 = kj + (Tj41, ¢j+1), Tj1 € Vu(¢¥) so we can apply
lemma and obtain that ¢ € E(kj;1) and for each ¢ = 1+ (2i41,s) € E(kjy1)
#(kjy1,v,0) = #(k;,9,n). Since n € Z(k;) there exists p € E(k;) such that pCnC o
and #(kj+1,¢,0) = #(kgﬂb,n) = #(kmva) u
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4. Substitution

First-order logic features the notion of ‘substitution’ (see e.g. Enderton’s book [2]). Un-
der appropriate assumptions, we can apply substitution to a formula ¢ and obtain a new
formula ¢f, by replacing the free occurrences of the variable z by the term ¢. In our ap-
proach we’ll define a similar notion, with the difference that for us ¢ is a generic expression.

We begin with some preliminary definitions and results, then substitution will be
defined through the complex definition process [£.16]

DEFINITION 4.1. Let n be a positive integer, n > 1. Let k € K(n), k # €. Let p be a
positive integer, z1,...,xp € V, with x; # x; for i # j. Let 1,...,¢, € E.
We define kg = ¢ and for each i = 1...p k; = ki—1 + (24, i)-

We indicate with K(n;k; 1 : ¢1,...,2, : ¢p) the condition in which
k=k,and foreachi=1...p ki1 € K(n—1), ¢; € Es(n—1,k;_1) .

LEMMA 4.2. Let n be a positive integer, n > 1. Let k € K(n), k # e. Let p be a positive
integer, T1,...,xp €V, with x; # x; for i # j. Let ¢1,...,¢p € E.
Suppose IKC(n; k; 1t p1,...,2p : @p) holds.
Then for eachi =1...p dom(k;) = {1,...,i} and if we define k; = (u;, ¢;) then for each
J=1. i (w); =x; and (¢:); = ¢;-
Proof.

We have k1 = e+ (21, 1), so dom(ky) = {1}, and (u1)1 = z1, (¢1)1 = ¢1.

Given i =1...p — 1 we assume dom(k;) = {1,...,i} and for each j =1...7 (w;); =
X and (¢z)] = @j- We have ki+1 = kl + (xi+1,50i+1)7 SO dom(ki_,_l) = {1,,2 + 1}
Moreover, for each j = 1...¢ (u;41); = (w); = z; and (¢it1); = (¢:); = ;. Finally
(Uit1)i1 = Tig1, (Pit1)i41 = Pit1-

LEMMA 4.3. Let n be a positive integer, n > 1. Let k = (u,¢) € K(n), k #¢e. Let p be a
positive integer, x1,...,Tp € V, with x; # x5 fori # j. Let p1,...,pp € E.

Suppose KC(n; k; 1t p1,...,2p : pp) holds.

Let also q be a positive integer, y1,...,yq € V, with y; # y; fori # j. Let 1,...,9, € E.
Suppose KC(n; k;y1 1 1, .., Yq : Yq) holds.

Then q = p, for eachi=1...py; = x;, ¥; = ;.

Proof.

We have {1...p} = dom(k) = {1...q} and therefore ¢ = p. Moreover for each
i=l...pyi=u=z,Yi=¢;=¢p; m
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LEMMA 4.4. Let n be a positive integer, n > 1. Let k € K(n), k # €. Let p be a positive
integer with p <n, x1,...,2, €V, with x; # x; fori# j. Let o1,...,¢pp € E.

We define ko = € and for eachi=1...p k; = ki—1 + (25, ¢i).

Suppose K(n; k;x1 : p1,...,2p : pp) holds.

Then for each i =1...p, o; € Z(k;) there exist p € Z(ki—1), s € #(ki—1,pi, p) such
that oy = p+ (x4, 8).
Proof.

We have k; = ki—1+(xi, ¢;), ki—1 € K(n—1), ¢; € Es(n—1,k;_1), z; € V—var(k;_1).
Therefore k; € K(n — 1), and there exist p € E(k;—1), s € #(ki—1, i, p) such that
o, =p+ (z;,8). n

LEMMA 4.5. Let n be a positive integer, n > 1. Let k € K(n), k # e. Let p be a positive
integer with p <n, x1,...,xp € V, with x; # x; fori# j. Let v1,...,¢p € E.

We define kg = € and for each i =1...p k; = ki—1 + (x4, 0i).

Suppose IKC(n; k; 1t p1,...,2p  pp) holds.

Let o € E(k), for eachi=0...p define 0; = 0 dom(k,)- Then for eachi=1...p there
exists s; € #(ki—1,pi,0i-1) such that o; = o1 + (4, 8;).
Proof.

By lemma [2.1.11] we obtain that o, € Z(k;). Then there exist p € ZE(k;—1),
s; € #(ki—1, @i, p) such that o; = p + (x4, s;).

Since p € R(0o;) we have

P = (0i) jdom(ks 1) = (T /dom (ki) Jdom(ki_1) = O Jdom(ks_1) = Ti—1 -

LEMMA 4.6. For each positive integer n and k € K(n) we have
k=c¢€or
(n > 1 and there exist

e a positive integer p such that p < n,
® z1,...,xp €V such that x; # x; fori # j,
[ ] (1017...,@p€E

such that /C(n; kixzy:n,... y Lp Sﬁp) )
Proof.

We prove this by induction on n. The initial step is clearly satisfied because if k € K (1)
then k = e.

Then suppose the statement holds for n and let’s see it holds also for n + 1.
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So let k € K(n+ 1) and k # e. By assumption m
dg € K(n), z€V —war(g), ¥ € Es(n,g) :
k=g+(z¢) NE(k) ={o+(z,5) 0 € E(g), s € #(g,¥,0)} .
By the inductive hypothesis

g=c¢€or
(n > 1 and there exist

e a positive integer p such that p < n,
® z1,...,2, € V such that x; # x; for i # j,
° cpl,...,cppEE

such that K(n;g;21 0 @1,...,2p 1 @p) ).

We first consider the case where g = e.

Here we definep=1<n+1, 21 =2z €V, p; =9 € E, and we want to show that
Kn+ 1 k21t 01).

We assume ko = € and k1 = € + (21, ¢1)-

This implies k1 =k, ko € K(n), p1 € Es(n, ko), so K(n+ 1;k;x1 : ¢1) holds.

We now turn to the case where g # € and so

(n > 1 and there exist

e a positive integer p such that p < n,
® z1,...,x, € V such that x; # x; for i # j,
® Y1, pp EE

such that K(n;g;21 : ¢1,...,2p 1 p) ).

In this case p 4+ 1 is a positive integer and p+1 < n+ 1. We define z,1; = 2z € V,
Yp+1 = Y € E and need to show that K(n + 1;k;21 0 01,..., Tpt1 : Ppr1)-

We define kg = e and foreach i =1...p+ 1 k; = ki—1 + (24, 91).

Since K(n;g;x1 : @1,...,%p : p) we have that ¢ = k, and for each i = 1...p
ki1 € K(n — 1) - K(?’L), w; € Es(n — 1,](52‘,1) - Es(n,k:i,l).

To complete our proof we just need to show that k = kpt1, k, € K(n) and
Pp+1 € Es(n,kp).

We have k = g + (2,¢) = kp + (Tpt1, Pp+1) = kpt15 kp = g € K(n);
Opt1 =10 € Eg(n,kp). m
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LEMMA 4.7. Let n be a positive integer such that n > 2, let k € K(n) such that k # €.
There exist a positive integer p such that p < n, x1,...,xp, € V such that x; # x; for
T#J, ©1,...,9p € E such that K(n;k;x1 : @1,...,2p 1 @p).

Leth € K(n—1): hC k, h # €. Then there exists a positive integer ¢ < p such that
g<n—1,Kn—1Lhjz1:p1,...,2q : 9q).

Moreover let m be a positive integer, ¥ € E(n — 1),
y a function whose domain is {1,...,m} such that for each j =1...m y; € V —var(h)

and for each o, B =1...m o # B = yo # Y3;
¥ a function whose domain is {1,...,m} such that for each j =1...m v; € E(n —1).

Finally suppose that E(n—1,h,m,y,¥,9), and define by = h+ (y1,v¢1), and if m > 1
foreach j=1...m—1h; 1 =h}+ (yj+1,%+1)-

Then for each j=1...m K(n —Lhl;z1:01,...,2q 1 0, Y1 2 P15, Y5 2 P5).
Proof.

By lemma [4.6] we have

(n —1>1 and there exist

e a positive integer ¢ such that ¢ <n — 1,
® Yi,...,Yq € V such that y; # y; for i # 7,
L4 ’ll}l,...,quE

such that K(n — 1;h;y1 : ¢, ..., yq : ¥q) ).
Let k = (u, ¢). There exists C' € D such that C' C dom(k) and h = k/c = (u;c, ¢,c)-

By lemma we have dom(k) = {1,...,p} and for each i = 1...p u; = x; and
¢i = @i.

And by the same lemma C' = dom(h) = {1,...,q} and for each i = 1...q
u; = (uyc)i = yi and ¢; = (¢¢)i = V.

Therefore ¢ < p and foreach i =1...q y; = x; and ¥; = ;.

We now turn to the second part of the lemma. We first need to prove the truth of
Knihisonc o1, 2g 0 gy 41 2 1,0,y 0 95).

To simplify we define for each « = 1...q uy = 24, €& = @ and for each
a=q+1...9+7 U =Ya—q §a =Va—q-

We define kg =€, foreach a =1...q+ j ko = Ka-1 + (Ua,Ea)-
We have h = kg, h] = h+ (y1,¥1) = Kq + (Ugt1,Eg+1) = Kgt1-
if j > 1 then foreach s =1...5—1

Wyy = hig + (Yp1,Vp41) = Kgrs + (Ugrst1, Eqrp41) = Kgipr -

It follows Rl = kg ;.

Given a =1...q¢+ j we need to prove ko—1 € K(n—1) and &, € Es(n — 1, K4-1)-
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Foreacha=1...q ko1 E K(n—2) CK(n—1), & = ¢Ya € Es(n —2,Kq-1)-
We further have k, =h € K(n —1), 441 =11 € Es(n — 1, Kky).

If j > 1 then foreacha=q¢+2,...,¢+7
Ka—1=hp 1 4 €K —1); &o =tha_q € Es(n—1,h, )=Esn—1,Kk0_1) -

a—qg—1
With this we have proved K(n; A5 211 01,0, %g  9q Y1 2 15, Y5 1 ;).
Now by lemma since h; € K(n — 1), h # ¢, there exist
e a positive integer r such that r <n —1,

® v1,...,u, €V such that v, # vg for a # 3,
[ ] ¢1,...,¢p€E

such that K(n — 1;hl;01 1 @1, .. 00 2 D).

) J’
Clearly this implies K(n; h;v1 @ ¢1,..., vt @) By lemmawe derive that r = ¢+j,
foreacha =1...q vy = T, Po = Qa, foreacha =q+1...¢4+j va = Ya—q, Pa = Va—q-

So we obtain that K(n — 1;h%;21 1 1, ..., 2 1 P, Y1 P15,y 1 95). =

LEMMA 4.8. Let n be a positive integer such that n > 2, let k € K(n) such that k # e.
There exist a positive integer p such that p < n, z1,...,2, € V such that v, # xg for
a# B, o1,...,pp € E such that K(n;k;z1:1,...,Tp 0 0p).

Leti=1...p, h € K(n) be such that k; C h.
There exist a positive integer q such that ¢ < n, yi,...,yq € V such that yo, # ys for
a# B, Y1, ..., g € E such that K(n;hyy1 : ¥1,. .., Yq : ¥yq)-

Then i < q and for each j =1...1 y; = x5, V; = @;.
Proof.

Clearly K(n; ki1 01,-..,2; 1 @;). By lemma dom(k;) = {1,...,4}, and if we
define k; = (u, ¢) then for each j =1...7i u; = z;, ¢; = ;.

By lemma[l.2dom(h) = {1,...,q}, and if we define h = (v, ) then for each j = 1...¢q
vj = Yj, U = ;.

Since k; T h there exists C' € D such that C C {1,...,q}, k; = h/c.
We have {1,...,i} =dom(k;) =C C{l,...,q} soi<q.

Moreover, (u,¢) = ki = h)c = (v,¢,9/¢c), 50 u = v/c, ¢ = V¢, and for each
j=1l..d,y;=vj=uj=z;and ; =0; = ¢; = ;. m

LEMMA 4.9. Let p be a positive integer and p = (u,r) be a state-like pair whose domain
is {1,...,p}. We define o9 = € and for each j = 1...p 0; = 0j_1 + (uj,7;). Then it
results op = p.
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Proof.

For each j = 1...p we define o; = (v;,9;) and we prove dom(o;) = {1,...,5} and
foreach i =1...j (vj)i = w;, (V;); = 7i.

We have (vi,91) = 01 = €+ (u1,71), therefore dom(cy) = {1} and (v1)1 = w1,
(191)1 =1T1.

Let j =1...p—1, suppose dom(c;) ={1,...,5} and for each i = 1...j (v;); = w,,
(95)i = re.
Then (vj41,9j41) = 0j41 = 0 + (wj41,7j41), so dom(cjr1) = {1,...,j + 1}, for each
i=1...5 (0j1)i = (vj)i = wi, (Vj41)i = (V)i = 74
To finish, we have also (vj11);+1 = t¢j+1 and (Vj41)41 = rj+1.

Clearly we have proved dom(o,) = {1...p} = dom(p), and for each ¢ = 1...p

(vp)i = wi, (Ip)i = 14, 80 0p = (Vp,Vp) = (u,7) = p. =

LEMMA 4.10. Let p be a positive integer and p = (u,r) be a state-like pair whose domain
is {1,...,p}. Let m be a positive integer and q be a non-negative integer. Let § = (v, c)
be another state-like pair whose domain is {1,...,q + m}.
We define py = p+ (vg41,¢q41) and if m > 1 for each j=1...m —1
P;'+1 = P;‘ + (Vg4j+1, Caj+1) -

In these assumptions for each j =1...m if we set pj = (u',r") then
dom(p;-) ={1,...,p+j} and for eacha=1...p+j

o if a < pthen ul, = uq, 1, =7T4;
e if a>p then u

Proof.
If we set pj = (v/,7") then dom(p}) ={1,...,p+ 1} and foreacha=1...p+1

Qe

_ r_
= Vg+a-ps Ta = Cq+a—p-

o if a < p then ul, = ug,, 7,
!

s !/ / /
e if a > p then u, = uj 1 = V441 = Vgta—ps To = Tpt1 = Cg+1 = Cqta—p-

= Ta;

Suppose m > 1, j = 1...m — 1. We define pj; = (u',7) and assume
dom(p}) ={1,...,p+j} and foreacha=1...p+j

_ !
= Uq, Ty

o if & < p then ul, =Tq4;
o if @ > p then u), = Vgta—p, Th = Cqta—p-

We then define p’,; = (u”,7"). Clearly dom(p},,) ={1,...,p+j + 1} and for each
a=1...p+7+1

o if a < pthen vl =ul, = uq, rll =71, =r4;
o if p+1<a<p+,then ul =ul, =vVgra—p, 'a =Th = Cqta—p-

o if a =p+j+1then u, = vg4j+1 = Vgta—p, T = Cq+j+1 = Cqta—p-
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LEMMA 4.11. Lethe K,y €V —var(h), ¢ € Es(h), k=h+ (y,¢). Then k € K and
o for each o € Z(k) there exist p € 2(h), s € #(h, ¢, p) such that o = p+ (y, s).
o for each p € E(h), s € #(h, b, p) p+ (y,5) € E(k).

Proof.

There exists a positive integer n such that ¢ € Es(n,h). Clearly also h € K(n). So
k€ K(n)™ and
E(k) ={p+ (y,5)lp € E(h), s € #(h, &, p)} -

LEMMA 4.12. Leth e K,y €V —wvar(h), ¢ € E5(h), k=h+ (y,¢). Let ¢ € E(h) such
that y ¢ V(). Then € E(k) and for cach o = p+(y, 5) € S(k) #(k, ,0) = #(h, 6, p)-
Proof.

There exists a positive integer n such that ¢ € FEg(n,h), v € E(n,h). Of course
heK(n),soke K(n)t and ¢ € E,(n+1,k) C E(k).

For cach o = p+ (y,5) € Z(k) #(k, ¥, 0) = #(h. v, p). =

LEMMA 4.13. Let h€ K,y € V —wvar(h), ¢ € Es(h), k =h+ (y,¢). Theny € E(k) and
for each o = p+ (y,5) € E(k) #(k,y,0) = .
Proof.

There exists a positive integer n such that ¢ € Eg(n,h). Of course h € K(n), so
ke K(n)t.

It follows that y € Ey(n + 1,k) C E(k). Moreover, for each 0 = p + (y,s) € Z(k)
#(k7 y? o—) =S5 n

DEFINITION 4.14. Let £ € K, m a positive integer, x a function whose domain is
{1,...,m} such that for each ¢ = 1...m x; € V —var(k), and for each i,5 = 1...m
i #j — x; # xj, ¢ a function whose domain is {1,...,m} such that for each i =1...m
p; € E, and finally let ¢ € E. We write
5(k7 m? x’ 907 (?b)

to indicate the following condition (where kf = k + (z1,¢1), and if m > 1 for each
1=1...m—1 ké-‘,—l = /{32—}— (a)‘i+1,<pi+1))2

® 1 € Ey(k) ;

e if m > 1 then foreachi=1...m—1k, € K ANp;11 € Es(kl);

o kl.e KN¢ec E(k],).

LEMMA 4.15. Suppose
e ke K;
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® m 1S a positive integer;

e x is a function whose domain is {1,...,m} such that for each i = 1...m z; €
V —wvar(k), and for eachi,j =1...mi#j — z; # x;;
e © is a function whose domain is {1,...,m} such that for eachi=1...m ¢; € E;
* peE;
o ki =k+ (x1,01), if m>1 foreachi=1...m—1kj | =k + (zi11,0i11);
b €(k7m7x790a¢)'
Definet = {}x1: @1,y ZTm : Om, @). Then
o tc E(k);

o for cach o € Z(k) #(k,1,0) = {#(kp, 6, 0%)| 7l € E(k)y),0 € ol };
b Vb(t) = {xlv s "Tm} U Vb(@l) U---u ‘/;?(@m) U %(¢)
Proof.
We have
® ) € Es(k) 5
e if m > 1then foreachi=1...m—1k, € K ANp;11 € Es(kl);
o k. e KN¢e E(EL,).

There exist a positive integer ny such that ¢ € Fq(ny, k). If m > 1 then for each
i =1...m — 1 there exists a positive integer n;; such that ¢;11 € Eg(n;q1, k). There
exists a positive integer n.,,11 such that ¢ € E(nm41, k., )-

We define n = max{ni,...,nmy1}, then we have the following:

* ¢1 € Ey(n,k) ;

o ke K(n);

e ifm>1thenforeachi=1...m—1k} € K(n) A1 € Es(n,k});
o kil e K(n)A¢ € E(n,kl,).

This implies E(n, k, m, x, ¢, ¢) and consequently

o tc En+1,k);
o for each o € E(k) #(k,t,0) = {#(k,, ¢,00,)| ob, € E(k},),0 C ol };

We are ready to start the big definition process in which we define substitution. This
is an inductive definition process, so be aware that at step n we may find that the notion
of k{xz;/t} or pr{x;/t} we are about to define has already been defined in a former step.
Within the definition there are internal tasks in which we verify some expected condition.
We'll use the symbol ¢ to mark the end of each of those tasks.

DEFINITION 4.16. Let n be a positive integer such that n > 2, let k¥ € K(n) such
that k& # e. There exist a positive integer p such that p < n, z1,...,2, € V such
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that x; # x; for i # j, ¢1,...,¢p € E such that K(n;k;z1 @ p1,...,2p : ¢p). Clearly
D, 1,...,Tp, P1,...,Pp are univocally determined.

Giveni=1...p, t € E(k;_1) such that
o for each p;—1 € E(ki—1) #(ki—1,t,pi—1) € #(ki—1, @i, pi—1),

e foreach j=1...p:j #ix; ¢ Viy(t),
e for each j =i+ 1...p V,(t) N Vi(p;) = 0;

what we want to do is the following.

o If i = p: if k{x;/t} has been defined in a step before the current step n we’ll verify
it is k{x;/t} = kp_1, otherwise we’ll explicitly define k{z;/t} = k,_1.
e If i < p we want to verify the following
— kp—1{x;/t} is defined and belongs to K;
— xp €V —var(kp—1{xzi/t});
— (¢p)k,_,{xi/t} is defined and belongs to Es(k,—1{xi/t}).
Then if k{x;/t} has been defined in a step before the current step n we’ll verify it
is

— k{zi/t} = kp—1{xi/t} + (xp, (0p)k,_, {xi/1}).
Otherwise we’ll explicitly define

— k{zi/t} = kp—1{zi/t} + (zp, (Pp)k, {7i/t}).

e In both cases ¢ = p and i < p we’ll verify
— dom(k{x;/t}) ={1,...,p—1};
— k{xi/t} € K;
— var(k{z;/t}) = var(k) — {x;};
— ki1 C k{zi/t};
— if we define k{z;/t} = (u, ) then for each j = 1...i — 1 u; = x;, for each
j:i...p—l Uj = Tj41;
— for each p = (u,r) € E(k{x;/t}) we have that for each j =1...1—1 u; = z;,
foreach j =i...p—1u; = 11;
— for each p = (u,r) € E(k{x;/t}) if we define p;1 = p/dom(k,_,) and define
op=cand foreach j=1...p
« if j < ¢ then 0; = o1 + (uj,7j),
* lf] = ¢ then 0j =051 + (Ii,#(kifl,t,pifl)),
x if j > 7 then 0j =0j-1+ (Uj,h’l"j,l);
then o, € Z(k).
e For each ¢ € E(n, k) with V,(t) N Vi () =0

— We'll define g {z;/t}.

— We'll show that ¢ {x;/t} € E(k{x;/t}).

— We'll prove that for each p = (u,r) € Z(k{xz;/t}), if we define
Pi—1 = P/dom(k;_,) and define g = € and for each j =1...p
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* if j < then o; =01 + (uj,7;),
* if j =i then 05 = 0j_1 + (25, #(ki—1,t, pi—1)),
% if j >4 then o =01 4+ (uj—1,7j-1);
then #(k, ¢, 0p) = #(k{xi/t}, ee{zi/t}, p) -
— We'll prove that Vi (or{xi/t}) C V(@) U Vp(2).
— We'll show that one of the following five conditions holds
* @ € C and pr{x;/t} = p.
x o €var(k), p = x; = pplzi/t} =t, p £ x; = ep{zi/t} = .
x n > 1, there exist h € K(n — 1): h T k, a positive integer m, 1,
V1, .., ¥m € E(n —1,h) such that ¢ = (¥)(W1,...,¥m), ¢ € E(n,h),

—_

for each p € Z(h) #(h,¢,p) is a function with m arguments,
(#(h,1,p), ..., #(h,m, p)) is a member of the domain of #(h, 1, p).
If h # € by we can derive there exists a positive integer ¢ < p such
that g <n—1, K(n—1;h21 : 1,...,2q 1 ©q)-
If i < ¢, or in other words z; € var(h), since we have V;(t) N V4 (¢) C
Vo(t) N Vu(p) = 0, we can define ¢p{z;/t}, and similarly we can define
(¢j)n{zi/t}, and it results

or{mi/ty = (n{zs/t})((P1)n{zi/t}, o, (Ym)n{zi/t}) -
Otherwise (when h =€ or h # e Ai > q) prp{zi/t} = ¢.

x n > 1, there exist h € K(n —1): h C k, f € F, a positive integer m,
Uiy sy, € E(n — 1,h) such that ¢ = (f)(¥1,...,Um), ¢ € E(n,h),
for each pEe E(h) Af(#(hﬂ/’hl)% o 7#(h7¢m7l’))

If b # € by [£7] we can derive there exists a positive integer ¢ < p such
that g <n—1, K(n—1;hx1 : 1,..., 24 : ©q)-

If ¢ < g, or in other words x; € var(h), since we have V4 (t) N Vi(v;) C
Vo(t) N Vi () = 0, we can define (v;)n{x;/t}, and it results
erfwi/th = (H(@on{i/t} - (bm)n{zi/t}) -
Otherwise (when h =€ or h # e ANi > q) pp{zi/t} = .
* m > 1, there exist h € K(n—1): h C k, a positive integer m, ¥ € E(n—1),

a function y whose domain is {1,...,m} such that for each j = 1...m
yj € V —wvar(h) and for each o, f =1...m o # B — ya # y3;

a function ¢ whose domain is {1,...,m} such that for each j =1...m
¢j € E(n - 1);

such that

E(n—1,h,m,y,,9),

e={}y1 Y1, Ym  Ym, D), ¥ € E(n, h).

If h # € by [£7] we can derive there exists a positive integer ¢ < p such
that g <n—1, K(n—1;h;21 : 1,..., 24 1 ©q)-
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Suppose i < ¢, or in other words z; € var(h).

We define by = h + (y1,%1), and if m > 1 for each j = 1...m — 1
Rigr =R+ (Y1, 9541).

We have ¢y € E(n—1,h), Vi(t) N Vi(¥1) C V4 (t) N Vi(p) = 0, therefore
(1)n{x;/t} is defined;

foreach j=1...m—1h; € K(n—1) andby

Kn =1Lk i1, 00,2 0 0g, Y1 Y1505 Y5 1 05),

for each a =1...j yo € Vu(¥) so yo & Vi(2),

for each a =1...5 V,(t) N Vi (va) € Vi (t) N Vi(p) = 0,

Yi41 € E(n = 1,h5), Vio(t) N Vo (1) € Vo(t) N Vi(e) = 0,

therefore (1j4+1)n {z;/t} is defined;

hl, € K(n — 1) and by [£.7]

Kn—1LhLx1:01,..,Tq Qg Y1 - U1y, Ym - Um),

for each o =1...m yo € Vi(¢) 50 ya ¢ Vi(2),

for each a=1...m V,(t) N Vu(¥o) C Vi (¢) N V() = 0,

U € E(n—1,hp,), Vi) N Vo () € Ve(t) N Vi(p) =0,

therefore ¥y, {x;/t} is defined;

it results

or{wi/th = {3y s (WOndzi/th o ym : (bm)n_ Axi/th 0w {3i/t})
Otherwise (when h =€ or h # e Ai > q) pp{zi/t} = .

— We'll prove the following. Given h € K(n) such that k; C h we know there
exist a positive integer ¢ such that ¢ < n, y1,...,y, € V such that y, # yg

for a # B, 1, ...,%q € E such that K(n;hyy1 : ¥1,...,Yq : ¥q)-
By lemma [£.8 we know that i < g and for each j = 1...7 y; = x5, ¥; = ;.
If ¢ < g then assume for each j =i+ 1...q y; ¢ Vi(t), Vi(t) N Vi(v;) = 0.
Also assume ¢ € E(n, h).
Then ¢ {x;/t} = op{z;/t}.

— We'll prove the following. If there exists h € K(n) such that ¢ € E(n,h),
x; ¢ var(h) then gpp{x;/t} = .

Our definition process uses induction on n > 2, therefore in the initial step we have

n=2.If k € K(2) and k # € then there exist 1 € V, ¢1 € E such that K(2;k;z1 : 1).
This implies k = € + (21, 1) and @1 € F4(1,¢€).

Let t € E(e) be such that #(t) € #(¢1). Clearly for each p € E(e)
#(eatap) = #(E,t,ﬁ) = #(t) S #(@1) = #(Q@lae) = #(659017p) .

We define k{z;/t} = e. Clearly dom(e) =0, e € K,

var(e) =0 ={z1} — {z1} = var(k) — {z1} .

It also results k;—1 = € C € = k{x;/t}.
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Suppose we define og = € and o1 = o¢+ (21, #(t)) = e+ (x1, #(t)). We have e € K (1),
1 € Es(1,€), 1 € (V —wvar(e)), so k = e+ (x1,¢1) € K(1)T. This implies

E(k) = {e+ (x1,5)| s € #(&; 1, €)} -
Now since #(t) € #(€, ¢1,€) we have o1 € Z(k).
Let ¢ € E(2,k) such that V;(t) N Vi (¢) = 0. Of course
E(2,k) = E'(1,k) U EL(2,k) U E})(2,k) U EL(2, k) U E(2, k) U EL(2, k).

Suppose ¢ € E'(1,k), so ¢ € E(1,k) and k € K(1), k = e. This is against our
assumption that k # €, so we must exclude the case where ¢ € E'(1, k).

Now suppose ¢ € E[(2,k). This means ¢ € E,(2,k), k € K(1)*. We have seen
that k = € + (z1, 1), where € € K(1), ¢1 € Es(1,€), 21 € (V —var(e)). It follows that
v € E(1,e).

We define pp{x1/t} = ¢ € E(e) = E(k{z1/t}).

Let p € Z(k{z1/t}) and define 0y = € and o1 = g¢ + (1, #(t)) = € + (z1, #(t)). We
have seen that o1 € Z(k). Since ¢ € E,(2,k) we have

#(k, p,01) = #(€, p,€) = #(k{z1/t}, pe{z1/t}, p) -
Of course V,(pr{z1/t}) = Vilp) C V(@) U Vi (2).
The condition ¢ € C A pp{x1/t} = @ is clearly satisifed.

Suppose h € K(2) such that k1 = h. We know there exist y; € V, 11 € E such that
K(2;h;y1 : ¥1). We know that y1 = x1 and ¢y = @1, therefore h = hy = k1 = k, and
clearly op{z1/t} = n{z1/t}.

Finally suppose there exists h € K(2) such that ¢ € E(2,h), x1 ¢ var(h). We have

vr{z1/t} = ¢ and this holds independently from the assumption, in fact this is the
definition of i {z1/t}.

Let’s examine the case where ¢ € Ej (2,k). This means ¢ € Ey(2,k), k € K(1)T. We
have seen that k = € + (x1,¢1), where € € K(1), 1 € Es(1,€), 21 € (V — var(e)). It
results Ey(2,k) = {z1}, so ¢ = 1.

We define pp{z1/t} =t € E(e) = E(k{x1/t}).

Let p € Z(k{x1/t}) and define 09 = € and o1 = 0¢ + (v1, #(t)) = € + (z1, #(t)). We
have seen that o1 € Z(k). We have

#(kvwagl) = #(k7x1701) = #(t) = #(E,t,é) = #(k{xl/t}v(pk{xl/t}vp) :
Of course Vy(prp{z1/t}) = Vi(t) C V(@) U Vi (2).

The following conditions hold: ¢ € var(k), ¢ = x1, pr{z1/t} = t. So the following
condition is satisfied:

p €var(k), ¢ =1 = pp{w1/t) =t, ¢ F o1 = {1/t =¢ .
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Suppose h € K(2) such that k; © h. We know there exist y; € V, 11 € E such that
K(2; h;yp = 1). We know that y; = x1 and ¥ = ¢4, therefore h = hy = k; = k, and
clearly op{z1/t} = op{z1/t}.

Finally suppose there exists h € K(2) such that ¢ € E(2,h), x1 ¢ var(h). In this
case, by lemma Vi(p) C var(h). But since ¢ € Ey(2, k) we have also Vi(p) = {z1}.
It comes out that x; € var(h), against our assumption. So there doesn’t exist h € K (2)
such that p € E(2,h), z1 ¢ var(h).

Now assume ¢ € E/(2,k). This implies ¢ € E.(2,k) #0, so k € K(1), k = e. This is
against our assumption that k # ¢, so we must exclude the case where ¢ € E/(2,k). The
same way we have to exclude the cases where ¢ € E/(2,k) and ¢ € EL(2,k).

We’ve seen the only two ‘real’ cases are ¢ € E/(2,k), ¢ € E}(2,k), and the definition
of pr{z1/t} depends on which case is verified. Clearly E/ (2, k) and E}(2, k) are disjoint
sets, so the definition we have set out is correct.

This wraps up the initial step of our definition process. To deal with the inductive
step let n > 2, suppose we have given our definitions and verified the results at step n,
and let’s go on with step n + 1.

Let k € K(n+ 1) such that k # e. Let p be a positive integer such that p < n + 1,
Z1,...,Tp € V such that x; # x; for ¢ # j, ¢1,...,¢p € E such that
Kn+Likizi:o1,...,2p 1 @p).

Leti=1...p, t € E(k;—1) such that

o for each p;—1 € E(ki—1) #(ki—1,t,pi—1) € #(ki—1, 0i, pi-1),

e foreach j=1...p:j#1ix; ¢ V(t),
o foreach j=i+1...p V3(t) N Vi(p;) = 0.

Consider the case where i = p.

If k € K(n) there exist a positive integer ¢ such that ¢ < n, y1,...,y4 € V such
that yo # yp for a # 5, ¥1,...,9, € E such that K(n;k;y1 : ¥1,...,Yq : ¢q). Clearly
K(n+ 1;k5y1 : ¥1,...,Y4 © ¥g) also holds, so by lemma q=p,foreacha=1...p
Yo = Zo and Yo = @o, K(n;k;z1 2 01,...,2Tp 1 0p).

For this reason, by the inductive hypothesis, k{x;/t} is already defined and we have
k{x;/t} = kp_1. We have also
dom(k{x;/t}) ={1,...,p—1};
k{zi/t} € K;
var(k{z;/t}) = var(k) — {z;};
ki1 C k{x;/t};
if we define k{x;/t} = (u, ) then for each j = 1...¢i — 1 u; = z;, for each j =
i...p—l Uj = Tj41;
o for cach p = (u,r) € Z(k{xz;/t}) we have that for each j =1...9—1 u; = z;, for
cachj :Zp— 1 Uj = Tj+41,
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o for each p = (u,r) € E(k{x;/t}) if we define p;_1 = p/gom(k,_,) and define og = ¢
and foreach j=1...p
— if j < then o = 051 + (u;,75),
— if j =i then oj = oj_1 + (x4, #(ki—1,t, pi—1)),
—if j > i then o; =01 + (uj—1,7j-1);

then o, € E(k).

If on the contrary k ¢ K(n) then we define k{x;/t} = kp_1.

If p > 1 then we have k,_1 € K(n) and k,_; # €. Using lemma we obtain

o dom(k,—1)=A{1,...,p— 1}

o if we define k,_1 = (up—1,Pp—1) then for each j=1...p —1 (up_1); = z;,
(Pp-1); = ¥j-

Therefore the following hold

dom(k{z;/t}) ={1,...,p— 1}

k{zi/t} € K;

var(k{z;/t}) = var(k) — {z;};

kio1 =Fkp_1 C kp—1 = k{z;/t};

if we define k{z;/t} = (u,¢) then for each j = 1...i — 1 u; = z;, for each

j=t...p—1u; =x41;

e for each p = (u,r) € Z(k{z;/t}) we have that for each j =1...7i —1 u; = z;, for
each j=1...p—1u; = x41.

Moreover let p = (u,r) € Z(k{z;/t}), we define og = € and for each j =1...p
o if j < pthen o; =01 + (uj,75),

® Op = 0Op-1 + (xpa #(kpflvta ,0))

We need to show that o, € Z(k).

We have that dom(p) = {1,...,p — 1} so by lemma

Op—1=p, Op=p+ (xpv#(kpflahp)) .

It also results k = k,_1 + (zp,pp), where k,_1 € K(n), ¢p € Es(n,ky_1),
zp € V—var(kp—1), p € E(kp—1), #(kp—1,t,p) € #(kp—1, ¥p, p). Therefore we can confirm
that o, € (k).

If p=1 then k{x;/t} = kp_1 =e.

We have

o dom(k{z;/t})=0={1,...,p—1};

o k{z;/t} =ec K;

o var(k{z;/t}) =0 = var(k) — {z;};

o if we define k{x;/t} = (u, ¢) then for each j =1...0 u; = z;, foreach j =1...0

Uj = Tj+1;
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e for each p = (u,r) € Z(k{x;/t}) we have that p = € and for each j = 1...0 u; = z;,
foreach j=1...0 u; = ;41;

Moreover let p = (u,r) € Z(k{x;/t}) (this implies p = €) and define o9 = € and
o1 =09 + (z1,#(e,t,p)) = €+ (x1,#(e, t, €)). We need to verify that o1 € E(k).

We have k = k1 = e + (z1,91), € € K(n), o1 € Es(n,€), x1 € V —var(e), € € E(e),
#(e, t,€) € #(¢, p1, €). Therefore we can confirm that oy € E(k).

We now turn to examine the case where i < p.

If k € K(n) there exist a positive integer ¢ such that ¢ < n, y1,...,y, € V such
that y, # yg for o # B, ¢n,...,9y € E such that K(n;k;y1 : ¢1,...,Y4 @ ¥q). Clearly
K(n+1; k91 ¢1,...,Yq : ¥q) also holds, so by lemma q=p,foreacha=1...p
Yo = T and Yo = 0o, K(nj k21 1 01,0, 2p 1 0p).

By the inductive hypothesis

o k,_1{x;/t} is defined and belongs to K;

o 1z, €V —wvar(ky_1{zi/t});

® (¢p)k,_,{xi/t} is defined and belongs to Fs(k,—1{xi/t}).

Moreover, k{x;/t} is already defined and

o k{zi/t} = kpr{zi/t} + (wp, (0p)k,_, {zi/t}).

The inductive hypothesis also ensures that

dom({z/t}) = {1,...,p— 1}

k{zi/t} € K;

var(k{z;/t}) = var(k) — {z;};

ki1 C k{zi/t};

if we define k{x;/t} = (u, ) then for each j = 1...¢ — 1 u; = x;, for each j =

Zp—]. Uj = Tj41;

e for each p = (u,r) € Z(k{z,;/t}) we have that for each j =1...7i — 1 u; = z;, for
each j=1i...p—1u; = xj41;

o for each p = (u,r) € E(k{xz;/t}) if we define p;_1 = p/gom(k,_,) and define og = €
and foreach j=1...p

— if j < i then 0; =051+ (U,]',Tj),
— if j =i then 0 = 0j_1 + (x4, #(ki—1,t, pi—1)),
— if j >4 then 0; =051+ (u]'_l,’f‘j_1);

then o, € E(k).

If on the contrary k ¢ K(n) then we consider that k,_1 € K(n) and kp_1 # e
Therefore there exist a positive integer ¢ < n, y1,...,y, € V such that y, # yg for

a# B, Y1,...,1¢q € E such that C(n; kp—1;y1 1 Y1, .., Yq : Uq)-
We recall that K(n + 1;k;21 : @1,...,2p : p) also holds.

If we define k,_1 = (up—1, Pp—1) then lcmma tells us that
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o {1,...,q} =dom(ky—1) ={1,...,p — 1} and therefore ¢ = p — 1;

o forecach j=1...p—1z; = (up—1); =y, p; = (Pp—1); = Vy;
e as a consequence of the former results, K(n; kp—1;21 : @1,...,Tp_1 : Pp_1).

By the inductive hypothesis k,_1{z;/t} is defined, it belongs to K and
var(kp—1{x;/t}) = var(ky—1) — {x;}. Therefore x, € V — var(k,—1{x;/t}).

We also consider that ¢, € Eg(n,ky_1) and V() N Vi(pp) = 0, so (@p)k,_, {zi/t} is
also defined and belongs to E(k,—1{x;/t}).

We want to show that (pp)x, , {7i/t} € Es(kp—1{z:/t}), so we still need to prove that
for each p € E(kp—1{zi/t}) #(kp—1{zi/t}, (p)k, . {7i/t}, p) is a set.

Let p = (u,r) € E(kp—1{z:/t}) and we define p;_1 = p;dgom (k,_
eachj=1...p—1

) and o9 = € and for
[ 1f]<zthen O'j:0j71+(u]',7“j),

L lf] = ¢ then 0j =051 + (.’Ei, #(kifl,t,pifl)),

[ 1f]>zthen 0 :0]-,1+(uj,1,7'j,1).

Then #(kp—la Pps Up—l) = #(kp—l{xi/t}v (‘Pp)kp_l{xi/t}a P) .

Since ¢, € FE¢(n,kp—1) we have that #(kp—1,¢p,0p—1) is a set and
F#(kp—1{zi/t}, (0p)k,_ {xi/t}, p) is a set too.

So we can define k{xz;/t} = ky_1{x;/t} + (zp, (Pp)r,_,{zi/t}), and k{z;/t} € K.

By the inductive hypothesis dom(k,_1{z;/t}) = {1,...,p — 2}, so
dom(k{z;/t}) ={1,...,p — 1}. Moreover

var(k{zi/t}) = var(kp—1{zi/t}) U{z,} = (var(kp-1) = {:}) U{zp}
= (var(kp—1) U{zp}) — {zi} = var(k) — {z:} .

Also, clearly, k;—1 T kp_1{z;/t} T k{x;/t}.

We now define k{z;/t} = (v,9), kp—1{zi/t} = (u, ®). By the inductive hypothesis we
have that for each j =1...¢ —1u; =2; and foreach j =i...p —2 u; = x;11.
Furthermore for each j =1...p —2 v; = uj, vp—1 = Tp.

So we derive that for each 7 = 1...9 =1 v; = u; = x;; for each j = i...p — 2
vj = u; = T;4+1, and it follows that for each j =4...p —1 v; = xj41.

Let p = (w,s) € E(k{x;/t}). We have w = v, so for each j =1...1 — 1 w; = v; = z;,
foreach j=1i...p—1w; =v; = T41.

Let p = (w,s) € E(k{x;/t}), we define pi_1 = paom,_,) and oo = € and for each
j=1...p

e if j < i then 0j =051+ (wj,sj),

o if j=ditheno; =01+ (zi, #(ki—1,t, piz1)),
e if j > i then 0j =0j-1+ (wj_1,sj_1);
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We want to show that o, € Z(k).

Clearly there exist p,_1 € ZE(kp—1{z:i/t}), ¢ € #(kp—1{zi/t}, (p)k,_ 17i/t}, Pp—1)
such that p = pp,_1 + (zp, ).

We now define p,_1 = (w’,s"). It results

dom(pp—1) = dom(kp—1{x;/t}) ={1,...p — 2} .

/.

For each j =1...p—2 we have w; = wj,

sj = 8}. Therefore for each j =1...p—1

e if j <ithen o; = 0j_1 + (W), s)),

o if j =i then o = 0j_1 + (z;, #(ki—1,t, pi—1)),
e if j > then o = oj_1 + (W)_y,85_41);

Clearly

Pi—1 = P/dom(ki—1) — (w/dmn(ki,l)as/dom(ki,l)) =
= ((w/{l,“‘p72})/dom(ki,l)7 (5/{1,...p72})/dom(ki,1)) =
= ((w/)/dom(ki,l)v (S/)/dom(ki,l)) = (ppfl)/dom(ki,l) .

We can apply the inductive hypothesis and obtain that o,_1 € =(k,—1), and
#(kp—1,0p,0p—1) = #(kp_1{xi/t}, (0p)k,_ {Ti/t}, pp—1) -

To show that o, € =(k) we consider that k = k, = k,—1 + (zp, ¢p), kp—1 € K(n),
op € Es(n,kp—1), , €V —var(kp—1). Therefore k € K(n)*.
Moreover o, = op_1 + (Wp—1,5p—1) = 0p—1 + (Tp,¢), and since op_1 € E(kp_1),
¢ € #(kp—1,¥p,0p—1) we have that o, € Z(k).

In the next step of our definition, for each ¢ € E(n+1,k) such that Vi,(¢) NV, (p) =0

o We'll define gp{x;/t}.

o We'll show that ¢r{x;/t} € E(k{x;/t}).

e We'll prove that for each p = (u,r) € Z(k{z;/t}), if we define
Pi—1 = P/dom(k;_,) and define og = € and for each j =1...p

—ifj<ithenoj =01+ (Uj7rj)7
— lfj =4 then 0j =045-1 + (wia#(kifht?pifl))a
—if j > i then o =01 + (uj—1,7j-1);

then #(k, ¢, 0p) = #(k{z:i/t}, ox{z:i/t}, p) .
o We'll prove that Vi (¢or{zi/t}) C Via(p) U Vi(t).

Remember that
E(n+1,k) = E'(n,k)UE., (n+1,k)UE;(n+1,k)UE.(n+1,k)UE,(n+1,k)UE.L(n+1, k).

The definition of @i {x;/t} depends on the set to which ¢ belongs to, actually ¢ may
belong to more than one of these sets, but this problem will be addressed later when we’ll
show that the definitions match each other.
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Suppose ¢ € E'(n,k). This means ¢ € E(n,k), k € K(n). In this case, by the
inductive hypothesis, pr{z;/t} has already been already defined at step n and has all the
properties we require at this stage of our definition.

Now suppose ¢ € E/(n+ 1,k). This implies ¢ € E,(n+ 1,k), k € K(n)*.

Wehave k =k = kp_1+(2p, 0p), kp—1 € K(n), pp € Es(n, kp_1), zp € V—var(kp_1).
Therefore p € E(n, ky—1), p & Vio(p).

If i = p then we define pp{z;/t} = ¢ € E(kyp—1) = E(k{xz;/t}).
Let p = (u,r) € E(k{z;/t}), we define o9 =€ and foreach j=1...p
o if j < pthen o; =01 + (uj,75),
® 0p =0p—1 + (2, #(kp-1,t,p))-
We have already seen that o, € Z(k).
We need to show that #(k, v, 0p) = #(k{z:/t}, pr{zi/t}, p).

Ifp=1then pe=(e)so p=€=o0p_1.
If p > 1 we have that dom(p) = {1,...,p — 1} so by lemmaap_l =p

In both cases o, = p + (zp, #(kp—1,1, p))-
We have p € E(kp—1), #(kp—1,t,p) € #(kp—1,¥p, p). Therefore

#(ka (2 Up) = #(kpflv ®, P) = #(k{xz/t}’ ‘pk{xi/tL p) .
Moreover Vi (or{x:/t}) = Vi(p) C Viu(p) U V4 (t).

If i < p we consider that k,_1 € K(n) and k,_; # €. Therefore there exist a positive
integer ¢ < n, y1,...,y4 € V such that yo # yg for o # S, ¥1,...,9, € E such that
Knskp—1591 01, Yq 2 g)-

We recall that (n + 1;k;21 : ¢1,...,2p : p) also holds.

If we define kp_1 = (up—1, ¢p—1) then lemma [£.2] tells us that

o {1,...,q} =dom(ky,—1) ={1,...,p — 1} and therefore ¢ = p — 1;

° fOI‘ eachj =1.. .p— 1 ,CCj = (up,l)j = ij LpJ = ((bp*l)j = %‘5
e as a consequence of the former results, K(n; kp—1;21 : ©1,...,p_1 : Pp_1).

Clearly kj_1{x;/t} is defined; since ¢ € E(n,kp_1) ok, ,{x:/t} is defined too, and it
belongs to E(kp_1{x;/t}).
So we can define gp{z;/t} = or,  {zi/t} € E(k,_1{xi/t}).
We need to show that ¢r{z;/t} € E(k{x;/t}). We consider that
zp €V —var(kp—1{zi/t});
(op)k,{wi/t} € Es(kp—1{z:i/t}).
k{ai/t} = kp{i/t} + (2p, (Pp)k, , {zi/t})-
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Moreover we can show that z;,, ¢ Vi (or,_, {2i/t}). In fact, by the inductive hypothesis,
Vi(or,_{zi/t}) € V(@) U Vi(t). We know that Vi (p) €V —wvar(k), so z, ¢ Vi(p). We
also know that x, ¢ Vj(t), hence x, & Vi(¢r,_,{zi/t}).

Using lemma we obtain that pp{z;/t} = @, {zi/t} € E(k{z;/t}).

Let p = (w,s) € E(k{w;/t}), we define p;i_1 = pdgom,_,) and oo = € and for each
j=1...p

o if j < itheno; =01 + (wj,s;),
o if j =i then o; = 0j_1 + (x4, #(ki—1,t, pi-1)),
o if j>itheno; =01+ (wj_1,5;-1);

We have proved that o, € Z(k) and we need to show that
#(k, p,0p) = #(k{zi/t}, ou{zi/t}, p) -

Clearly there exist p,—1 € ZE(kp_1{zi/t}), ¢ € #(kp—1{zi/t}, (0p)k,_{Ti/t}, Pp-1)
such that p = pp,_1 + (zp, ¢).

We have #(k{xi/tL (pk:{xi/t}v p) = #(k{mi/t}7 (pkp71{$i/t}7 p)'

Since @y, {z;/t} € E(kp—1{zi/t}) and z, ¢ Vi(px,_,{x:/t}), by lemma we
obtain #(k{m’t/t}7 Php_1 {Jiz/t}, p) = #(kp—l{xi/t}a Php_1 {xl/t}a pp—l)a and therefore

#(k{zi/t}, or{xi/t}, p) = #(kp—r{zi/t}, or,_ {@i/t}, pp—1) -
We now define p,_1 = (', s’). It results
dom(pp—1) = dom(kp—1{x;/t}) ={1,...p — 2} .

For each j =1...p — 2 we have w; = w/, sj:sg.Thereforeforeachj:1...p—1

J’
e if j <ithen o; = 0,1 + (w),s)),

o if j =i then o; = 0j_1 + (x4, #(ki—1,t, pi1)),
e if j > i then o; =01+ (w)_1,5;_1);

Clearly
Pi—1 = PJdom(ki1) = (W/dom(k;_1)> S /dom(ki_1)) =

= ((w/g1,..p—23) Jdomki_1)s (S/11,..p-2}) Jdom(ki_1)) =

= ((0") sdom(ks 1)+ (8) sdom (ks 1)) = (Pp—1) jdom (ki 1) -
We can apply the inductive hypothesis and obtain that o,_1 € E(kp—1), and

H#(kp_1,0,0p-1) = #(kp_1{w:/t}, or,_ {xi/t}, pp—1) -
So far we have proved that
#(k{xi/t}, pr{wi/t}, p) = #(kp-1,0,0p-1) -

To complete our proof we need a further step, consisting in proving that

#(k7 2 Gp) = #(kp—la (2 Up—l) .
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Here we consider that k,_1 € K, z, € V —var(ky—1), pp € Es(kp-1),
k= kp—l + (x;msop)a P e E(kp—1)7 Tp ¢ ‘/b(@)v Op = Op—1 + (wp—175p—l) € E(k)

By lemma there exist 6 € Z(kp_1), d € #(kp—1, p,d) such that o, = § + (2, d).
Clearly 6 = op_1, Tp = wp_1, d = Sp_1.

By lemma we have #(k, ,0p) = #(kp—1,¢,0p—1).

Finally it results Vi (or{zi/t}) = Vi(or,_ {zi/t}) € Vi(p) U Vi(2).

Now suppose ¢ € E{ (n+ 1,k). This implies ¢ € Ep(n+1,k), k € K(n)*.

Wehave k =k = kp—1+(2p, ¢p), kp—1 € K(n), ¢p € Es(n, kp_1), zp € V—var(kp—1).
Therefore ¢ = xy,.

If i = p we define pp{a;/t} =t € E(kp_1) = E(k{z;/t}).

Let p = (u,r) € Z(k{x;/t}), we define o0y = € and for each j =1...p

e if j <ptheno; =01+ (uj,75),

® 0p = Op-1 + (xpa #(kp—hta ,0))

We have already seen that o, € Z(k).
We need to show that #(k, ¢, 0,) = #(k{z:/t}, pr{zi/t}, p).

Clearly #(k{x;/t}, pp{zi/t}, p) = #(kp—1,t,p), so what we need to show is

#(k7 Lp, Up) = #(kpfh t, p) .

There exist § € Z(kp—1), s € #(kp—1, pp, 0) such that o, = § + (z,, s). By lemma[1.13]
it results #(k, xp, 0p) = s.

Since 0, = op_1+(xp, #(kp—1,t, p)) we have 6 = 0,1 and s = #(k,_1,t, p). Therefore
#(ka xpa Up) = #(kp—la t7 p)

Moreover Vi (or{xi/t}) = Vu(t) C Vi(p) U V4(2).

If i < p we define pp{x;/t} = ¢ = ).

We need to show that pr{x;/t} € E(k{x;/t}). We consider that

o k(1) € K
o 1, €V —wvar(ky_1{z:/t});

o (@p)kpfl{xi/t} € ES(kpfl{xi/t})

o k{wi/ty = kpr{wi/t} + (2, (p)k, 1 {wi/t}).

By lemma we have pp{z;/t} =z, € E(k{z;/t}).

Let p = (w,s) € E(k{w;/t}), we define p;i_1 = p/dgom,_,) and oo = € and for each
j=1...p

o if j < ithen o; =0;_1 + (w;,s;),

o if j =i then o; =01 + (x;, #(ki—1,t, pi=1)),

o if j > i then o =01+ (wj_1,55-1);
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We have proved that o, € Z(k) and we need to show that
#(kv 2 Up) = #(k{xz/t}7 ka{xi/t}v p) :

By lemma there exist § € E(kp—1), d € #(kp—1,¥p,0) such that o, = 6 + (xp, d).
Clearly 6 = op_1, Tp = Wp—1, d = Sp_1.

Using lemma |4.13| we obtain
#(k, p,0p) = #(k, xp,0p) = 5p-1 -
Clearly there exist p,_1 € ZE(kp_1{zi/t}), ¢ € #(kp—1{zs/t}, (p)k, 17i/t}, Pp—1)
such that p = p,_1 + (zp,¢). And clearly ¢ = s,_;.
Using lemma we obtain
#(k{zi/t} or{zi/t}, p) = #(F{xi/t}, xp, p) = sp-1 .
So we can derive #(k, ¢, 0p) = #(k{xi/t}, or{zi/t}, p).
To finish with the current case we see that Vi (pr{z:/t}) = Vi () C Vi(p) U V().

We turn to the case where ¢ € E.(n + 1,k). This implies ¢ € E.(n+1,k), k € K(n).

There exist a positive integer m and ¥, 91, ..., %, € E(n,k) such that
o o= )W, ¥m);

o for each o € E(k) #(k,v,0) is a function with m arguments and
(#(k,1,0),...,#(k,m,0)) is a member of its domain.

Since k € K(n) there exist a positive integer ¢ such that ¢ < n, y1,...,y4 € V such
that yo # yg for o # B, ¢n,..., 9y € E such that K(n;k;y1 : ¢1,...,Yq @ ¥q). Clearly
K(n+1;ky1 2 ¢n,...,yq : ¥q) also holds, so by lemmaq =p, foreacha=1...p
Yo = T and Yo = 0o, K(nyk;z1 1 01, .., 2p 1 0p).

We have V;, () = Vi (¥0) U Vi (1) U« -+ U Vi (2hy) and since Vi (t) N Vi(p) = O we have

e V()N Vu(¥) =;

e for each j =1...m V,(t) N Vy(p;) = 0.

By the inductive hypothesis 1y {z;/t} is defined and belongs to E(k{z;/t}) and for
each j =1...m (¢;)r{x:/t} is defined and belongs to E(k{z;/t}). So we can define

prfzi/th = (el /) (()r{zi/th, - (m)if{mi/t}) -
We need to show that ¢y {z;/t} € E(k{z;/t}). To show this we use lemma [3.10}

Let p = (u,r) € E(k{z;/t}), we just need to show that #(k{x,;/t}, Yr{zi/t},p) is a
function with m arguments and

(#(e{as 1}, (1) dwi/th, p), .., #(k{i 8}, (o )edai 1}, p)) s & member of its domain.
We define p;—1 = p/dom(k;_,) and define og = ¢, for each j =1...p
o if j <ithen o; =0j_1+ (uj,7;),
o if j=ditheno; =01+ (zi, #(ki—1,t, piz1)),
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e if j > i then 0j =0j-1+ (Uj_l,’l“j_l).

By the inductive hypothesis o, € Z(k), #(k, ¢, 0p) = #(k{x:/t}, Ye{zi/t}, p), for
each ] =1...m #(ka wja Up) - #(k{xz/t}v (w])k{xz/t}a p)

Therefore #(k{z;/t}, vr{xi/t}, p) = #(k, ¢, 0p) is a function with m arguments and

(#(k{s/t}, (V1)ufzi/t}, p), - #(R{wi/t}, (Ym)r{zi/t}, p)) is equal to
(#(k,Y1,0p),...,#(k,¥m, 0p)) and so is a member of the domain of

#(k{xi/t}, ve{zi/t}, p).
We have proved that ¢p{z;/t} € E(k{z;/t}).
Moreover for each p = (u,r) € E(k{z;/t}), if we define p;_1 = p/gomk,_,) and define
oo =cand foreach j=1...p
o if j < ithen o; =01+ (u;,r;),
hd lfj =i then 05 = 0j5-1 + (-Tia #(ki—h tvpi—l))a
° lfj > ¢ then 0j =01+ (Uj_1,’l“j_1);
then o, € E(k) and
#(k7 P UP) = #(kv (1/’)(1/“7 s J/’m), JP) = #(kﬂﬁ» UP)(#(kvwla JP) """ #(k7wmv UP)) =
= #(k{xi/t}y, bifwi/t}, p) G (R{zi/t}, (P)edwi/t}, p), - # (KLt} (Ym)id{i/t}, p)) =
= #(k{wi/t}, (br{ai /L) ((Pr)r{zi/t}, - (m)r{zi/t}), p) =
= #(k{zi/t}, pr{zi/t}, p) .

Finally

Vi(or{wi/t}) = Vo(rd{zi/t)) (P)rd@i/t}, - (Ym)r{mi/t})) =
= Vo((rdzi/t})) U Vo((1)i{i/t}) U -+ U V() k{zi/t}) C
C V() U V(1) U+ U Vi () UVi(E) = Vi(o) UV(E)

We examine the case where ¢ € Ejj(n+ 1,k). This implies ¢ € Eq(n+1,k), k € K(n).
There exist f € F, a positive integer m and 91, ..., %, € E(n,k) such that

o o= ()1, ¥m);
o for each o € E(k) As(#(k,¢1,0),...,#(k,¥m, o)) holds true.

Since k € K(n) we have K(n;k;z1 : 01,...,2p 1 @p).
It results Vo () = Vi (¥1) U -+ - U Vi (¥, and since V;(¢) N Vi (¢) = @ we have
e for each j =1...m V,(t) N Vy(2p;) = 0.

By the inductive hypothesis for each j = 1...m (¢;)r{z;/t} is defined and belongs
to E(k{z;/t}). So we can define

er{wi/ty = (H((W)r{zi/t}, -, (Ym)rfzi/t}) -
We need to show that ¢y {z;/t} € E(k{x;/t}). To show this we use lemma [3.11}
We have k{z;/t} € K, f € F, for each j =1...m (¢;)r{x;/t} € E(k{x;/t}).
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Given p = (u,r) € E(k{x;/t}) we need to show that

Ap(#(k{wi/t}, (D)e{wi/t}, p), - #(K{wi/t}, (Y1)e{wi/t}, p)) holds true.
We define p; 1 = p/dom(k;_,) and define og = ¢, for each j =1...p
o if j <itheno; =051+ (u;,rj),
o if j=1itheno; =01+ (2, #(ki—1,t,0i-1)),

o lf] > ¢ then 0j =01+ (’Lbjfl,rjfl).

By the inductive hypothesis o, € Z(k) and for each j =1...m

We have seen Ag(#(k,v¥1,0p),...,#(k,v;,0p)) holds true, so
Ap(#(k{zi/t}, (V1){xi/t}, p), .., #(k{zi/t}, (¥1)e{xi/t}, p)) also holds.

Consequently, we have proved that pp{z;/t} € E(k{z;/t}).

Moreover for each p = (u,r) € E(k{z;/t}), if we define p;_1 = p/dom (i, _

,) and define
op=c¢cand foreach j=1...p

o if j <itheno; =01+ (uj,7;),
e if j =i then o; = 0,_1 + (v, #(ki—1,t, pi—1)),
o if j > i then o; =01 + (uj_1,7j-1);

then o, € Z(k) and

# (k0 0p) = #(k () (W1, - ¥m), 0p) = Pr(#(k, 1, 0p), o # (s P, 0p)) =
= Pr(##(R{ai/t}, (P)ifwi/t} p), -t (R{wi/t}, (Pm)e{wi/t}, p)) =
= #(k{zi/t}, () ((0)e{zi/t}, o (bm)r{wi/t}), p) =
= #(k{zi/t}, onf{wi/t}, p) -

Furthermore

Vo(oe{zi/t}) = Ve(N)((r)e{xi/t}, - ., (m)r{wi/t})) =
= Vo(()rf{wi/t}) U- - UV ((¢m)n{zi/t}) €
C Vo(thr) U--- UVp () UV (t) = Vi () U V(1) -

Finally let’s consider the case where ¢ € E,(n + 1,k). This implies ¢ € E.(n + 1, k),
k € K(n). There exist
e a positive integer m,
e a function y whose domain is {1,...,m} such that for each j
y; € V —wvar(k), and for each o, =1...m o #  —= ya # ys,

e a function ¢ whose domain is {1,...,m} such that for each j =1...m v¢; € E(n),
* ¢ € E(n)

= 1...m

such that o = {}(y1 : Y1, -+, Ym : Ym, @) and E(n, k,m,y, ¥, ¢).

Let k) =k + (y1,¢1), and if m > 1 for each j =1...m — 1 k. = K} + (Y41, Vjt1)-
We intend to define p{z;/t} as follows.
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Ifm =1 pp{z:i/t} = {31 : (@1)elzi/t} or{zi/t});
ifm>1

or{zi/ty = {3y s (Wo)e{@i/th ye : (V2)r{i/th, - Ym - (P

m—1

{@i/t}, o {zi/t}) -

To accept this definition we need to verify it relies on well defined concepts. In other
words we have to verify that (¢1)g{x;/t} is defined, if m > 1 then for each j = 2...m
(tj);_ {wi/t} is defined, and finally that ¢, {xi/t} is defined.

Since k € K(n) we have K(n; k;21 0 01,...,Zp : @p)-

It results ¢y € E(n,k) and since V,(¢1) C V() we have Vy(¢1) N Vi (t) = (. This
ensures (¢1)g{x;/t} is defined and belongs to E(k{x;/t}).

Suppose m > 1 and let j = 2...m, we want to verify that (¢;)r;_ {wi/t} is defined.
We have £%_; € K(n) and K(n; k1521 1 @1, 0p, Y1 2 P15+, Yj-1 : Pj—1) follows
by lemma Foreach a =1...5 =1 y4 € V3(¢) 80 yo ¢ Vi(t) and V(¢0) C Vi(p) so
Vi (¥a)NVp(t) = 0. We have ¢; € E(n, k)_,) and also V;(1);) C Vi () so Vi (1h;)NVa(t) = 0.
Therefore (¢;);_, {xi/t} is defined and belongs to E(k]_;{z;/t}).

To verify that ¢, {x;/t} is defined we consider that k;, € K(n) and by lemma
Kkl x1 0 @1, 2 ©py Y1 2 Y1y, Ym @ Up). For each a = 1...m yo € Vi(p)
50 Yo & Vi(t) and Vi(ve) C V() so Vip(ve) NVi(t) = 0. We have ¢ € E(n,k.,) and
also Vi (¢) C V() so Vi(¢) N Vy(t) = 0. Therefore ¢y, {x;/t} is defined and belongs to
Bk {xi/t}).

At this point we accept the proposed definition of ¢ {xz;/t}, but we also need to prove
that pr{z;/t} € E(k{z;/t}).

We define h = k{z;/t}; a function ¥ whose domain is {1,...,m} such that
191 = (1/)1)k{$z/t}, if m > 1 for eachj =2...m ’l9j = (1/)])k;71{l’z/t}, 0 = gbk;n{xz/t}
With these definitions clearly

ka{xl/t} = {}(yl : 191, s Ym 7-97n70) .

We should be able to apply lemma We have var(h) = var(k) — z; C var(k) and
so V —wvar(k) CV — var(h). Moreover

e he K;

e m is a positive integer;

e y is a function whose domain is {1,...,m} such that for each j = 1...m
y; € V —wvar(h), and for each a, S =1...m a # = ya # yp;

e U is a function whose domain is {1,...,m} such that for each j =1...m 9; € E;

e fcE.

We then define hf = h + (y1,%1), and if m > 1 for each j = 1...m — 1
Ry = h) + (yj+1,9541). Clearly we need to prove E(h,m,y,,0).

We first verify that for each j =1...m h = kK {z;/t}.
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We have K(n;kj;z1 Ply--sTp + PpyY1 - Y1) so Ky = (kll)p + (y1,1),
but &{ =k + (y1,%1) also holds so k = (k}),. Consequently

Ki{zi/ty = (kD) plzi/t} + (y1, (V1) @y, {zi/t}) = E{zi/t} + (y1, (1)ef{xi/t}) = Ry

Now suppose m > land let j=1...m — 1.
We have KC(n; k) 1301 0 01,0, Tp 0 @, Y1 2 01, Yin £ Yj41),
so Ky o= (Ki)prs + (Wie1,¥41), but By = Kk + (yj41,¢541) also holds so
(Kj41)p+j = K. It follows

kipdmi/th = (i) pri{zi/th + W1, (Vi) o, )ps {Ti/E})
= E{zi/t} + (yj41, (ijrl)k; {i/t}) = 1) + (yj41,0501) = Ry -

Proving E(h,m,y,d, ) means showing that

e 1) € Es(h) 3

e if m > 1 then for each j =1...m — 1k} € K AJj11 € Eg(h));

o hl. e KNG € E(h,).

We begin by proving that ¢; € Eq(h), in other words (¢1)g{x;/t} € Es(k{xz;/t}). Let
p=(u,r) € Z(k{z;/t}), we define p;_1 = p/gom(k,_,)» 7o = € and for each j =1...p

[ lf] < i then 0j =051+ (’LL]',T'J‘)7

L] lf] = Z then O'j = Uj,1 + (.’Ei, #(/ﬂifl,tpi,l)),

e if j > i then 0j =051+ (Ujfl,’f‘jfl).
Then o, € E(k) and #(k,¢1,0p) = #(k{x;/t}, (Y1)x{zi/t}, p). Since E(n, k,m,y, ¥, ¢)
it results y1 € Es(n, k) so #(k,¢1,0,) is a set and so is #(k{z;/t}, (¥1)x{zi/t}, p).

Suppose m > 1 and j = 1...m—1, we need to verify that h; € K and 911 € Es(h}).
In other words we need to verify K{z;/t} € K and (¢j11)p{zi/t} € Es(kj{zi/t}).
Clearly k}{x;/t} belongs to K, and we have verified that (¢;11)k {z:i/t} € E(kj{z:/t}).

Let p = (u,r) € E(K{x;/t}), we'd like to verify that #(kj{zi/t}, (Yj+1)w {wi/t}, p)
is a set. We define p;_1 = p/dgom(k,_,)» 0o = € and for each a =1...p+j

o if @ <ithen oy =041+ (Ua,Ta),

e if o = then Oq =0q-1+F (xi7 #(ki—17t7 pi—l))7

o if @ >ithen oy =041+ (Ua—1,Ta—1)-
Then oy ; € E(k}) and #(kj, Y11, 0p45) = #(Kj{xi/t}, (Vi) {xi/t}, p).
Since &€(n, k,m,y, ¥, @) it results ¥ 11 € Es(n, k}) so #(k},vj41,0p4;) is a set and so is
#(kj{wi/t}, (Yje1)w {zi/t}, p)-

Finally we need to verify that k), € K A0 € E(h),). In other words we need to verify
k. {zi/t} € K and ¢ps {x;/t} € E(k,,{z;/t}). This has been proved above.

At this point E(h,m,y,,0) is proved so by lemma we obtain

op{zi/ty = 31 : 01, Ym : O, 0) € E(h) = E(k{z:/t}) .
By lemma we also obtain
Volor{mi/t}) = {y1, - ym} U Ve (91) U~ - U V() UV (6) (4.0.1)
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This will be used later.

Another point we have to verify is the following. Let p = (u,r) € Z(k{x;/t}), w
define p;—1 = p/dgom(k,_,), 0o = € and for each j =1...p

o if j <itheno; =01+ (u;,rj),

o if j =i then o; =0 1 + (2, #(ki—1,t, 0i-1)),
o if j >itheno; =01+ (uj_1,7j-1).
);

It has been shown that o, € Z(k), we need to prove #(k, v, 0p) = #(k{z:/t}, pr{zi/t}, p)-

Of course we have #(k, ¢, 0p,) = {#(kl,, ¢, 00,)| ol, € E(k,,),0p C 0},}, and using
lemma [£15] we derive

#(k{xi/t}, er{wi/t}, p) = #(h, o{wi/t}, p) = {# (M, 0, p10)| P € Ehan), 0 E P} =
= {# K {wi /1y, O, (i /t}, o) o € Sk {i/t}), p E P} -

So what we need to show is
{# Kk, d.07,)| 0n € Bk, 0p Coon} = {# (R {zi/t}, b {@i/t}, 07)| o € E(R{zi/t}), 0 T o1} -
Suppose w € {#(ky,, ¢, 07,)| 07, € E(ky,),0p E 07, }-
There exists o, = (v,c) € E(k),) such that o, C o}, and w = #(k,, ¢,0.,).
Clearly dom(c),) = dom(k.,) ={1,...,p+m}.
We define p} = p+ (Vpt1,¢p+1) and if m > 1 foreach j=1...m—1
P41 = P+ (Vptjt1, Cptj+1). Our goal is to show that

Bk {xi/t}) and #(k, {zi/t}, or {xi/t}, p),) = # (K, b,07,)

!
m

First of all we define 6y = € and for each j = 1...p+m §; = d;_1 + (v;,¢;). By
lemma we derive that 0p4n, = o,. Therefore o, T dppmm,.

There exists C' € D such that C C {1,...p+m}, 0p = (dpym)/c-
We have C = dom(o,) = {1,...,p}, and therefore
0p = (Op+m) /(1,0 = (V41,01 €/{1,.p}) = Op -
We define kj, = k. We use backward induction on j to show that for each j =m...1
Optj € (k) and 0ppj—1 € E(Kj_1), Vpyj = Y5> Cprj € F(Kj_1,%5,0p1i—1) -

Clearly 0ptm = o), € Z(k,).
We have k), = k,_1 4+ (Ym, ¥m), ki1 € K(n), Ym € V—var( _1), Ym € Es(n, kL, _1).
By lemma this implies there exist n € 2(k},,_4), s € #(k.,,_1, ¥m,n) such that

Op+m—1 F (Vptm: Cptm) = Optm =1+ (Ym, 5) -
By lemma we obtain

Optm—1 =1 € Z(kyy_1)s Vptm = Ym, Cprm =5 € #(kpy_1,Vm, Oprm—1) -
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If m > 1 we need an inductive step. Let j = m...2 and assume
Optj € E(K}) and dpp 1 € BE(Kj_1), Vpis = s, Cprj € #(Kj_ 1,05, 0prj-1) -
We need to prove
Optj—2 € E(Kj_2), Vptj—1 = Yj—1, Cprj—1 € F(Kj 9,01, 0prj—2) -

We have k) = ki o+ (yj-1,%j-1), Kj_5 € K(n), yj—1 € V —var(k_,),
Vi1 € Es(n, k;—_Q).
By lemma this implies there exist n € Z(k}_5), s € #(kj_5,%;-1,1) such that

Op+j—2 F (Vp+j—1, Cptj—1) = Opyjm1 = 0+ (Yj-1,9) -
By lemma [2.1] we obtain
Optj—2 =1 € E(Kj_2), Vpij1 =Yj—1, Cprj—1 =5 € #(Kj_o,¥1,0p4;-2) -
To show that p], € E(k],{x:/t}) we show by induction on j that for each j =1...m
Py € E(h}).

We begin by showing that pj € Z(h}) using lemma We have h] = h + (y1,%)
and h € K, y1 € V —wvar(h), 91 € Es(h). We have p € Z(h) and pj = p + (Y1, Cp+1)-
To show p} € E(h)) we just need to show that c,11 € #(h, V1, p).

In other words we have to prove cpt1 € #(k{z:/t}, (V1){zi/t}, p)-

But we have proved that c,41 € #(k,¢1,0,) = #(k, 1, 0,), and since we have been
able to define (¢1)x{z;/t} we can assume #(k, ¢, 0p) = #(k{x;/t}, (¥1)e{zi/t}, p).

So ¢pt1 € #(h, V1, p) and p} € E(h}) are proved.

Suppose m > 1 and let j = 1...m — 1. We assume p} € Z(h}) and try to show
Piy1 € E(hfy,), using lemma We have A, = R} + (yj41,9j41) and
h; e K, Yj+1 € V- var(h;), 19j+1 S Es(h;)

We have also ,09+1 = P;' + (Vptj+1, Cptjt1) = P} + (Yj+15 Cptjit1)-
To show p, € Z(h}, ) we just need to show that ¢, ;11 € #(h}, )41, 0)).

In other words we have to prove ¢y 41 € #(Kj{xi/t}, (V1) {x:i/t}, pf)-

We have proved that ¢, ;41 € #(K}, V511, 0p+5)-

We define two functions z, ¢ over {1,...,p} as follows: for each « =1...p

o if a < i then zo = Uq, go = Ta;

e if ¢ = then Zo = Ty Qo = #(kifhtapifl);

e if & > then zo, = Uq_1, o = Ta—1-

Clearly we have o9 = € and for each a = 1...p 04 = 0a-1 + (2, Ga). Therefore by
lemmawe have o, = (2, ¢).

Since (v/{1,...p}> €/{1,....p}) = Op = 0p = (2,q) we have that foreacha =1...p v, = 24
and ¢, = qq.
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Moreover we consider that p = (u,r) is a state-like pair whose domain is {1,...,p—1}
and o/, = (v, ¢) is a state-like pair whose domain is {1,...,p+ m}.
We have defined pj = p+ (vpt+1,¢p+1) and if m > 1 foreach f=1...m—1
Pl = plﬁ + (Vp+B+1; Cp41)-
We define p; = (u', 7). Using lemmawe can derive that dom(p’;) = {1,...,p—1+j}
and foreacha=1...p—14j

_ /
= Uq, Ty

o if a <p—1 then u
e if > p—1 then u

/ — .
@ = Tas
A A

a = Va+1, Toy = Cat1-

Foreacha=1...p+j

if o < then d4 = do—1 + (Vas Ca) = 0a—1 + (U, 7o) = da—1 + (U, 70);
if @« =17 then 6, = 6q—1 + (va,ca) =0a_1+ (Jﬁi,#(k‘i_l,t,pi_l));
ifi < o< pthendy =0dq-1+Va,Ca) = a1+ (Ua—1,Ta—1) = da—1+ (UL _1,75H_1);

/

if a > p then dp =041 + (Va, Ca) = da—1 + (U, _1,7H_1)-

Also consider that pi—1 = p/dom(k;—1) = ((0}) jdom(p)) jdom (k1) = (P}) jdom(ki—1)-

Since we have been able to define k’{z;/t} and (1), {z;/t}, we must have
#(kj{xi/t}, (Vi+1)k; {ai/t}, p) = #(kj, i1, 0pej) -
At this point we have proved c, ;1 € #(Kj{zi/t}, (Wj+1)k; {zi/t}, p;), and so also

P41 € E(R),,) is proved. This also completes the proof of p;, € Z(kj, {z:/t}).
We still need to prove #(k;, {xi/t}, or: {xi/t}, p),) = #(k,,, &, 0,,).

We consider that p = (u,r) is a state-like pair whose domain is {1,...,p — 1} and
/= (v, c) is a state-like pair whose domain is {1,...,p+ m}.
We have defined pj = p+ (vpy1,¢p41) and if m > 1 foreach f=1...m—1
9234-1 = P/B + (Vp++1, Cprp+1)-
We define pl,, = (u/,r’). Using lemma [£.10] we can derive that
dom(pl,)={1,....,p—1+m}and foreacha=1...p—14+m

ag

_ /
= Uqy Ty

o if < p—1 then u
e if & > p—1 then u

/ .
(6% 7""0{5
r_ o

a = Vat+1; Tq = Catl-

Foreacha=1...p+m

if a < then 4 = do—1 + (VasCa) = 0a—1 + (Ua,Ta) = da1 + (U, 7));

if @« =i then 6y = dn—1+ (Va, o) = 6a—1 + (zi, #(ki—1,t, pic1));

ifi <a<pthendy, =dq-1+(Va,Ca) = a1+ (Ua—1,Ta-1) = 0a—1+ (U, _1,75_1);
if a > p then §, =041 + (Va, Ca) = Sa—1 + (Ul 1,75 _1)-

Also consider that pi—1 = p/gom(ki_1) = ((Pm) 7dom(p)) Jdom(ki—r) = (Prm) Jdom (ks 1)
Since we have been able to define k,, {x;/t} and ¢ {x;/t}, we must have

# (b {xi/t}, oy, @i/}, ) = # (ks &, Opim) = w
So we conclude that w € {#(k;, {z:/t}, ox: {xi/t}, )| pr € E(k{zi/1}), p T o1 }-
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For the converse implication we assume
w € {#(ky {2i/t}, b, {wi/t} )| P € Bk {wi/t}), p E )}
and try to show that w € {#(k.,,¢,0.,)| oo, € E(k},,),0p C 0}, }.
There exists p),, = (v,r") € E(k],{x;/t}) such that p C p/, and
= #(kp{@i/t}, duy, {zi/t}, pr) -
Clearly dom(p),) = dom(k., {z;/t}) ={1,...,p+m —1}.

We define o} = o, + (uy,,7,) and if m > 1 for each j =1...m —1
0y = 0%+ (U 4,7, ;). Our goal is to show that

o € E(k,) and #(ky,, 6, 07,) = #(ky, {wi/t}, dr, {2i/t}, o)) -

First of all we define 79 = ¢ and for each j = 1...p+m — 1 n; = n;_1 + (u},7}). By
lemma we derive that 7y4m—1 = pl,. Therefore p C npym—1.

There exists C' € D such that C C {1,...p+m — 1}, p = (Nprm-1)/c-
We have C' = dom(p) = {1,...,p — 1}, and therefore
P = (Mptm—1)/{1,..p-1} = (u//{l,...,p—l}7’r//{l,...,p—l}) =Mp-1 -
We define h{, = h. We use backward induction on j to show that for each j =m...1
Mpti—1 € Z(R}), Mprj—2 € E(W_1),upyj 1 = ¥js Tpyj1 € # (1,95, Mprj—2) -

Clearly Tyt = ply € Z(h).
We have b, = bl 1 + (Ym,Om), hlp_1 € K, ym eV —wvar(h ;n 1), Um € Es(hl,_1).
By lemma this implies there exist 6 € Z(h),_1), s € #(h,_1,Pm, ) such that

Mptm—2 F (Up 15 Tprm—1) = Tpsm—1 =0 + (Ym, 5) -
By lemma [2.1] we obtain
Mptm—2 =0 € E(hyy_1)s Upim1 = Yms Tprme1 € # (1, Dy Mppm—2) -
If m > 1 we need an inductive step. Let j = m...2 and assume
Mptj—1 € E(R)), Mptj—2 € E(RG_1) tpyj1 = Yjs Tpyj1 € #(Mj_1,05,7p4j-2) -
We need to prove
Mpti—3 € (W), tpy; o =Yj—1, Tppj o € #(Wj 9,051, 7p4j—3) -

We have b, =R o+ (yj-1,9-1), hj_5 € K, y;—1 € V —var(h);_,),
19j*1 € Es(h;_z).
By lemma this implies there exist 6 € Z(h/;_,), s € #(h};_5,7;-1,0) such that

Mp+j—3 + (U;ﬂq,ﬁgﬂ&) = Nprj2 =0+ (yj-1,5) -
By lemma [2.1] we obtain

—_ I / / /
Np+j—-3 = de=( j—2)7 Upij_o = Yj—1, Tprj_2 € #(hj—27"~9j—1777p+j—3) .
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To show that o), € Z(k!,) we show by induction on j that for each j = 1...m
We begin by showing that ¢} € E(k}) using lemma We have k7 =k + (y1,v1)
and k € K, y1 € V —wvar(k), 1 € Es(k).
Moreover o, € Z(k) and o} = o}, + (uj,,7,) = 0p + (y1,7,), 50 to prove o1 € Z(ky) we
just need to show that 7, € #(k, 91, 0p).

But we have proved 1%, € #(h, 1, 7_1) = #(k{zs/t}, (4)a{s/1}, p). Since we have
been able to define (¢1),{x;/t} we can assume #(k, 1, 0,) = #(k{z:/t}, (V1){zi/t}, p)-

Therefore 7, € #(k,11,0,) and o7 € Z(k}) are proved.

Suppose m > 1 and let j = 1...m — 1. We assume o} € Z(k}) and try to show
0%y € E(k},;), using lemma We have k= K} + (yj+1,%j11), where &} € K,
Yir1 €V — var( )y Vi1 € Es(k)).

Moreover ol =05+ (Upy s, Thii) = 05+ (Yj+1,7,1 ;) and o € E(K}), so to show that

ol € (kﬂ_l) we Just need to prove 7, ; € #(k’, Vi1, 0%).
We have proved rp+j € #(h G041, 77p+j71)7 that we can rewrite
Tots € # (K@i /t}, (V)i {mi/th paj—1) -

We'll try to exploit this. For each a = 0...p we define ¢/ = o,, and for each

a=p+1l...p+tmletoy=o0]_,

Let u”, 7" be functions over {1,...,p+ j — 1} such that foreach a=1...p+j—1
ull =ul, and 7 =1l
We have 1y = € and for each a = 1.. p—l—j—lna—na 14+ (ul,rh) =na-1+ (u
Therefore, by lemma Nptj—1 = (u’,r").

" //)
a> Ot

— A A ) 1
Foreacha=1...p—1 we have uq, =u, =u,, rq =7 o

We have o =€ and foreacha=1...p+j

if @ <ithen o)) =00 =0a-1+ (Ua,Ta) =0n_1 + (ul,rh);
if =4 then o) =04 =0l _1 + (x5, #(ki—1,t,pi-1));
ifi<a<ptheno! =0, =04-1+ (Ua-1,Ta-1) =0
if « = p+ 1 then U” = ai =0p + (uy, ) = 0y + (uy, ol 1+ Wyl _y);

if «>p+1theno) =o0], , =0, , 1+ (foflﬂ"aq) =oll 1+ Wl _1,rl_y).

Also consider that p = 1,1 C 1p1;-1, 50 p = (Np4j—1) /dom(p) and
Pi—1 = Prdom(k;—1) = ((Mp+j—1) rdom(p)) domki—1) = (p+j—1) jdom k1) -
Since we have been able to define k’{z;/t} and (wjﬂ)k; {z;/t}, we must have
# (K@it} (V)i {mi/th mpaj—1) = #(k], 41, 0505) -

It follows that ), ; € #(kj,¥ji1,0,4;) = #(kj,¥j41,07%). So we have proved
0’1 € E(k}1,) and the proof of o, € Z(kj,) is finished.

We still need to show that #(k;,, @, 0,,) = #(k;, {xi/t}, or: {wi/t}, py)-
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/

For each a =1...p—1 we have u, = ul, ro =7.,.

We have o =€ and foreacha=1...p+m

if « <ithen o), = 04 = 0a—1 + (Ua:Ta) = 041 + (U, 7,,);

if o =i then o) =0, =0l 1+ (xi, #(ki—1,t, 0i-1));

if i <a<pthen ol =0, =04- 1+(ua L,Ta—1) =00 1+ (u,_1,70_1);
ifoz:erlthenO'N—O'l—O'er( p)—o”Jr(u 3 Tp) = a1+ (U1, 1);
if a > p+ 1 then oy =0y, p*Ua —p— 1+( Uy _1,To—1) = g1+ (Up_1:T0_1)-

Also consider that p C pf,,, s0 p = (p},,) /dom(p) and
Pi—1 = Plaom(ki—r) = ((Pn) jdom(p)) jdom(ki_1) = (Pm) fdomki_1) -
Since we have been able to define k], {z;/t} and ¢, {z;/t}, we must have
H# (K &00) = # (K &, 0 1n) = # (K {i [t} dwy {xi/t}, o) = w .
Therefore we conclude that w € {#(k},, ¢,0.,)| o, € E(k.,),0p C o}, }.
To finish with the case ¢ € E/(n+1, k) we need to show V(i {z;/t}) C Vi(p)UV,(t).

Using on page and the inductive hypothesis we obtain
Volere{zi/t}) = {y1,- - ym} UVE(91) U -+ U Ve (U) U V3 (0) =

= {1 um P UVB((0)rf@s /1) U - - UV (), {2i/1}) U Vi (g {i/t}) ©
Sy ym b U V(1) UVR(8) U -+ U (Vi () U V(1)) U (Vo(@) U Va(F)) =

={y1, - ym UVe(1) U UV (0m) U Vi(9) U Va(E) =
= Vi(p) UVp(t) .

We have defined ¢y {x;/t} for each ¢ € E(n+1,k) such that V4 (t) NV,(¢) = 0. Recall
that

E(n+1,k) = E'(n,k)UE, (n+1,k)UE;(n+1,k)UE.(n+1,k)UE}(n+1,k)UEL(n+1, k).
and recall that the definition of @i {z;/t} depends on the set to which ¢ belongs to.
Actually ¢ may belong to more than one of these sets. We need to check that, in every

case in which ¢ belongs to two of the six sets, the two definitions of ¢ {z;/t} match each
other.

We split the task in two steps. The first step requires to verify that

e for each w € {a,b,¢,d, e} if p € E'(n, k) N E/,(n+ 1,k) then
(erfzi/tHw = pr{zi/t}.

The second step requires to verify that

o for each wi,wy € {a,b,¢,d, e} if wy # wa, ¢ € B, (n+1,k) N E,, (n+1,k) then
(r{@i/tHw, = (er{zi/t})w,
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We begin with the first step and examine the case where ¢ € E'(n,k) N E,(n + 1,k).
Of course ¢ € E(n, k) N Ey(n+1,k) and k € K(n)*.

Wehave k =k, = kp_14+(2p, 0p), kp—1 € K(n), ¢p € Es(n, kp_1), zp, € V—var(ky,_1).
Therefore ¢ € E(n, kyp—1), , & Vi(p).

Consider the case where i = p. Here we have (¢r{z;/t})s = ¢.

We also see that k,—1 € K(n), ¢ € E(n,kp_1), ©; ¢ var(kp,—1). At the beginning of
our definition we declared the intention to show the truth of some properties. Clearly we
will show these properties are true at step n + 1, and we can assume their truth at step
n. One of those properties tells us that in this case i {z;/t} = ¢. So

(pri{zi/t})a = ¢ = pr{zi/t} .
We now examine the case where i < p. Here we defined (pr{xi/t})a = @r,_, {zi/t}.

It also holds true that k,—1 € K(n), ki C kp—1, K(n;kp_1;521 1 01, ., Tp—1 : @p—1),
¢ € E(n,ky_1). Another declared property tells us that pp{z;/t} = ¢, {xi/t}. So

(pr{mi/t})a = o, {zi/t} = or{zi/t} .

Let’s turn to examine the case where ¢ € E'(n, k) NEj(n+ 1,k).
Of course ¢ € E(n,k) N Ey(n+1,k) and k € K(n)*.

Wehave k =k, = kp—1+(2p, ¢p), kp—1 € K(n), pp € Es(n, kp_1), z, € V—var(ky,_1).
Therefore ¢ = z,.

Since ¢ € E(n, k) the following condition holds:
v cvar(k), o =x; = pr{z/t} =t, o #x; = or{xi/t} = .

Consider the case where i = p. Here we defined (pr{z;/t}), =t and since p =z, = z;
we have gy {i/t} = ¢ = (¢x{i/t})s

Turn to the case where i < p. Here we defined (pr{x;/t})s = ¢ and since p = z, # x;
we have or{z;/t} = ¢ = (pp{zi/t})s-

Let’s examine the case where ¢ € E'(n,k) NEL(n + 1,k).

Of course ¢ € E(n, k)N E.(n+ 1, k).

Since ¢ € E(n, k) the following condition holds:

n > 1, thereexist h € K(n—1): h C k, a positive integer m, ¥, 11, ..., ¢, € E(n—1,h)
such that ¢ = (¥)(W1,...,¥m), ¢ € E(n,h), for each p € E(h) #(h,v, p) is a function
with m arguments, (#(h, ¥1, p), .. ., #(h,¥m, p)) is a member of the domain of #(h, ¥, p).

If h # € there exists a positive integer ¢ < p such that ¢ <n —1,
Kn—1;hiz1 t @1,...,%4  Pg)-
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If i < g, or in other words z; € var(h), we can define ¥,{z;/t}, and similarly we can
define (¢;)p{x;/t}, and it results

ertwi/ty = (Wndzi /L) ((0)n{zi/t}, o (Pm)n{zi/t}) -
Otherwise (when h =€ or h # e Ai > q) prp{z:/t} = ¢.

Since ¢ € E.(n + 1, k) the following condition holds:

there exist a positive integer r and ¥,91,...,9, € E(n, k) such that

e o= (9)(%,...,9);

o for each o € E(k) #(k, 9, 0) is a function with r arguments and
(#(k,01,0),...,#(k,9,0)) is a member of its domain;

o (or{zi/t})e = (fai/tH((I)e{mi/t}, . .., (r)r{zi/t}).

This implies that » = m, ¥ = v and for each j =1...m 9; = ¢;. Therefore
(pr{zi/tHe = Wz /L) ((1)rfwi/t}, .., (m)e{wi/t}) -

Suppose h # € and i < g, in this case we have

er{wi/ty = @n{zi/t)((W)n{zi/t}, s (m)n{wi/t}) -

We have k; C h, K(n;h;z1 : 01,...,2q : Pq); VU1, ..., ¥Ym € E(n,h). We can apply
one of our declared properties and obtain that ¢, {z;/t} = Yp{x;/t}, foreach j=1...m
(’(Z)j)k{l‘z/t} = (zbj)h{xz/t} Therefore

(rfzi/t}h)e = Wr{zi/tH((W)rfzi/t}, - (Pm)e{i/t}) =
= (Wnlai tH)((W)n{zi/t} - - (m)n{zi/t}) = ou{wi/t}

Consider instead the case where h =€ or h # ¢ A4 > ¢. In this case z; ¢ var(h), and

UV, 1, ..., ¥m € E(n,h), so by one of our declared properties

(er{zi/t})e = Wi{zi/t})((W1)e{zi/t}, - - (Wm)r{mi /1)) =
= (¢)(¢1, .- »wm) == @k{xi/t} .

Let’s examine the case where ¢ € E'(n, k) NE/(n + 1,k).
Of course ¢ € E(n, k) N Eg(n+1,k).

Since ¢ € F(n, k) the following condition holds:

n > 1, there exist h € K(n—1): h C k, a positive integer m, ¢1, ..., %, € E(n—1,h),
f € F, such that ¢ = (f)(¥1,...,Ym), ¢ € E(n,h), for each p € Z(h)
Ap#(h, 1, p), - # (B Y, p)).-

If h # € there exists a positive integer ¢ < p such that ¢ <n —1,
Kn—1;hi21 t @1,...,%q  9g)-

If i < g, or in other words z; € var(h), we can define (¢;),{x;/t}, and it results

or{zi/t} = () ((W1)n{zi/t}, ... (Ym)n{zi/t}) .

Otherwise (when h = e or h # e Ai > q) prp{zi/t} = p.
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Since ¢ € E4(n+1,k) there exist f € F, a positive integer r and 91, ...,9, € E(n, k)
such that

Y= (f)(ﬂla"'vﬂr);
o for each o € E(k) Af(#(k,V1,0),...,#(k,V,,0)) holds true;

o (prfzi/th)a = (F)((){zi/th, ..., (9r)u{zi/t}).
This implies that » = m and for each j =1...m 9¥; = 9;. Therefore
(eef{@i/th)a = (F)((W0)edms/t} -, (bm)r{wi/t]) -
Suppose h # € and i < ¢, in this case we have
ee{zi/t} = (H((W)n{zi/th - (m)nfzi/t}) .

We have k; T h, K(n; h;z1 0 01,...,2q  @q), Y1, - - -, ¥m € E(n, h). We can apply one
of our declared properties and obtain that for each j = 1...m (¢;)p{z:/t} = (¥;)n{z:/t}.
Therefore

(er{zi/t})a = (H)((Q0)r{zi/th, - (m)r{zi/t}) =
= (N(Wo)nfzi/th, . (Ym)n{zi/t}) = or{zi/t} .

Consider instead the case where h = ¢ or h # ¢ A4 > ¢. In this case z; ¢ var(h), and
Ui, U, € E(n,h), so by one of our declared properties

(prdzi/th)a = ()((){zi/th s (Ym)r{zi/t}) =
= (W1, bm) = ¢ = or{zi/t}

Let’s examine the case where ¢ € E'(n,k) NE,(n + 1,k).
Of course ¢ € E(n, k) N E.(n + 1,k).

Since ¢ € E(n, k) the following condition holds:
n > 1, there exist h € K(n — 1): h C k, a positive integer m, ¥ € E(n — 1),

a function y whose domain is {1,...,m} such that for each j =1...m y; € V — var(h)

and for each o, =1...m a # B = yo # Ys;

a function ¢ whose domain is {1,...,m} such that for each j =1...m ¢; € E(n —1);
such that

E(n—1,h,m,y,,0),
o={ 191, Ym : Pm, V), ¢ € E(n, h).
If h # € there exists a positive integer ¢ < p such that ¢ <n —1,
Kn—1;hj21: @1,...,%q : Pg)-
Suppose i < ¢, or in other words z; € var(h).
We define hy = h+(y1,¢1), and if m > 1 foreach j = 1...m—1h | = b+ (yj41,¥j41)-
We have 11 € E(n — 1,h), V,(t) N V,(¢1) = 0, therefore (¢1)p{z;/t} is defined,;
for each j=1...m—1h} € K(n—1) and
Kn =155z 001,00, 1 0g, Y10 V15,5 0 P5),
i1 € B(n—1,h5), Vo(t) N Vi(vhj1) = 0, ($541)n; {wi/t} is defined;
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hl, € K(n—1) and
K(n_ 17h;n,xl CPLy e T f Pgy Y :wla"wy’m : wm)7
Ve E(n—1,hp,), Vi(t)NVy(9) =0, I, {z/t} is defined;

it results

orfzi/ty = {Hyo - (bo)ndzi/ths s ym s (Y, Awi/t} On {xi/t})
Otherwise (when h =€ or h # e Ai > q) gp{x;/t} = ¢.

Since ¢ € E.(n + 1,k) there exist

e a positive integer 7,

e a function z whose domain is {1,...,r} such that for each j = 1...r
zj € V —wvar(k), and for each o, S =1...7 a # 8 — 2o # 28,

o a function ¢ whose domain is {1,...,r} such that for each j =1...7 ¢; € E(n),

e € En)

such that ¢ = {}(z1: ¢1,..., 20 : &, 0), E(n, k7, 2,¢,0) and
(orfzi/th)e = {} (21 (P0)r{wi/th, . 2r 2 (Dr)ir_ {@i/t}, Ok {2i/1})
where kj = k+(y1,%1), and if m > 1 foreach j =1...m—1kj; = ki +(yj11,%j41)

Clearly r =m, z =y, ¢ =1, § =1, therefore
(r{i/th)e = {3y« ()r{zi/th - ym = (Ym)ir

m—1

{ai/t} Oy, {wi/t}) -
Suppose h # € and i < ¢, we have

@k{xl/t} - {}(yl : (wl)h{xi/t}v e Ym (wm)h’

m—1

{@i/t}, Onr {xi/t}) .

We recall that £ € K(n), K(n;k;z1 : @1,...,2p : ¢p), Y1 € E(n,k) and
Vo(11) N V() = 0. This ensures (v1)g{x;/t} is defined, and we have h € K(n), k; C h,
K(n;h;zr : p1,...,24 1 ©q), Y1 € E(n, h). By one of our declared properties we obtain
that (¢1)r{wi/t} = (V1)n{wi/t}-

Ifm>1let j=1...m—1, we want to show that (¢41)r {zi/t} = (Vj1)n {zi/t}.
We recall that k7 € K(n) and K(n; k21 0 @1, 5@ 2 0py1 Y1, ..., Y5 ¢ ¥;), for each
a=1i+1...pxq & Vu(t) and Vi(pa) N V4(t) = 0, for each @ = 1...5 yo ¢ Vp(t) and
Vi (Ya) NVi(t) = 0, i1 € E(n, k), Vi(1hj+1) NVa(t) = 0. As a result of these conditions

we were able to define (¥;41)5 {xi/t}.

We have also h); € K(n), K(n;hl;z1 1,002 0 0g, 01 2 Y1500, 95 1 95),

ki © h C R, i1 € E(n, h}). By one of our declared properties we obtain that
(i) {wi/th = (jqa)n {wi/t}

We also want to show that Oy, {z;/t}) = In, {xi/t}).
We recall that k], € K(n) and K(n; k521 : @1,---,Tp © ©p, Y1 U1y, Ym © Um), for
eacha=i+1...pxs & Vu(t) and Vy(pa) NV,(t) = 0, for each « = 1...m y, ¢ Vi(t)
and Vj, (1) NV, (t) = 0. We have 9 € E(n, k},) and also V4,(9) NV, (t) = (. As a result of
these conditions we were able to define ¥5, {x;/t}.
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We have also hl, € K(n), K(n;hl,;T1: @1, &g gy Y1 Y1y -3 YUm : Um),
k; ChCh., 9€ E(n,hl,). By one of our declared properties we obtain that

Orr {xi/t} = O {xi/t} .
Hence
or{zi/ty = {3y s (Wo)udmi/th s ym  (bm)n - Awi/t}, On {zi/t}) =
= {3 orfzi/th - ym s (), i/} Oy, {2i/t}) = (pre{i/t})e -
We now consider the alternative case h = € or h # € A7 > ¢. In this case
ee{zi/th = o= {3y 1, ym t Ym, D)
We could define (¢1)i{z;/t}, and we have h € K(n), ¥ € E(n,h) (follows by
E(n—1,h,m,y,¥,1)), x; ¢ var(h). By one declared property (11)r{x;/t} = 1.

If m > 1 suppose j = 1...m — 1. We want to show that (’lpj+1)k;{$i/t} = 1.
Recall we were able to define (ijr])k; {z;/t}. Recall that £E(n — 1, h,m,y,1,¥) holds, so
b € K(n), ¥j11 € E(n,h}). Moreover, for each o = 1...m since y, € V —var(k) it also
results yo # @i, so x; ¢ var(h’;). By one declared property (¢j+1)k; {z;/t} = Y41,

We also need to show ¥y, {z;/t} = 9. Recall we were able to define (9)x: {x;/t}.
Recall that E(n — 1, h,m,y,,9) holds, so h], € K(n), 9 € E(n,h!,). Moreover, for each
a = 1...m since y, € V —var(k) it also results y, # z;, so x; ¢ var(h],). By one
declared property Oy, {z;/t} = 9.

Therefore
@k{xi/t} =P = {}(yl : 'lpla ey Ym t wm,ﬁ) =
= {31 s (QOrlzi/th Y s (Ym)e, Axi/th Ok {wi/t}) = (or{zi/t})e -

&

We now turn to the second step of our task. This requires to verify that
o for each wi,wy € {a,b,c,d, e} if wy # wa, ¢ € E;, (n+1,k) N E,, (n+1,k) then
(er{zi/tHw, = (Pe{®i/t})w,-

Within definition we have seen that for many values of wp, ws it results
E, (n+1,k)NE, (n+1,k) = 0.

In fact, we have seen that in all the cases in which wy,ws € {b,¢,d, e} and wy # wo
E, (n+1,k)NE, (n+1,k)=0.
Moreover, we have proved that E/(n+ 1,k) N Ej(n+1,k) = 0.

Therefore we just need to examine three cases: ¢ € E!(n+ 1,k) N E.(n 4+ 1,k),
o€ By(n+ LK) NE)n+1,k), ¢ € By(n+ 1K) N EL(n+1, k)

We start with the case where ¢ € E,(n+ 1,k) N EL(n + 1,k). Clearly ¢ belongs to
E,(n+1,k)NE.(n+ 1,k).
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Since ¢ € E.(n + 1, k) the following condition holds: there exist a positive integer m
and ¥, 91, ..., ¥, € E(n, k) such that

o o= ()1, ¥m);
o (prlzi/th)e = (r{ai/tH)(()r{zi/th, - o (Wm){zi/t}).

Since ¢ € Eq(n+ 1,k) we have ¢ € E(n, kp_1), xp ¢ Vi(v). We distinguish the case
where ¢ = p from the case where i < p.

If ¢ = p then (pr{zi/t})a = . Given that ¢ € E(n,k,_1) we can use assump-
tion [2.1.10| to obtain that n > 1 and there exist h € K(n — 1) such that h C k,_; and a
positive integer r, 9,71,...9, € E(n — 1, h) such that ¢ = (9)(¥4,...,9;).

Clearly m =r,¢ =9 € E(n—1,h) and for each j = 1...m ¢; =9; € E(n — 1,h).
Therefore 9,11, ...,¢Ym € E(n —1,h).

We can apply one of our declared properties. In fact h € K(n) and x; ¢ var(h), so
r{z;/t} =1 and for each j =1...m (¢;)r{x:/t} = 1;. Therefore

(erizi/t})e = (el /) ((V)r{zi/t}s - (Ym)ri{i/t}) =
=)W1, ... ¥bm) = 0 = (pr{zi/t})a -

Now suppose i < p. Here (pr{zi/t})s = @r,_,{xi/t}. Since ¢ € E(n,k,_1) we can
apply one of our inductive assumptions and obtain the following:

n > 1, there exist h € K(n —1): h C k,_1, a positive integer r,
P, 91,...,9, € E(n —1,h) such that ¢ = (9)(V4,...,9;).

If h # € there exists a positive integer ¢ < p — 1 such that ¢ <n —1,
Kn—1hi21 t @1,...,24 : Pg)-

If i < g, or in other words z; € var(h), we can define 9,{z;/t}, and similarly we can
define (0;)p{z;/t}, and it results

Pr, i {wi/t} = (On{ai/t1)((D)nfzi/t), o (Or)nf{wi/t}) -
Otherwise (when h =€ or h # e Ni > q) pr,_ {zi/t} = .
Clearly m=r, ¢ =19 € E(n—1,h) and for cach j =1...m ¢; =9; € E(n—1,h).
Therefore ¥, 41, ...,0m € E(n—1,h).

Moreover, if z; € var(h) it results
(erfzi/t})a = pr, {zi/t} = (Wnfa/E)((V)nd{wi/t), o (bm)n{wi/t}) 5
otherwise (¢r{zi/t})a = ok, {zi/t} = ¢.

Suppose xz; € var(h). It follows that k; C h. Since ¥, 91, ..., %m € E(n—1,h) we can
apply one of our declared inductive assumptions and get ¢ {x;/t} = ¢¥p{x;/t} and for
each j =1...m (¢;)e{zi/t} = (¢¥;)n{xi/t}. Therefore

(er{zi/t)a = @r,_ {i/t} = (Wnfwi /) ((D0)nfwi/t}, - (Ym)n{wi/t}) =
= Wr{ai/tH((W0)r{zi/t)s - Wm)dzi/t}) = (r{zi/t})e -
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Suppose instead x; ¢ var(h). Since ¢, 11, ...,Yn € E(n—1,h) by one of our declared
inductive assumptions we obtain ¢y {x;/t} = ¢ and foreach j = 1...m (¢;)i{x;/t} = ;.
Therefore

(pr{wi/t})e = (Yr{x /) (1)u{zi/t}, - oo (Ym)u{zi/1}) =
=)W1, ¥m) = ¢ = (pref{zi/t})a -

We now examine the case where ¢ € E,(n+ 1,k) NE/(n+ 1,k). Clearly ¢ belongs
to Ex(n+ 1,k) N Eg(n+ 1, k).

Since ¢ € E4(n + 1,k) the following condition holds: there exist f € F, a positive
integer m and 1, ...,%, € E(n,k) such that

o o= (W1, Ym);
o (er{zi/t})a = (H((W)r{zi/t}, - (Wm)rfwi/t}).

Since ¢ € Eq(n+1,k) we have ¢ € E(n, kp_1), xp ¢ Vi(v). We distinguish the case
where ¢ = p from the case where i < p.

If i = p then (pr{zi/t})a = ¢. Given that ¢ € E(n,k,_1) we can use assump-
tion[2.1.10|to obtain that n > 1 and there exist h € K(n—1): h C k,_1, g € F, a positive
integer r, ¥1,...9, € E(n—1,h): ¢ = (g)(V1,...,0,).

Clearly f = g, m = r and for each j = 1...m 1¢; = ¥; € E(n — 1,h). Therefore
’(/Jl,...,’(/)mEE(n—l,h).

We can apply one of our declared properties. In fact h € K(n) and x; ¢ var(h), so
for each j =1...m (¢;)r{z;/t} = 1;. Therefore

(pr{zi/t})a = (H)((W0)r{zi/th, - (m)r{zi/t}) =
=(/)W1,.- -, m) = o = (or{zi/t})a -

Now suppose i < p. Here (ox{zi/t})a = @k, ,{zi/t}. Since v € E(n,k,_1) we can
apply one of our inductive assumptions and obtain the following:

n > 1, there exist h € K(n—1): hC k,_1, g € F, a positive integer r,
Y1,...,9 € E(n —1,h) such that ¢ = (¢)(¥1,...,0,).
If h # € there exists a positive integer ¢ < p — 1 such that ¢ <n — 1,
Kn—1;hix1 t @1,...,%4  Pg)-
If i < g, or in other words x; € var(h), we can define (¥;),{x;/t}, and it results
Pk, {wi/ty = (@ ((D)n{zi/t}, . (Or)n{xi/t}) -
Otherwise (when h = e or h # e Ni > q) or,_ {zi/t} = .
Clearly f = g, m = r and for each j = 1...m ¢; = ¥; € E(n — 1,h). Therefore
Ui,y Ym € E(n—1,h).
Moreover, if x; € var(h) it results

(Pr{zi/ta = or, o {i/t} = (N((0)n{zi/t}s s (m)n{zi/t}) 5
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otherwise (or{wi/t})a = 0r,_, {zi/t} = .

Suppose z; € wvar(h). It follows that k; T h. Since ¢1,...,%,, € E(n — 1,h) we
can apply one of our declared inductive assumptions and get, for each j = 1...m,

(j)r{zi/t} = (¥;)n{zi/t}. Therefore
(orfwi/tha = or,_ {zi/t} = (F)(()nf@i/t}, - (Ym)nfwi/t}) =
= (N(@)e{zi/t}, - (m)r{zi/t}) = (oe{zi/t})a -

Suppose instead z; ¢ var(h). Since 1, ..., € E(n —1,h) by one of our declared
inductive assumptions we obtain, for each j =1...m, (¢;)x{z:/t} = ;. Therefore

(pr{zi/tHa = (N(W){i/t}, . Wm)rfwi/t}) =
= (f)(%, S 7wm) == ((pk{xi/t})a .

Finally we turn to the case where ¢ € E,(n+ 1,k) N E,(n + 1,k). Clearly ¢ belongs
to Eg(n+ 1,k)NE.(n+1,k).
Since ¢ € E.(n 4+ 1,k) the following condition holds: there exist

e a positive integer m,

e a function y whose domain is {1,...,m} such that for each j = 1...m
y; € V —var(k), and for each o, =1...m a # = ya # ys,

a function 1 whose domain is {1,...,m} such that for each j =1...m ¢; € E(n),
¢ € E(n)

such that o = {}(y1 : Y1, -, Ym : Y,y @), E(n, k,myy, 1, @) and
(pr{mi/t})e = {3 (yr : (VO)rd@i/th, o ym : (mdrr, Axi/t}, drr {zi/1}) -

where ki = k+ (y1,91) and if m > 1 foreach j =1...m—1k}; =K+ (yj41,9%j+1)-

Since ¢ € Eq(n+ 1,k) we have ¢ € E(n, kp_1), xp ¢ Vi(v). We distinguish the case
where ¢ = p from the case where i < p.

If i = p then (pp{zi/t})a = ¢. Given that ¢ € E(n,k,_1) we can use assump-
tion 2.1.10] to obtain that

n > 1 and there exist
he K(n—1): hCky_1,
a positive integer r,
a function z whose domain is {1,...,r} such that for each j = 1...r
zj € V —war(h), and for each o, B =1...7 a # f — 24 # 23,

a function ¥ whose domain is {1,...,7} such that foreach j =1...79; € E(n—1),
e e E(n—1)

such that o = {}(z1 : 91,...,2-: 9,,0) and E(n — 1, h,r, 2,9,0).
Clearly m=r,y=z, v =19, ¢ =6.

We define hf = h + (y1,¢1), and if m > 1 for each j = 1...m — 1
R = 05+ (Y1, 9541)-
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We could define (¢1)i{z;/t}, and we have h € K(n), ¥ € E(n,h) (follows by
E(n—1,h,m,y,v,9)), x; ¢ var(h). By one declared property (v1)r{x;/t} = 1.

If m > 1 suppose j = 1...m — 1. We want to show that ('l/)j.l,.l)k;_{l’i/t} = Yjt1.
Recall we were able to define (wjﬂ)k; {z;/t}. Recall that £E(n — 1, h,m,y, 1, ¢) holds, so
h; € K(n), ¥j+1 € E(n, h}). Moreover, for each a = 1...m since y, € V —var(k) it also
results yo # i, so ; ¢ var(h}). By one declared property (wj+1)k; {z:/t} = Y41

We also need to show ¢ {z;/t} = ¢. Recall we were able to define (¢)xs {x;/t}.
Recall that £(n — 1, h,m,y, ¥, ¢) holds, so bl € K(n), ¢ € E(n,h!,). Moreover, for each

a = 1...m since yo, € V —var(k) it also results y, # z;, so x; ¢ var(h],). By one
declared property ¢r {z;/t} = ¢.

m

Therefore
(prfzi/the = {Hyr + (Wo)ef{zi/th, - sym + ()i, {@i/t}, dry {zi/t}) =
= {}(yl : ’(/117' sy Ym d ¢m7¢) =p= (@k{xl/t})a .

Now suppose i < p. Here (ox{xi/t})a = @k, ,{zi/t}. Since ¢ € E(n,k,_1) we can
apply one of our inductive assumptions and obtain the following:

n > 1, there exist h € K(n —1): h C k,_1, a positive integer r, § € E(n — 1),
a function z whose domain is {1,...,r} such that for each j =1...7 z; € V —var(h)
and foreach o, =1...7 a # B = 24 # 25;
a function ¥ whose domain is {1,...,r} such that for each j=1...7 9, € E(n — 1);
such that
E(n—1,h,1 2,9,0),
o={Hz:%,...,2 :9.,0), p € E(n,h).
If h # € there exists a positive integer ¢ < p — 1 such that ¢ <n —1,
Kn—1hi21 t @1,...,%4 : Pg)-
Suppose i < ¢, or in other words x; € var(h).
We define hy = h+ (21,%1), and if 7 > 1 foreach j = 1...7 =1 by = bl + (241, 7j41).
We have 91 € E(n —1,h), V,(t) N Vy(J91) = 0, therefore (91),{x;/t} is defined,;
for each j=1...r —1 b} € K(n —1) and
Kn =1Lk 201,020 00,21 201,000, 25 1 D),
for each a = 1...j 2z ¢ Vi(t) and Vi (t) N V4 (Ya) = 0, 9541 € E(n —1,1%),

Vo (t) N Vi(9j41) = 0, therefore (9j41)n;{@i/t} is defined;
h.e K(n—1)and K(n — LAl 21 p1,..., &gt 0g, 21 1 01,0, 2 1 0y),

foreach a =1...7 zo ¢ V,(t) and V, () N V4(94) = 0,
0 € E(n—1,h.), Vy(t) N V4(0) = 0, therefore 6y, {x;/t} is defined;

it results
Prp i/t = e s (D)n{mi/th oz (Or)n_ {2a/t} On {xi/t})

Otherwise (when h = e or h # e Ni > q) i, {xi/t} = .
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Clearly m=r,y=2z2,v% =9 and ¢ = 6.
Therefore, if ; € var(h) it results
(pr{zi/t})a = e, {zi/t} =
= M1« WO)nlzi/th o ym s ()i, {zi/t} on {xi/t}) 5
otherwise (¢r{zi/t})a = ok, {zi/t} = ¢.

Suppose x; € var(h).

We recall that £k € K(n), K(n;k;z1 : @1,...,2p @ ¢p), Y1 € E(n,k) and
Vo(11) N Vi () = 0. This ensures (¢1)x{x:/t} is defined, and we have h € K(n), k; C h,
K(n;h;zy 2 p1,...,24  ¢q), Y1 € E(n, h). By one of our declared properties we obtain
that (Y1)k{zi/t} = (1)n{xi/t}.

Ifm>1letj=1...m—1, we want to show that (wj+1)k;{xi/t} = (z/JjH)h;{xi/t}.
We recall that k; € K(n) and K(n;kj;21 @1, ., 2p 0 @py1 2 Y1, ..., Y5 ¢ ¥5), for each

3 Vg
a=i+1...pxs ¢ Vu(t) and Vi(pa) NV4(t) = 0, for each o = 1...5 yo ¢ Vi(t) and
Vo(Ya) NVi(t) = 0, 11 € E(n, k), Vi(1hj11) NVi(t) = 0. As a result of these conditions

we were able to define (/lpj+1)k; {z;/t}.
We have also b € K(n), K(n;hlizy 1,020 0 0g,y1 Y1500, 95 1 05),
ki © h E R, i1 € E(n, h}). By one of our declared properties we obtain that

(i )e{wi/th = (jen)n {wi/t} -

We also want to show that ¢, {z;/t}) = on {x:/t}).
We recall that k], € K(n) and K(n; k521 : ©1,---,Tp © ©py Y1 Y1y vy Ym : Um), for
each a =i+ 1...pxy ¢ Vi(t) and Vy(pa) N Vu(t) = 0, for each o = 1...m yo ¢ V()
and Vy, (1) NV, (t) = 0. We have ¢ € E(n, k},) and also V,(¢) NV, (t) = (. As a result of
these conditions we were able to define ¢y, {x;/t}.

We have also hl, € K(n), K(n;hl,;T1: @1, %q 2 gy Y1 Y1y -3 Ym : Um),
ki, ChCh.,, ¢ € E(n,hl,). By one of our declared properties we obtain that

br {xi/t} = dny {wi/t}
Hence
(pr{zi/tha = br,_{zi/t} =
= {3 W)nf@i/th, o ym s (m)nr, @it} Ony {i/t}) =
={Hyr s Wo)edi/th, o ym = ()i, {2i/t} dny, {2 /t}) =
= (ou{zi/t})e -

Now let x; ¢ var(h). In this case (pr{zi/t})e = = {} (Y1 : V1, -, Ym : Y, D).

As seen above, we could define (¢1)r{z;/t}, and we have h € K(n), ¢1 € E(n,h),
x; ¢ var(h). By one declared property (¢1)g{zi/t} = 1.

If m > 1suppose j = 1...m—1. We want to show that (%H)k; {zi/t} = ¥;41. Asseen
above, we were able to define (1/1j+1)k3_{asi/t}. We have also h; € K(n),
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Yj+1 € E(n,h}). Moreover, for each a = 1...m since y, € V — var(k) it also results
Yo # Ti, 80 T; ¢ var(h}). By one declared property (Q/Jj+1)k} {zi/t} = Yjq1.
We also need to show ¢ps {2;/t} = ¢. As seen above, we were able to define

(@)x: {xi/t}. We have also hy, € K(n), ¢ € E(n,h,,). Moreover, for each o = 1...m
since y, € V —var(k) it also results y,, # x;, so x; ¢ var(h!,). By one declared property

b {zi/t} = ¢.
Therefore

(‘pk{xi/t})a = {}(yl S, Ym ’L/)mv(b) =
= {}<y1 : (wl)k{wz/t}a sy Ym t (wm)k’

mfl{xi/t}a ¢)k;n {z;/t}) =
= (‘Pk{xi/t})e .

<

At this point we have completed the proof that yr{z;/t} is defined unambiguosly.
Our definition process requires now to verify that (for ¢ € E(n + 1,k) such that
Vi (t) N V() = 0) one of the following five conditions holds:

al. ¢ € C and gg{z;/t} = ¢.
a2. ¢ € var(k), o =x; = epf{wi/t} =1, ¢ # ;i = pp{zi/t} = .

a3. there exist h € K(n): h C k, a positive integer m,
Y, Y1,...,¥m € E(n,h) such that ¢ = (¥)(¢1,...,%m), ¢ € E(n+ 1,h), for each

p € E(h) #(h,v¢, p) is a function with m arguments, (#(h, Y1, p), ..., #(h, Ym,p))
is a member of the domain of #(h, ¥, p).

If h # € by we can derive there exists a positive integer ¢ < p such that ¢ < n,
K(n;h;zt c 91,000,240 g)-
If i < ¢, or in other words x; € var(h), since we have

Vi(t) N Vi) C V() NVi(p) =0,

we can define ¢, {x;/t}, and similarly we can define (¢;)p{z;/t}, and it results

er{wi/t} = (n{zi/tH)((P)n{zi/th, ... (Ym)n{zi/t})

Otherwise (when h =€ or h # e ANi > q) prp{z;/t} = ¢.

ad. there exist h € K(n): h C k, f € F, a positive integer m, ¢1,...,%, € E(n,h)
such that ¢ = (f)(¥1,...,Ym), ¢ € E(n+1,h),
for each p € E(h) Ap(#(h,¢1,p), ..., F#(h, Ym, p)).
If h # € by we can derive there exists a positive integer ¢ < p such that ¢ < n,
K(n;h;zt c 91,00 ,2q 0 ¢gq)-
If i < ¢, or in other words x; € var(h), since we have

Vo(t) N Vo(;) S Vu(t) N Vi(p) =0,
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we can define (v;)n{x;/t}, and it results

pitzi/ty = (N(WOn{zi/th, - (bm)nizi/t}) -
Otherwise (when h =€ or h # e ANi > q) pp{zi/t} = .

ab. there exist h € K(n): h C k, a positive integer m, ¥ € E(n), a function y whose

domain is {1,...,m} such that for each j = 1...m y; € V —var(h) and for each
a,f=1...ma#p—=ya#ys;

a function ¢ whose domain is {1,...,m} such that for each j =1...m ¢; € E(n);
such that

Enyhy,myy, v, 9), o ={Hy1 : Y1,y Um : Um,9), @ € E(n+1,h).

If h # € by we can derive there exists a positive integer ¢ < p such that ¢ < n,
K(n;h;zt c 91,00 ,2q 1 q)-

Suppose i < ¢, or in other words z; € var(h).

We define by = h + (y1,¢1), and if m > 1 for each j = 1...m — 1
Riiy =0+ (Y1, P541)-

We have 1 € E(n. h), Vs(t) 0 V(i) € Vi(t) N Vi () = 0, therefore (4 )5 {:/1) is
defined;

for each j =1...m —1 h} € K(n) and by

K(ns Ry 15005 @g 0 0goy1 2 01,0, Y5 1 5),

for each a =1...7 yo € V() 50 ya & Vi(1),

foreach a =1...7 V3(t) N Vi (o) C Vi (¢) N Vi(p) = 0,

Vi+1 € E(n, hf), Vi(t) N Ve(¥41) C Vi(t) N Vi(p) =0,

therefore (1/)j+1)h; {z;/t} is defined;

hl, € K(n) and by [L.7]

K(nshiixn 91,0 %g 2 0q Y1 51, - Ym 2 Um),

foreach a=1...m yo € Vi (¢) s0 yo & Vi(t),

for each a=1...m V,(t) N Vp(va) C Vi (t) N Vi(p) = 0,

0 € E(n, h,), Vi(t) N Vi(9) C Vo(t) N Vo(p) = 0,

therefore ¥y, {x;/t} is defined;

it results

or{xi/th = {3y - (QOr{zi/th o ym s bm)n, Axi/th Ong {zi/t}) -
Otherwise (when h = e or h # e Ni > q) prp{z:/t} = ¢.

In this case too we need to remember that
E(n+1,k) = E'(n,k)UE, (n+1,k)UE;(n+1,k)UE.(n+1,k)UE,(n+1,k)UE.L(n+1, k).

Suppose ¢ € E'(n, k). By the inductive hypothesis one of the following five conditions
holds:

bl. ¢ € C and pp{z;/t} = p.



b2.

b3.

b4.

b5.
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p cvar(k), ¢ =z = ep{wi/t} =1, ¢ # wi = op{zi/t} = ¢

n > 1, there exist h € K(n — 1): h C k, a positive integer m,
U, Y1, ¥m € E(n — 1,h) such that ¢ = (¢¥)(¢1,...,¥m), ¢ € E(n,h), for each

p € 2(h) #(h, 9, p) is a function with m arguments, (#(h, V1, p), ..., #(h, ¥m, p))
is a member of the domain of #(h,, p).

If h # e by [f.7| we can derive there exists a positive integer ¢ < p such that ¢ < n—1,
Kn—1 k21t @1,...,%q  ©g).
If ¢ < g, or in other words z; € var(h), since we have

Vo(t) N Vo () € Vi(t) N Vi(p) =0,

we can define ¢, {x;/t}, and similarly we can define (¢;)n{z;/t}, and it results

er{wi/t} = Wn{zi/tH) ((P)n{zi/th, ..o (Ym)n{zi/t})

Otherwise (when h = e or h # e Ai > q) prp{z;/t} = ¢.

n > 1, there exist h € K(n—1): hC k, f € F, a positive integer m,
Ui, sy, € E(n — 1,h) such that ¢ = (f)(¥1,-..,%m), ¢ € E(n,h), for each

If h # e by [f.7| we can derive there exists a positive integer ¢ < p such that ¢ < n—1,
Kn—1 k21t @1,..., %4 ©g).
If ¢ < g, or in other words z; € var(h), since we have
Vo(t) N Vi(9h5) C Vi () N Vi() = 0,
we can define (¢;)r{x;/t}, and it results
ere{zi/th = (N)((W1)nfzi/th, .., (bm)nf{zi/t}) .

Otherwise (when h = e or h # e Ai > q) prp{z;/t} = ¢.

n > 1, there exist h € K(n — 1): h C k, a positive integer m, ¥ € E(n — 1),

a function y whose domain is {1,...,m} such that

foreach j=1...my; € V—wvar(h) and for each o, 3 =1...m a # 8 — yo # Ys;
a function ¢ whose domain is {1,...,m} such that

foreach j=1...mvy; € E(n—1);

such that

En—1,h,m,y,¥,9),

o ={ w1 : ¥, Ym 1 Ym, V), ¢ € E(n, h).

If h # e by [f.7| we can derive there exists a positive integer ¢ < p such that ¢ < n—1,
Kn—1;hi2z1:01,...,%q 1 @q)-

Suppose i < ¢, or in other words x; € var(h).

We define b} = h + (y1,%1), and if m > 1 for each j = 1...m — 1
Rjp1 = )+ (Yj+1.541)-
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We have ¢y € E(n—1,h), Vy(£) N Vp(101) C Vi (¢) NVi(p) = 0, therefore (1) {zi/t}
is defined;

for each j =1...m — 1A} € K(n—1) and by 4.7

Kn— 150521 01,0020 0 0g, 91 5 P15+ 595 0 05),
foreach a =1...75 yo € Vu(9) 50 ya & Vi(1),

for each a=1...5 V,(t) N Vi (va) C Vi (t) N Vi(p) = 0,
¢j+1 € E(n - 17h;’)7 %(t) N VE’(¢J’+1) - %(t) N Vb(@) = (Z),
therefore (wj+1)h; {z;/t} is defined;

hl, € K(n —1) and by [4.7]

Kn—1h 2101, ., Tq Qg Y1 W15, Ym - Um),s
foreach a=1...m yo € Vi(¢) s0 yo & Vi(t),

for each a =1...m V4(t) N Vi () C Vi (¢) N Vi(p) = 0,
D€ En—1,1,), Vilt) 0 Vi) € Vilt) 0 V() = 0,
therefore 95, {w;/t} is defined;

it results

orfzi/ty = {Hyo - (bo)ndzi/th, oo ym s (Dm)ne - A /t}, O {zi/t}) .
Otherwise (when h =€ or h # e Ai > q) pp{zi/t} = .

Clearly if bl. holds then al. holds too, if b2. holds then a2. holds too. If b3. holds
then a3. holds too, if b4. holds then a4. holds too. Finally if b5. holds then a5. holds too.

We turn to the case where ¢ € E,(n + 1,k). This implies ¢ € E,(n+1,k), k € K(n)*.

Wehave k =k, = kp_1+(2p, ¢p), kp—1 € K(n), ¢p € Es(n, kp_1), xp € V—var(ky,—1).
Therefore ¢ € E(n, ky_1), z, ¢ Vp(p). We have to distinguish the case where i < p from
the one where ¢ = p.

First we suppose 4 < p. In this case 1 <7 < p—1, so k,—1 # €. As we have seen above
K(n;kp—1;21 0 ©1,...,2p—1 : ¢p—1) holds. So we can apply the inductive hypothesis to ¢
and obtain that one of the following five conditions holds:

e pcCand pr,_  {z:/t} = .
o pcvar(kp-1), p = Ti = P, {Ti/t} =t, ¢ #xi = or,_{zi/t} = ».

e n > 1, there exist h € K(n —1): h T kyp_1, a positive integer m,
U, U1, U, € E(n— 1,h) such that ¢ = (¥)(¢1,...,%m), ¢ € E(n,h), for each

p € 2(h) #(h, 9, p) is a function with m arguments, (#(h, V1, p), ..., #(h, ¥m, p))
is a member of the domain of #(h,, p).

If h # € by [£77 we can derive there exists a positive integer ¢ < p — 1 such that
g<n—1,Kn—1hz:¢1,...,T0:0q).
If i < g, or in other words x; € var(h), since we have

Vo(t) N Vo () € Vi(t) NVi(p) =0,
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we can define ¥ {x;/t}, and similarly we can define (¢;)p{z;/t}, and it results

P, {zi/t} = (Wnfzi /) ((D1)nfwi/t}, s (Ym)n{wi/t}) -

Otherwise (when h = e or h # e Ni > q) op,_ {z:/t} = o

n > 1, there exist h € K(n —1): h C k,_1, f € F, a positive integer m,
1, ., m € E(n —1,h) such that ¢ = (f)(¥1,...,%m), ¢ € E(n,h), for each
If h # € by we can derive there exists a positive integer ¢ < p — 1 such that
g<n—1KMn—-1Lhz:p1,...,2q:Qq)-
If < g, or in other words z; € var(h), since we have

Vo () N V(1) € Va(t) N Vi(e) =0,
we can define (¢;)p{z;/t}, and it results

Pry i @i/t = (N((Or{zi/t}s s (Pm)n{wi/t}) -

Otherwise (when h =€ or h # e Ni > q) pr,_ {x:/t} = ¢.

n > 1, there exist h € K(n —1): h T k,_1, a positive integer m, ¥ € E(n — 1), a
function y whose domain is {1,...,m} such that foreach j =1...my; € V—var(h)
and for each o, =1...m a # 8 — ya # ys; a function ¢ whose domain is
{1,...,m} such that for each j =1...m ¢; € E(n — 1);

such that

En—1,h,m,y,,9),

o= Y1, Ym  ¥m,0), ¢ € E(n,h).

If h # € by [£77 we can derive there exists a positive integer ¢ < p — 1 such that
g<n—1,Kn—1hzi:¢1,...,2q: 0q).

Suppose i < ¢, or in other words x; € var(h).

We define b} = h+ (y1,%1), and if m > 1 foreach j=1...m—1

Rigr = hj+ (Y1, ¥541)-

We have ¢ € E(n—1,h), Vo (t) N V(1) C Vi(t) NVi(p) = 0, therefore (¢1)p{z;/t}
is defined;

for each j=1...m —1h}; € K(n—1) andby

Kn =1Lz 01,002 0 0g, Y1 8 P15, Y5 0 P5),

for each o = 1...5 ya € Vi(9) 50 ya & Vio(t),

foreach a =1...75 V4(t) N Vi (o) C Vi (¢) N Vi(p) = 0,

Yi+1 € E(n—1,h%), V() N Vy(j41) € Vi(t) N Vi(p) =0,

therefore (wjﬂ)h; {z;/t} is defined;

hl, € K(n—1) and by [4.7]

Kn—1h 2101, Tq Qg1 V15, Ym - Um),s

foreach a =1...m yo € V(@) 80 yo ¢ Vi(2),

for each o =1...m V4(t) NV, (a) C Vi (t) N Vi(p) = 0,
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9 € Bln—1,1,), Ve(t) N Vi(#) € Valt) N Vi(g) = 0.
therefore V5, {x;/t} is defined;

it results

Oy A /t} = {F 1+ (D)nd{zi/t}, - Ym s (Ym)ne,  Axi/t} On {2i/t})
Otherwise (when h =eor h # e Ni > q) pr,_ {xi/t} = ¢.

In this case i < p we defined pi{z;/t} = or,_,{i/t}, therefore one of the following
five conditions holds:

e p€Cand pp{z;/t} = ¢.
o pcwar(k), p =x; = pr{zi/ty =t, ¢ # v = op{wi/t} = .

e there exist h € K(n): h C k, a positive integer m, 1, ¥1, . .., ¥, € E(n,h) such that

o= W)(W1,...,0m), ¢ € E(n+ 1,h), for each p € Z(h) #(h, ¥, p) is a function
with m arguments, (#(h,¥1,p),...,#(h,¥m,p)) is a member of the domain of

#(h. ¥, p).

If h # € by [£.7] we can derive there exists a positive integer ¢ < p such that ¢ < n,
K(n;hyzy c @1,...,24 ¢ 9g)-

If < g, or in other words z; € var(h), since we have

Vo () N Vi () € Va(t) N V() =0,

we can define ¢ {x;/t}, and similarly we can define (¢;)p{z;/t}, and it results

eor{wi/t} = Wn{zi/tH)((P)n{zi/th, ..o (Ym)n{zi/t})

Otherwise (when h = e or h £ e ANi > q) pp{zi/t} = p.

e there exist h € K(n): h C k, f € F, a positive integer m, ¥1,...,¢,, € E(n,h)
such that ¢ = (f)(¥1,...,¥m), ¢ € E(n+ 1,h),
for cach p € Z(h) Ap(#(h, 1, p)s - s #(h o, 9)-
If h # € by [£.7 we can derive there exists a positive integer ¢ < p such that ¢ < n,
K(n;hyzy t 01,0 ,24 : 9g)-
If ¢ < g, or in other words z; € var(h), since we have
Vo () NV (1h5) € Va(t) N Vi(e) =0,
we can define (¢;)p{z;/t}, and it results

or{zi/t} = (N)((W1)n{zi/t}, ... (Ym)n{zi/t}) .

Otherwise (when h = e or h # e ANi > q) prp{z;/t} = ¢.

e there exist h € K(n): h C k, a positive integer m, ¥ € E(n), a function y whose
domain is {1,...,m} such that for each j = 1...m y; € V —var(h) and for each
a,f=1...ma# B — yo # ys; a function ¢ whose domain is {1,...,m} such
that for each j =1...m ¢; € E(n);
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such that

E(n, h,m,y, 1, 9),

e={}y1: %1, Ym : ¥m, V), p € E(n+1,h).

If h # € by we can derive there exists a positive integer ¢ < p such that ¢ < n,
K(n;hyz1 01,00 ,24  9g)-

Suppose i < ¢, or in other words z; € var(h).

We define b} = h+ (y1,%1), and if m > 1 foreach j=1...m—1

Ry =R+ (Y1, P541)-
We have 11 € E(n, ), V(£) N Vi) € Vo(t) N Va(p) = 0, therefore () {z:/t} is
defined;

for each j =1...m —1 h} € K(n) and by

K(ns Ry 1,00, @g 0 0goy1 2 01,0, Y5 1 5),

for each o = 1...5 ya € Vi(9) 50 ya & Vio(t),

foreach a =1...7 V3(t) N Vi (o) C Vi (¢) N Vi(p) = 0,
Vit1 € E(n, hf), V() N Ve(¥41) C Vi(t) N Vi(p) =0,
therefore (’ll)jJrl)h; {z;/t} is defined,;

hl, ) and by

IC(n,hm7 C P T P Y U1, Ym  Um),

for each o =1...m yo € Vi (9) s0 yo ¢ Vi(1),

for each a=1...m V,(t) N Vp(va) C Vi(t) N Vi(p) = 0,
V€ E(n, hy,), V(1) N Ve(9) € Vi(t) N V() =0,
therefore ¥y, {x;/t} is defined;

it results

@k{xl/t} = {}(yl : (¢1)h{zi/t}v s Ym (¢m)h’

m—1

Otherwise (when h =ecor h # e ANi > q) pp{zi/t} =¢

{wi/ty, Ony {xi/t}) .

We now consider the case where i = p, in which we defined ¢ {z;/t} = .
Since ¢ € E(n, k,_1) we can apply assumption[2.1.10|to establish that one of the following
five conditions holds:

cl. p eC.
c2. there exists j =1...p — 1 such that ¢ = z;.
c3.
dh € K(n —1): h C k1, 3Im positive integer , 9, ¢n,... ¢y, € E(n—1,h):
=)W1, ¥m), ¢ € E(n, h),

‘v’p € Z(h) ( #(h, 1, p) is a function with m arguments,
(#(h,1,p), ..., #(h,m, p)) is a member of the domain of #(h, ¥, p).
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c4.
Jhe K(n—1): hC ky_1,3f € F, m positive integer ,¢1,... 9%, € E(n—1,h) :
Y = (f)(wlv .. 7wm)7 2 S E(n7h)a
Vp € Z2(h) ((Af(#(h, b1, p);- o #(hy Y, p))-
ch.

there exist
he K(n—1):hCk,_q,
a positive integer m,
a function y whose domain is {1,...,m} such that for each j =1...m
y; €V —var(h), and for each o, =1...m a # B — Yo # Y3,
a function ¢ whose domain is {1,...,m} such that for each j=1...m
¥; € E(n—1),
Y€ E(n-1)
such that
E(n—1,h,m,y,¥,9),
o= V1, Ym  Ym, V), @ € E(n,h).

If c1. holds then ¢ € C and ¢r{z;/t} = ¢ so al. holds.
If ¢2. holds then ¢ € var(k), ¢ # x;, pr{zi/t} = ¢ so a2. holds.

If ¢3. holds then there exist h € K(n): h C k,_1 C k, a positive integer m,
U, 01, ..., € E(n,h)such that ¢ = (¢¥)(¥1,...,%m), ¢ € E(n+1,h), for each p € Z(h)
#(h,v, p) is a function with m arguments, (#(h,¥1, p), ..., #(h,¥m,p)) is a member of
the domain of #(h, 1y, p).

Moreover if h # € then by [4.7] we can derive there exists a positive integer ¢ < p
such that ¢ < n, K(n;h;z1 @ @1,...,24 : @q). Suppose p = ¢ < ¢, this would imply
that ¢ = p, so h = k, = k. But h T k,_1 also holds. So dom(h) = {1,...,p} and
dom(h) C dom(k,—1) € {1,...,p — 1}. This is a contradiction, so we must have i > g.

Therefore we have h = eV (h # e Ai > q) and pr{z;/t} = ¢. This implies that a3. is
satisfied.

If c4. holds then there exist h € K(n): h C k,_1 C k, f € F, a positive integer m,
U1, .., Um € E(n,h) such that ¢ = (f)(¥1,...,%m), p € E(n+1,h),
for each p € Z(h) Ay(#(h,¥1,p), -, #(hy Y, p)).

Moreover if h # € then by [£.7] we can derive there exists a positive integer ¢ < p
such that ¢ < n, K(n;h;z1 : @1,...,24 : @q). Suppose p = i < ¢, this would imply
that ¢ = p, so h = k, = k. But h C k,_1 also holds. So dom(h) = {1,...,p} and
dom(h) C dom(k,—1) C {1,...,p — 1}. This is a contradiction, so we must have i > g.

Therefore we have h = e V (h # € Ai > q) and pr{x;/t} = ¢. This implies that a4. is
satisfied.
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If ¢5. holds then there exist h € K(n): h C k,_1 C k, a positive integer m, ¥ € E(n),

a function y whose domain is {1,...,m} such that for each j =1...m y; € ¥V — var(h)
and for each o, =1...m a # 8 = yo # Ys;
a function ¢ whose domain is {1,...,m} such that for each j =1...m ¢; € E(n);

such that

En,hymyy, v, 9), o ={Hy1 : 1, Ym : ¥m, ), ¢ € E(n+1,h).

Moreover if h # € then by [£.7] we can derive there exists a positive integer ¢ < p
such that ¢ < n, K(n;h;z1 @ @1,...,24 : @q). Suppose p = ¢ < ¢, this would imply
that ¢ = p, so h = k, = k. But h T kp_1 also holds. So dom(h) = {1,...,p} and
dom(h) C dom(k,—1) C {1,...,p — 1}. This is a contradiction, so we must have i > g.

Therefore we have h = eV (h # e Ai > q) and ¢pr{z;/t} = @. This implies that a5. is
satisfied.

Let’s examine the case where ¢ € Ej(n+1,k). This implies ¢ € Ey(n + 1,k),
ke K(n)*t.

Wehave k = kp = kp_1+(2p, 0p), kp—1 € K(n), pp € Es(n, kp_1), zp € V—var(kp—1).
Therefore ¢ = x,, € var(k).

If i = p we have ¢ = z; and pp{z;/t} =t.

If i < p we have ¢ # z; and pp{z;/t} = p.

This implies that a2. is satisfied.

We now consider the case where ¢ € E (n+ 1,k). This implies ¢ € E.(n + 1,k),
k € K(n).

There exist a positive integer m and ¥, 91, ..., %, € E(n,k) such that

e o =)W1, ¥m);

o for each o € E(k) #(k,v,0) is a function with m arguments and
(#(k,1,0),...,#(k,Ym,0)) is a member of its domain.

We have also K(n;k;z1 : ¢1,...,%p : @p). We can define yp{x;/t}, (¢;)r{x;/t} and
it results

or{wi/th = (r{ai/th)((p)r{zi/th, . (Ym)r{zi/t}) -
This implies that a3. is satisfied.
The case where ¢ € Ej(n+ 1,k) is similar. In fact this implies ¢ € E4(n + 1, k),
k € K(n).
There exist f € F, a positive integer m and 1, ..., 1, € E(n,k) such that

e o= (W1, ¥m);
o for each o € E(k) As(#(k,¢1,0),...,#(k, ¥m, o)) holds true.
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We have also IC(n; k;z1 : ¢1,...,2p : ¢p). We can define (¢;)r{z;/t} and it results
er{wi/ty = (H(@Or{zi/t}s o (m)r{wi/t}) -

This implies that a4. is satisfied.

Finally we examine the case where ¢ € EL(n + 1,k). This implies ¢ € E.(n + 1,k),
k € K(n). There exist

e a positive integer m,

e a function y whose domain is {1,...,m} such that for each j = 1...m
y; € V —var(k), and for each o, =1...m a # B — Yo # Y3,

e a function ¢ whose domain is {1,...,m} such that for each j =1...m ¢; € E(n),

* ¢ € E(n)

such that ¢ = {}(y1 : Y1, -, Ym : Ym, @) and E(n, k,m,y, 1, ¢).
We have K(n; k;z1 0 01, -+, Tp t Op)-
Let k) =k + (y1,¢1), and if m > 1 for each j =1...m — 1 kj .y = K} + (Y41, Vjt1)-

In our assumptions (¢1)g{x;/t} is defined, if m > 1 then for each j = 2...m
(tj);_ {wi/t} is defined, and finally that ¢, {wi/t} is defined. It results

er{zi/ty = {Hyr - (WO)edzi/th, - ym s ()i, {xi/t}, dny, {i/t}) -

This implies that a5. is satisfied.

Another step has been completed. We maintain the assumption that ¢ € E(n+ 1, k)
is such that V;(¢) N V,(p) = 0. To go on with the next step we assume h € K(n + 1) is
such that k; C h.

We know there exist a positive integer u such that v < n+ 1, wy,...,w, € V such
that we # wg for o # S, &1,...,&, € E such that K(n+ 1L hywy : &, .o, wy @ &y).
By lemma [£.8 we know that i < u and for each j = 1...1 w; = x;, §; = ;.
If i < u then we assume for each j =i+ 1...u w; ¢ Vi(¢), Vi (t) N V(&) = 0. We also
assume ¢ € E(n+1,h).

We need to show that ¢p{z;/t} = pr{x:/t}.
We have just seen that one of the following five conditions holds:
al. v € C and pr{z;/t} = ¢.

a2. p cvar(k), ¢ = x; = ep{wi/t} =t, 0 # ;i — op{zi/t} = @.
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there exist k € K(n): k C k, a positive integer m,
U, Y1, ..., ¥m € E(n,k) such that ¢ = (¥)(¢1,...,%m), ¢ € E(n+ 1, k), for each

p € E(k) #(k, 1, p) is a function with m arguments, (#(k, Y1, p), ..., #(K, Um,p))
is a member of the domain of #(k, ¥, p).

If k # € by [£.7] we can derive there exists a positive integer ¢ < p such that ¢ < n,
K(n; k521 0 01,0, %4 & Pg)-
If ¢ < g, or in other words z; € var(k), since we have
Vo(t) N V(1) C V() NVa(p) =0,
we can define ¥, {x;/t}, and similarly we can define (¢;).{z;/t}, and it results
eef{zi/t} = (edwi /) (1) e{@i [t} - (m){wi/t}) -

Otherwise (when k = € or kK # e A i > q) prp{z;/t} = @.

there exist k € K(n): k C k, f € F, a positive integer m, t1,...,0Ym € E(n, k)
such that @ = (F)(r,.. . m): @ € Bln+ 1),
for each pe E(K/) Af(#(K’a ¢17 p)a RS #("@ ¢m7 p))

If k # € by [£.7] we can derive there exists a positive integer ¢ < p such that ¢ < n,
K(n; k521 0 015,84 & Pg)-
If i < ¢, or in other words x; € var(k), since we have
Vi(t) N Vi(1h;) € Va(t) N Vi(p) =0,
we can define (v;),.{x;/t}, and it results
eef{zi/th = (N)((1)ed@i/th, - (m)e{wi/t}) -

Otherwise (when k=€ or kK # e ANi > q) pp{zi/t} = .

there exist Kk € K(n): k C k, a positive integer m, ¢ € E(n), a function y whose

domain is {1,...,m} such that for each j = 1...m y; € V —var(x) and for each
a,f=1...ma#p—=yaFYys;

a function 1) whose domain is {1,...,m} such that for each j =1...m ¢; € E(n);
such that

5(n,f€’m7y,¢,?9)7 Y= {}(yl SPLy s Ym f Ym,0), 0 € E(’I’L + 1, k).

If k # € by [£.7] we can derive there exists a positive integer ¢ < p such that ¢ < n,
K(n; k521 0 015,84 & Pg)-

Suppose i < ¢, or in other words x; € var(k).

We define ) = k + (y1,%1), and if m > 1 for each j = 1...m — 1
Kjp1 = K+ (Yj+1,¥j41)-

We have 11 € E(n, k), Vi(t) N V(1) C Vi (t) N Vi(p) = B, therefore (¢1),.{x;/t} is
defined;

for each j =1...m —1 £} € K(n) and by

K(n; 655210 1500 g g Y1 2 01,0, Y5 1 5),
for each a =1...5 yo € V() 50 Yo & Vi(1),
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for each a=1...7 V3(t) N Vu(ha) C Vi(t) N Vi(p) = 0,
Vit1 € E(n,K}), Vo(t) N Vi(j41) C Vi(t) N Vi(p) =0,
therefore (¢ 11), {xi/t} is defined;

Kk, € K(n) and by-

IC(n,nm, S P1, . F PG YL WL, Ym  Um),
foreacha=1...m ya € V() 50 ya & Vi(1),

for each a=1...m V,(t) N Vp(va) C Vi (t) N Vi(p) = 0,
0 € B(n,r1,), Va(t) N Vy(9) C Vi(t) N Vi() = 0,
therefore ¥, {x;/t} is defined;

it results

erfei/ty = {Hyr s W) ef@i/th o ym s (m) ey, {2i/t} Onr, /1)) -

Otherwise (when k = e or kK # e Ai > q) ppl{zi/t} =¢

Given that ¢ € E(n,h + 1) we have also to accept that one of the following five
conditions holds:

d1.

d2.

d3.

d4.

v € Cand pp{z;/t} =¢
¢ €var(h), o =z; = pp{zi/t} =t, 0 # v = pp{zi/t} = ¢

there exist 7 € K(n): n C h, a positive integer r,
X> X1---5Xr € E(n,n) such that ¢ = (X)(x1,...,Xxr), ¥ € E(n+1,n), for each

p € E(n) #(n, x, p) is a function with r arguments, (#(n, x1,p); -, #(0, xr, p)) is
a member of the domain of #(n, x, p).

If n # € by - we can derive there exists a positive integer ¢’ < u such that ¢ < n,
Knsmywy &1y, wyr : Egr).
If : < ¢/, or in other words z; € var(n), since we have
Vo(t) N Ve(x) € Vo(t) N Vi(p) =0,
)

we can define x,{x;/t}, and similarly we can define (x;),{zi/t}, and it results

en{zi/ty = O/t (Ox)n{zi/t}, - o (e )n{i/t}) -

Otherwise (when n=eorn#eAi>¢) pp{zi/t} =¢

there exist n € K(n): n C h, g € F, a positive integer r, x1,...,xr € E(n,n) such
that ¢ = (9)(x1,-.-,Xr), ¥ € E(n +1,1),
for each pE :(77) A (#(naXh )73#( 5 Xrs P ))

If n # e by - we can derive there exists a positive integer ¢’ < u such that ¢’ < n,
Knsmywy &1,y wyr  &gr).
If i < ¢/, or in other words x; € var(n), since we have

Vo(t) N Vo(xy) € Ve(t) NVi(p) =0,
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we can define (x;),{z;/t}, and it results

enizi/ty = (@) (Oc)plzi/t}, - Ocr)n{zi/t}) -

Otherwise (when n =€ orn#eAi>q') pp{zi/t} = .

d5. there exist n € K(n): n C h, a positive integer r, ¢ € F(n), a function z whose
domain is {1,...,7} such that for each j = 1...7 z; € V — var(n) and for each

o,B=1...ra#p = 24 # 28;
a function x whose domain is {1,...,r} such that for each j =1...r x; € E(n);

such that

E(nymyry2,x,0)s ¢ ={}z1 1 X1, -5 20 1 X B), @ € E(n+1,m).

If n # € by we can derive there exists a positive integer ¢’ < u such that ¢’ < n,
K(nsmywy c €1, wgr  Egr)-

Suppose i < ¢/, or in other words z; € var(n).

We define nf = n + (z1,x1), and if r > 1 for each j = 1...r — 1
Mip1 =105+ (2j41, Xj+1)-

We have x1 € E(n,n), Vo(t) N Vi(x1) € Vu(t) N Vi(p) = 0, therefore (x1),{zi/t} is
defined;

for each j =1...r — 1 n; € K(n) and by

K(nsmiws s &,y w2 §grs 2100 X1+ -5 25 X5 ),

foreach a =1...5 zo € V() 50 2o ¢ Vip(2),

for each a = 1....§ V() N V(xa) € Vo(t) N Vi(g) = 0,

Xj+1 € E(n,m), Vo(t) NVe(xj+1) € Vi(t) N Vi(p) =0,

therefore (X;41)y; {z;/t} is defined;

n. € K(n) and by [4.7]

Knsmlywr c &1,y Wyr &gy 215 X5 e -5 20 Xrr)s

for each a =1...7 z, € V() S0 2o & Vi(2),

foreach a=1...7 V,(t) N Vi(xa) C Vu(t) N Vi(p) = 0,

¢ € E(n,mp), Vo(t) N V(o) € Vi(t) N Vi(p) =0,

therefore ¢, {z;/t} is defined;

it results

onfri/ty = {3z Ocdndwi/th o ze s O )ng_ {mi/t}, G {i/t}) -

Otherwise (when n=¢cor n#eAi>q) pp{x;/t} = .
If al. occurs then d1. also occurs and pr{x;/t} = ¢ = op{z;/t}.

If a2. occurs then d2. also occurs and ¢ = z; — pp{zi/t} =t = pp{zi/t},
¢ # x; = ep{Ti/t} = ¢ = pp{wi/t}.
We now consider the case where a3. occurs. As a consequence d3. occurs too.

There exist k € K(n): k C k, a positive integer m,
UV, 1, ..., ¥m € E(n, k) such that o = (V) (1, ...,%n), ¢ € E(n+1, k), for each p € Z(k)
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#(k,1, p) is a function with m arguments, (#(k, Y1, p), ..., #(K, ¥m, p)) is a member of
the domain of #(k, ¥, p).

There exist n € K(n): n C h, a positive integer r,
Xo X1+ Xr € E(nﬂ?) such that Y= (X)(Xla T 7Xr)7 Y e E(TL+ 1377)7 for each pE 5(77)
#(n,x, p) is a function with r arguments, (#(n, x1,0),---,#(, Xr,p)) is a member of
the domain of #(n, x, p).

We have

(1/))(1#17 oo 7¢m) =p= (X)(le cee 7XT‘) )

and therefore r = m, x = and for each j =1...m x; = 9;.

It follows that n € K(n), n C h, ¥, ¢¥1,...,Um € E(n,n), ¢ € E(n+ 1,n), for each

p € Z(n) #(n,1,p) is a function with m arguments, (#(n,%1,p), ..., #(10, Ym,p)) is a
member of the domain of #(n, ¥, p).

Suppose k # € and there exists a positive integer g < p such that g < n,
K(n;k;21 001,020 5 @q), 0 < g

Also suppose 1 # ¢ and there exists a positive integer ¢ < u such that ¢’ < n,
K(nsmywr 2 &1,y wy 1 &g), 1 < ¢

Consider that k € K(n) and we can define ¢ {z;/t}, (¢;).{zi/t}. Moreover n € K(n),
ki =h; =n; Cn.

We know that K(n;n;wy : &1,...,wy : & ). Lemma confirms that 7 < ¢’ and for

each j =1...7i w; = x5, § = ;.

Our assumptions also ensure that if ¢ < ¢ then for each j =i+ 1...¢ w; ¢ Vi(t),
Vi (t) NV4(&;) = 0. We have also seen that 9, ¢1,..., ¢, € E(n,n).

So by the inductive hypothesis we obtain

Vdwi/t} = Yol /), (V5)e{zi/t} = (Yj)n{mi/t}
and then
or{wi/t} = (Wu{zi/tH) (V1) sl{zi/t) o (Um)uizi/t}) =
= (Yol /) (1) plzi/t}, - (Um)glzi/t}) = on{zi/t} .

We now need to consider another subcase of our a3. and d3. case.

Suppose k # € and there exists a positive integer g < p such that g < n,
K(n;k;z1 0 901,...,%q 1 @q), © < q.
Also suppose 7 = € or 17 # ¢ and there doesn’t exist a positive integer ¢’ < u such

that ¢/ <n, K(n;n;wy 1 &, ..., wy 1 &y), 1 < ¢

Consider that k € K(n) and we can define ¢ {z;/t}, (¢;).{zi/t}. Moreover n € K(n),
¢7¢17' <. ﬂ/’m € E(”»W)
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If n = € then clearly z; ¢ var(n). Otherwise we know there exists a positive integer
¢ < wsuch that ¢ < n, K(n;m;wy @ &,...,wy @ &). Clearly i > ¢/, so for each
j=1...¢ wj =z, and z; ¢ var(n) holds in this case too.

Therefore

or{wi/ty = (Wudxi /1) (V1) edwi/t), o (Um) i /t}) =
= (V)15 m) = 0 = on{zi/t} .

We turn to consider a third subcase of our a3. and d3. case.

Suppose kK = € or k # € and there doesn’t exist a positive integer ¢ < p such that
q<n, K(n;r;z1:01,...,24 1 0q), 1 < q.
Also suppose 1 # ¢ and there exists a positive integer ¢ < u such that ¢ < n,

K(nsmywr : &1,y wy 1 €g), 1 < ¢

Consider that n € K(n) and we can define ¢, {z;/t}, (¥;),{z:/t}. Moreover k € K(n),
U, Y1, U € E(n, K).

If k = € then clearly z; ¢ var(x). Otherwise we know there exists a positive integer
g < p such that ¢ < n, K(n;K;21 1 @1,...,%4 : ¢q). Clearly i > ¢ so z; ¢ var(k) still
holds.

Thus we get

or{zi/ty == ) (W1, ... m) =
= (Uo{zi/tH)((L1)n{zi/t}, s (Wm)n{zi/t}) = on{zi/t} .

There is still another subcase to consider.

Suppose kK = € or k # € and there doesn’t exist a positive integer ¢ < p such that
q<n, K(n;r;z1:01,...,2¢ 1 0q), 1 < q.

Also suppose 7 = € or 17 # ¢ and there doesn’t exist a positive integer ¢’ < u such
that ¢/ <n, K(n;mywy 1 &1, .., wy 2 €y), 1 < ¢

Here clearly or{z;/t} = ¢ = pp{x;/t}.

Let’s turn to the case where a4. holds, and accordingly d4. holds too.

There exist k € K(n): k C k, f € F, a positive integer m, 1, ..., ¥, € E(n, k) such
that o = (f)(¥1,...,%m), ¢ € E(n+ 1,k), for each p € Z(k)
Ap(#(K, 1, p), - # (K, Y, p))-

There exist n € K(n): n C h, g € F, a positive integer r, x1, ..., x» € E(n,n) such that
o =(9)(x1,---,xr), ¢ € E(n+ L), for each p € E(n) Ag(#(n, x1,p),- -, #(1, Xr, ))-

We have

(@1, tm) =0 = (@) (X1, Xr)

and therefore g = f, r =m, foreach j =1...m x; = 9;.
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It follows that n € K(n), n C h, ¥1,...,¢m € E(n,n), ¢ € E(n+ 1,n), for each
p € En) Ar(#,91,0)s s #(00m, p))-

Suppose k # € and there exists a positive integer g < p such that g < n,
K(n;r;z 0 91,...,2q 1 9q), T < ¢

Also suppose 17 # € and there exists a positive integer ¢ < u such that ¢ < n,
K(nsmywr 2 &1, wy 1 €g), 1 < ¢

Consider that x € K(n) and we can define (¢;).{x;/t}. Moreover n € K(n),
ki =h; =mn; En.

We know that K(n;n;wq : &1,...,wy : & ). Lemma confirms that 7 < ¢’ and for
each j =1...7i w; = xj, § = ;.

Our assumptions also ensure that if ¢ < ¢’ then for each j =i+ 1...¢ w; ¢ Vi(t),
Vi (t) NV, (&;) = 0. We have also seen that ¢1,...,%m € E(n,n).

So by the inductive hypothesis we obtain (¢;).{x;/t} = (¢;)y{z:/t} and then
pr{wi/ty = (H((W1)a{mi/t}, ..o, (bm)w{zi/t}) =
= (N@)n{zi/t}s s (Gm)nfwi/t}) = pnfwi/t} .

We now need to consider another subcase of our a4. and d4. case.

Suppose k # € and there exists a positive integer ¢ < p such that ¢ < n,
K(n; k5210 901,..,%q 1 @q), © < g

Also suppose 7 = € or 7 # € and there doesn’t exist a positive integer ¢’ < u such
that ¢ <n, K(n;nywi 1 &, ..., wy 1 &yr), 1 < (.

Consider that « € K(n) and we can define (¢,).{x;/t}. Moreover n € K(n),
Y1, hm € E(n,m).

If n = € then clearly z; ¢ var(n). Otherwise we know there exists a positive integer
¢ < wsuch that ¢/ < n, K(n;m;wy = &1,...,wg : ). Clearly i > ¢, so for each
j=1...¢ wj = x; and z; ¢ var(n) holds in this case too.

Therefore

or{zi/t} = (W) e{mi/th, s (Um)e{mi/t}) =

We turn to consider a third subcase of our a4. and d4. case.

Suppose kK = € or k # € and there doesn’t exist a positive integer ¢ < p such that
q<n, K(n; k5211 01,..,24 1 0q), 1 < q-

Also suppose 1 # ¢ and there exists a positive integer ¢ < u such that ¢ < n,
K(”ﬂ%“’l : 517 ce, Wyt 5(1')7 1 < q/'

Consider that n € K(n) and we can define (¢;),{z;/t}. Moreover k € K(n),
V1, m € E(n, k).
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If k = € then clearly z; ¢ var(x). Otherwise we know there exists a positive integer
g < p such that ¢ < n, K(n;K;21 1 @1,...,%4 : ¢q). Clearly i > ¢ so z; ¢ var(k) still
holds.

Thus we get
(pk{mi/t} =p= (f)(l/]b cee ad}m) =
= (H(@)nlzi/th, s (Ym)n{zi/t}) = oni{zi/t} .
There is still another subcase to consider.

Suppose kK = € or k # € and there doesn’t exist a positive integer ¢ < p such that
q<n, K(n; k521001, .0,24 1 0q), 1 < ¢

Also suppose 7 = € or 1 # € and there doesn’t exist a positive integer ¢’ < u such
that ¢/ <n, K(nym;wy &, ..., wy 1 &y), 1< ¢

Here clearly or{z;/t} = ¢ = pp{x;/t}.
Finally we examine the case where a5. holds, and accordingly d5. also occurs.

There exist k € K(n): & C k, a positive integer m, ¢ € E(n), a function y whose

domain is {1,...,m} such that for each j = 1...m y; € V — var(s) and for each
a,f=1...ma#p—=yaFys;
a function 1 whose domain is {1,...,m} such that for each j =1...m 1; € E(n);

such that

5(”75777%%1/}»19)7 @:{}(y11¢1»~-~aymi¢mﬂ9)7 (PEE(TL-FLI{)

There exist n € K(n): n C h, a positive integer r, ¢ € E(n), a function z whose domain
is {1,...,r} such that for each j = 1...7 z; € V —var(n) and for each o, =1...7
« 7& ﬁ — Za 7é 283

a function x whose domain is {1,...,r} such that for each j =1...7 x; € E(n);

such that
E(n,m,ryz2,x,0), ¢ = {}(z1: X1, 20 1 X, 0), p € BE(n+1,m).
We have ¢ € E.(n+ 1,k) and
v ym Ym ) = ={}(z1 i x1, -, 20 1 X0, @)
Therefore r =m, z =y, x = and ¢ = 9.

It follows that n € K(n),n C h,foreach j =1...my; € V—var(n); E(n,n,m,y, ¥, ),
¢ € E(n+1,n).

Suppose k # € and there exists a positive integer g < p such that ¢ < n,
K(n; k5210 901,...,%q 1 @q), © < g

Also suppose 11 # € and there exists a positive integer ¢’ < u such that ¢ < n,
]C(TL, nwy - §1a s, Wyt gq')’ 1 g ql'
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Consider that x € K(n) and we can define (¢1).{x;/t}. Moreover n € K(n),
ki =hi =mn; E.

We know that K(n;n;wq : &1,...,wy @ & ). Lemma confirms that 7 < ¢’ and for
eachj: 1ZU}] = Iy, gj = @j-

Our assumptions also ensure that if ¢ < ¢’ then for each j =i+ 1...¢ w; ¢ Vi(t),
Vi (t) NV4(&;) = 0. We have also seen that 1; € E(n,n).

So by the inductive hypothesis we obtain
()wdmi/ty = (r)n{ai/t} .
Now suppose m > 1 and let j = 1...m — 1. It results #; € K(n) and we can define
(¢j+1)n;{$i/t}- Moreover 7 € K(n), (r})i = ri = hi =n; E ;.

We know that K:(?’L;’I];;wl : 61, cee, Wyt 6q’7y1 : 1/}17 e Yy w])
For each o = 1...j ya ¢ Vi(t), Vo(t) N Vs (0a) = 0. Moreover ;11 € E(n,n;). Therefore

(Vj1)w {zi/t} = (1) {i/t} -

We still need to show that ¥, {z;/t} =4, {z:/t}.
To this end we see that ], € K(n) and we can define ¥, {z;/t}. Moreover
M € K(n), (K7)i = ki = hi = 1i E 1.

We know that K(n;n),; w1 : &1, Wy 1€Y1 2 V1, oy Ym  Um)-
For each a =1...m yo & Vi(t), Vi (¢t) N V(o) = 0. Moreover ¢ € E(n,n),). Therefore

Dy {wi/t} = Oy {x3/t} .
Finally we can establish
er{i/ty = s @0)ed@i/th - ym - (Wm)wr Az /t}, O {2i/t}) =
= O @Onda/thsym s W, {os/th O /1)) = ot}

We now need to consider another subcase of our ab. and d5. case.

Suppose k # € and there exists a positive integer ¢ < p such that ¢ < n,
K(n; k5210 901,...,%q 1 @q), 1 < g

Also suppose 7 = € or 7 # € and there doesn’t exist a positive integer ¢’ < u such
that ¢/ <n, K(nym;wy 1 &, ..., wy 1 &y), 1 < ¢

Consider that k € K(n) and we can define (¢1).{x;/t}. Moreover n € K(n),
wl € E(n7 T})

If n = € then clearly z; ¢ var(n). Otherwise we know there exists a positive integer

¢ < wsuch that ¢ < n, K(n;m;wi @ &,...,wy @ &). Clearly i > ¢/, so for each
j=1...¢ wj =z, and z; ¢ var(n) holds in this case too.

We obtain that (1){z;/t} = ¢1.
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Now suppose m > 1 and let j = 1...m — 1. It results #; € K(n) and we can define
(z/)j+1),€;{xi/t}. Recall that &€(n,n,m,y,,9) holds, so n; € K(n), ¥j4+1 € E(n,n)). For
each a = 1...j yo ¢ var(k) and since z; € var(x) we have that y, # ;. This implies
that x; ¢ var(n;).

Therefore (¢j11)n {i/t} = ¥jt1.

We still need to show that 9., {z;/t} = 9.

It results x;, € K(n) and we can define 9., {x;/t}. Recall that E(n,n,m,y,,J)
holds, so ), € K(n), ¥ € E(n,n,,). For each & = 1...m y, ¢ var(k) and since
x; € var(k) we have that y, # x,;. This implies that z; ¢ var(n,,).

Therefore ¥, {;/t} = .
Finally we establish

ore{zi/ty =My : (D) ed@i/th o ym s (Wm)ey, {@i/th, O {zi/t}) =
=W v ym  Um, ) = o = on{ai/t}

We turn to consider a third subcase of our a5. and d5. case.

Suppose kK = € or k # € and there doesn’t exist a positive integer ¢ < p such that
g<mn, K(njr;zi:p1,...,24:¢q), 1t < q.

Also suppose 1 # ¢ and there exists a positive integer ¢ < u such that ¢ < n,
’C(nﬂn,wl : flw"qu’ :fq’)a 1< q/'

Consider that n € K(n) and we can define (¢1),{z;/t}. Moreover x € K(n), and
because of £(n, k, m,y,1¥,¥) we have ¢ € E(n, k).

If kK = € then clearly z; ¢ var(x). Otherwise we know there exists a positive integer
g < psuch that ¢ < n, K(n;k;21 @ @1,...,24 : @q). Clearly ¢ > g so z; ¢ var(k) still
holds.

We obtain that (¢1),{z;/t} = ¥1.

Now suppose m > 1 and let 7 = 1...m — 1. It results n3 € K(n) and we can define
(tj+1)m {xi/t}. Recall that E(n, K, m,y, v, ¥) holds, so &} € K(n), ¥j11 € E(n, }). For
each @« = 1...j yo ¢ var(n) and since x; = w; € var(n) we have that y, # x;. This

implies that z; ¢ var(x}).

Therefore (1), {@i/t} = 1.
We still need to show that 0,, {z;/t} = 1.

It results ,,, € K(n) and we can define 9, {x;/t}. Recall that £(n, x,m,y,,?) holds,
so ki, € K(n),¥ € E(n,kl,). Foreacha =1...my, ¢ var(n) and since z; = w; € var(n)
we have that y, # x;. This implies that z; ¢ var(k.,).

Therefore ¥,, {z;/t} = 1.
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Finally we establish
on{wi/ty = {Yy - (QO)ol@i/th, o ym s (m)y Azi/t}, O {zi/t}) =
={Hyr 1, Ym Y, U) = o = gi{wi/t} .
There is still another subcase to consider.
Suppose kK = € or k # € and there doesn’t exist a positive integer ¢ < p such that
g<mn, K(njrg;z1:p1,...,24:@q), 1 < q.
Also suppose 7 = € or 7 # € and there doesn’t exist a positive integer ¢’ < u such

that ¢ <n, K(n;nywi 1 &, ..., wy 1 &gr), 1 < (.

Here clearly or{z;/t} = ¢ = on{x;/t}.

Our definition process requires just a final step. As in the former step, we maintain
the assumption that ¢ € E(n+1, k) is such that V;,(¢)NV4(¢) = . In addition we assume
that h € K(n + 1) is such that ¢ € E(n + 1,h), z; ¢ var(h). We want to prove that

or{zi/t} = .

Because of ¢ € E(n+ 1,k) and V,(¢) N V,(¢) = 0 one of the following five conditions
holds:

al. v € C and pr{z;/t} = ¢.

a2. p cvar(k), ¢ = x; = ep{wi/t} =1, 0 # ;i = op{zi/t} = @.

a3. there exist kK € K(n): k C k, a positive integer m,

P, U1y, Ym € E(n, k) such that o = (¥)(¥1,...,%m), ¢ € E(n+ 1,k), for each

p € 2(k) #(k, 1, p) is a function with m arguments, (#(k, V1, p), ..., # (K, ¥m, p))
is a member of the domain of #(k, ¥, p).

If k # € by we can derive there exists a positive integer ¢ < p such that ¢ < n,
K(n;k;z1 0 @1,...,2q ¢ Pg)-
If < g, or in other words z; € var(k), since we have

Vi(t) N Vi(1h) C Va(t) N Vi() =0 ,
we can define 9, {z;/t}, and similarly we can define (¢;).{z;/t}, and it results

or{zi/t} = (We{zi/t}) (V1) e{zi/th, ..o (Ym)u{zi/t}) -

Otherwise (when k = € or kK # e Ai > q) prp{z;/t} = ¢.

ad. there exist k € K(n): k C k, f € F, a positive integer m, ¢1,...,%, € E(n, k)
such that ¢ = (f)(¢1,...,%m), p € E(n+1,k),
for cach p € S(x) A; (5, 61, ), -, 85 m ).
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If k # € by [£.7] we can derive there exists a positive integer ¢ < p such that ¢ < n,
K(n; k521 0 015,84 & Pg)-
If i < ¢, or in other words x; € var(k), since we have
Va(t) N Vi(¥5) € Vi(t) N V() =0,
we can define (¢;).{z;/t}, and it results

erfwi/th = (N(W)e{zi/th, .. (bm)e{zi/t}) -

Otherwise (when k = € or kK # e Ai > q) prp{z;/t} = ¢.

a5. there exist K € K(n): k C k, a positive integer m, ¥ € E(n), a function y whose
domain is {1,...,m} such that for each j = 1...m y; € V — var(x) and for each

a,f=1..ma#pB = ya #Ys;
a function ¢ whose domain is {1,...,m} such that for each j =1...m ¢; € E(n);

such that

Em,k,myy, ¥, 9), o = {Huy1 : Y1,y YUm : Ym, ), @ € E(n+1,K).

If k # € by [£.7] we can derive there exists a positive integer ¢ < p such that ¢ < n,
K(n; k521 0 015,84 & Pg)-

Suppose i < ¢, or in other words x; € var(k).

We define «f = & + (y1,¢1), and if m > 1 for each j = 1...m — 1
Kip1 = K + (Yj+1, Vjt1)-

We have i1 € E(n,x), Vy(t) N V(1) C Vi (t) N Vi(p) = 0, therefore (1),{x;/t} is
defined;

for each j =1...m — 1} € K(n) and by

K(n; 655210 0 150050 2 0qu Y1 2 01,0, Y5 0 5),

for each a« =1...7 yo € V() 80 ya ¢ Vi(t),

for each a=1...5 V3(t) N Vu(ha) C Vi(t) N Vi(p) = 0,

Vi+1 € BE(n, k%), Vo(t) N Vo (¥41) C Vi(t) N Vi(p) = 0,

therefore (41) ./ {x;/t} is defined;

KL, € K(n) and by [L.7]

’C(n“{;n;xl PP, T PP Y :¢1,-~-,ym?1/)m)7

foreach a =1...m yo € Vu(¢) s0 yo & Vi(t),

for each a =1...m V4(t) N Vu(a) C Vu(t) N Vi(p) = 0,

0 € E(n, k), V(1) N V5(9) € Vo(t) N Ve(p) = 0,

therefore ¥, {x;/t} is defined;

it results

or{i/ty = {Hy1 + (b1)wdzi/th, s ym s (P w {mi/t}, Oy {2 /t})

Otherwise (when k =€ or kK # e Ai > q) prp{z;/t} = ¢.

Since ¢ € E(n + 1,h) we can apply assumption [2.1.10] to establish that one of the
following five conditions holds:
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el. p €C.
e2. ¢ € var(h).
ed.
In € K(n) : n C h,3r positive integer , x, X1,-..Xr € E(n,n) :
=000 xr), ¥ € E(n+1,1),
Vp € E(n) ( #(n, x, p) is a function with r arguments,
(#(n,x1,0)s - - - (M, Xr, p)) 18 @ member of the domain of #(n, x, p).
ed.
dn e K(n):nC h,3g € F, r positive integer , x1,...xr € E(n,n) :
e=(9)(x1,---,Xxr), ¥ € E(n+ 1),
Vp e E(n) (Ag(#m,x1,0),- -, #(10,Xr, p))-
ed.

there exist
nekKn):nCh,
a positive integer 7,
a function z whose domain is {1,...,7} such that for each j =1...r
zj € V —war(n), and for each a, 3 =1...r a # f — 2o # 23,
a function y whose domain is {1,...,r} such that for each j =1...r
X; € E(n),
¢ € E(n)
such that
Eln,n,r,z, %, @),
e={}z1:X1,--s2r : Xy @), © € E(n+1,7).

If al. occurs then clearly r{z;/t} = .

If a2. occurs then e2. also holds. Since ¢ € var(h) and z; ¢ var(h) we have ¢ # x;,
s0 prplzi/t} = .

If a3. occurs then e3. also holds. We have

(1/))(1/)17 s 7wm) =p= (X)(le s ,XT) )

and therefore r = m, x = and for each j =1...m x; = ;.

It follows that n € K(n), n C h, ¥, ¥1,...,%m € E(n,n), ¢ € E(n+ 1,n), for each
p € E(n) #(n,%,p) is a function with m arguments, (#(n,¥1,p), ..., #(0, ¥m,p)) is a
member of the domain of #(n, ¥, p).

Suppose k # € and there exists a positive integer ¢ < p such that ¢ < n,
K(n;kiy o1, 20 0q), @ < g
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Consider that £ € K(n) and we can define ¢, {x;/t}, (¢;).{xi/t}. Also consider that
n € K(n), ¥, ¥1,...,0m € E(n,n), and since n C h, z; ¢ var(n). Therefore

Uelmi/ty =, (g)u{xi/t} =15 .

It follows that
pr{wi/ty = Wud{zi /L) (1) e{i/t} - () e{wi/}) = (@) (W1, hm) = @ .
Now suppose k = € or k # € and there doesn’t exist a positive integer ¢ < p such that
g<n, Kn;k;x1:p1,...,24 1 ¢q), 1 < q.
Here it’s easier, as we immediately get pr{z;/t} = .
If a4. occurs then e4. also holds. We have
(N1 m) =0 = (9) (X155 xr) 5

and therefore g = f, r =m, foreach j =1...m x; = v;.

It follows that n € K(n), n T h, ¥1,...,¢m € E(n,n), ¢ € E(n+ 1,n), for each
p €E(n) Ap(#(m,¥1,p), .-, #(0, Ym, p))-

Suppose k # € and there exists a positive integer g < p such that g < n,
K(n; K21 091, %q  9q), © < .

Consider that k € K(n) and we can define (¢;),.{z;/t}. Also consider that n € K(n),
P1,...,¥m € E(n,n), and since n C h, z; ¢ var(n). Therefore (¢;).{z;/t} = ;.

It follows that
er{wi/ty = (NH((W1)ad{zi/t}, o (bm)w{zi/t}) = () (W1, m) = ¢
Now suppose k = € or k # € and there doesn’t exist a positive integer ¢ < p such that
g<mn, K(njk;zi 1 p1,...,24:@q), 1 <.
Here it’s easier, as we immediately get pp{z;/t} = .
If a5. occurs then eb. also holds. We have ¢ € E.(n + 1, k) and
O tn,ym Ym0 = = {3z X1, 2 2 X0 @) -
Therefore r =m, z =y, x = and ¢ = 9.

It follows that n € K(n),n C h,foreach j =1...my; € V—var(n); E(n,n,m,y, ¥, ),
¢ € E(n+1,m).

Suppose k # € and there exists a positive integer g < p such that ¢ < n,
K(n; k5210 901,...,%q 1 @q), 1 < g

Consider that k € K(n) and we can define (¢1).{x;/t}. Also consider that n € K(n),
1 € E(n,n), and since n C h, x; ¢ var(n). Therefore (11).{z:/t} = 1.

Now suppose m > 1 and let j = 1...m — 1. It results x € K(n) and we can define
(thj+1)w;{xi/t}. Moreover nj € K(n), 11 € E(n,n;). For each v =1...j yo & var(k)
and since x; € var(k) we have that y, # ;. This implies that z; ¢ var(n;).
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Therefore (¢j+1)n; {zi/t} = V11
We still need to show that 9./ {z;/t} = 9.

It results x;, € K(n) and we can define 9., {x;/t}. Recall that E(n,n,m,y,,J)
holds, so 7, € K(n), ¥ € E(n,n,,). For each & = 1...m y, ¢ var(k) and since
x; € var(k) we have that y, # x,;. This implies that z; ¢ var(n,,).

Therefore ¥, {x;/t} = .
We conclude
er{wi/ty = {3y s (W)ufmi/th - ym s (), {wi/t} Oy {wi/t}) =
=@ v ym U 9) =

Now suppose k = € or k # € and there doesn’t exist a positive integer ¢ < p such that
q<mn, K:(n,:‘{,l‘l TP, Tg Qoq), 1< g

Here it’s easier, as we immediately get pp{z;/t} = ¢.

The final step of our definition process has been completed.
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5. Proofs and deductive methodology

In chapter [2| we have seen that our language is identified by a 4-tuple (V, F,C,#). In
chapter [3] we have given some definitions which are important with respect to the deduc-
tive methodology. For instance we have defined the set S(k) of sentences with respect to
a context k. A sentence with respect to € will simply be called a ‘sentence’.

At this point we need to define what is a proof in our language. To define this we
need to define the notions of axiom and rule.

An axiom is a set A such that

e AC S(G)
e for each ¢ € A #(p) holds.

The property ‘for each ¢ € A #(p) holds’ states that axiom A is ‘sound’.

Given a positive integer n we indicate with S(€)™ the set of all n-tuples (¢1,...,¥n)
for p1,...,¢n € S(€). An n-ary rule is a set R C S(e)"*! such that

e for each (¢1,...,¢n,¢) € Rif #(¢1),...,#(pn) hold then #(p) holds.

The property ‘for each (1, ..., 9n, ) € Rif #(p1),...,#(pn) hold then #(¢) holds’
states that rule R is ‘sound’.

Both in the definition of axiom and rule we have included a requirement of soundness.

A deductive system is built on top of a language £ = (V, F,C,#), and is identified
by a pair (A, R) where A is a set of axioms in £ and R is a set of rules in L.

Given a language £, D = (A, R) deductive system in L, ¢, 91, ..., 1, sentences in
L, we say that (¢1,...,%y) is a proof of ¢ in D if and only if

e there exists A € A such that ¢, € A;
e if m > 1 then for each j = 2...m one of the following holds

— there exists A € A such that ¢; € A,

— there exist an n-ary rule R € R and 4y,...,%, < j such that
(Viys -5 i, 15) € By
o Y, = .

Given D = (A, R) deductive system in £ and ¢ sentence in £ we say that ¢ is deriv-
able in D and write Fp ¢ if and only if there exist 91, ..., 1, sentences in £ such that
(¥1,...,%m) is a proof of ¢ in D.

A deductive system D = (A, R) is said to be sound if and only if for each ¢ sentence
in L if Fp ¢ then #(¢) holds. In the next lemma we easily prove that each of our systems
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is sound.

LEMMA 5.1. Let D = (A, R) be a deductive system in L. Then D is sound.
Proof.

Let ¢ be a sentence in L. Suppose Fp ¢. There exist ¥1, ..., 1, sentences in £ such
that (11,...,%m) is a proof of ¢ in D. We can show that for each j = 1...m #(¢;)
holds.

There exists A € A such that ¥; € A, so #(11) holds.
If m > 1 suppose j =2...m.
If there exists A € A such that ¢; € A then #(1);) holds.
Otherwise there exist an n-ary rule R € R and iy, ...,4, < j such that
(Yiyy- -5, 05) €ER.
Since #(¥i, ), - - -, #(1;,,) all hold then #(1;) also holds. m
We assume that all of these symbols: =, A, V, —, <>, V, 3 are in our set F (this is the

same assumption we made in chapter [3). We also add to F the membership predicate €
and the equality predicate = (they have both been explained at the beginning of chapter

).

We now need to list a set of axioms and rules that can be used in every language with
the aforementioned symbols within the set F. For every axiom/rule we first prove a result
which ensures the soundness of the axiom/rule and then define properly the axiom/rule
itself.

In our proofs we’ll frequently use the following simple result.

LEMMA 5.2. Let S be a set and q,r be functions over S such that for each o € S q(o)
and r(o) are true (in these assumptions q,r can be called ‘predicates over S’). Then

Py({q(0)| 0 € S}) <+ for each o € S q(0),
P5({q(0)| 0 € S}) <> there exists 0 € S : q(o),
Py({q(0)| o € S,r(0)}) > for each o € S if r(o) then q(o),
P5({q(0)| o € S,r(0)}) <+ there exists 0 € S : (o) and g(o).
Proof.
Let z1 = {q(0)| o € S}.

We suppose Py(z1) and try to prove for each o € S ¢(0).
Let o € S, clearly ¢(o) € x1, so q(o) is true.
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Conversely we suppose for each o € S ¢(o) and try to prove Py(z1).
Let z € x1, there exists o € S such that = = ¢(o) is true.

We suppose P5(x1) and try to prove there exists o € S ¢(o).
There exists x in x; such that (x is true). There exists o € S such that © = ¢(¢), therefore
q(o) is true.

Conversely we suppose there exists o € S ¢(o) and try to prove P3(z1).
Clearly q(o) € 1 and ¢(o) is true, so P3(z1) is proved.

Now, to prove the other result, let z1 = {q(0)| o € S,7(0)}.

We suppose Py(x1) and try to prove for each o € S if r(o) then g(o).
Let 0 € S and assume 7(0), clearly ¢(o) € x1, so ¢(o) is true.

Conversely we suppose for each o € S if r(o) then ¢(o) and try to prove Ry(z1).
Let x € x1, there exists o € S such that r(o) and z = ¢(0) is true.

We suppose P5(x1) and try to prove there exists o € S : (o) and ¢(o).
There exists x in z; such that  is true. So there exists o € S such that (o) and z = ¢(0),
therefore ¢(o) is true.

Conversely we suppose there exists o € S : r(0) and ¢(o) and try to prove P5(zq).
Clearly ¢q(o) € 1 and g(o) is true, so P3(xy) is proved. m

The first rule we introduce is based on lemma In fact that lemma allows us to
create a rule Rgg which is the set of all 3-tuples
V@1 @1, Tm t Pm, (=) (9,901,
V@1 @1, Tm P, () (9, Y2)],
Y[z1 o1, Tm  omsy () (@, (N (P1,902))]
such that
e m is a positive integer, z1,...,zy € V, x; # x; for i # j, o1,...,0m € E,
Hzy: @1, oy Tm  Oml,
L4 ¢’¢1’¢2 € S(k[xl Py Tt me])

We continue the list of our rules with another simple one.

LEMMA 5.3. Let m be a positive integer. Let x1,..., %y €V, with x; # x; fori # j. Let
D1y om € E and assume H[x1 : p1,...,&Zm : pm]. Define k = klx1 : ©1,...,Zm : ©m]
and let @, 1) € S(k).

Under these assumptions we have

o (&)@, ¥), (=)0, ), (=), ¢) € S(k),
L4 7[581 Py Tm L P (H)(@aﬂ})] € S(E)f
o 7[331 FPL - Tm P (—>)(§Oa¢)] € S(e)f
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o ’}/[.’1/'1 Py Tm L Py (_>)(,(/}7%0)] € S(G)
Moreover if #(y[x1 : @1, Tm : ©m, (<) (p,)]) then
#OV1 1T om, (2) (0, D)]) and #(y[21 @1 P, (), 9)])

Proof.
We have
Py({#(k, (<) (@, ), 0)| 0 € E(k)}),
PV({PH(#(]C’ 9070) #(k,¢,0))| oc E(k)})a
Py({P- (#(k, ¢, 0), #(k,,0))| 0 € E(k)}),
( |

In addition
PV({P%(#(kaql}a U)v #(kv 90’0)” oc E(k)})a
Py({#(k, (=)0, 9),0)| 0 € E(k)}),
#(’y[xl P Tm Py (_>)(¢» 90)])

This lemma allows us to create a unary rule Rgm which is the union of two sets of
pairs.

Let G be the set of all pairs

(7[171 PP T P ((—))((p71/))],’y[331 FPL - Tm P (—>)(§Oa 11[})])
such that

e m is a positive integer, x1,...,xm € V, x; # z; for i # j, ¢1,...,om € E,
Hlzy: @1, .oy Tm : Oml,
o o, p e Sklry:pr,. ., Tm: ©m])-

Let G5 be the set of all pairs

(V[Il PP Tt P (H)(%W]W[Il CPL e Tm - P (%)(d), 90)])
such that

e m is a positive integer, x1,...,xm € V, x; # x; for i # j, ¢1,...,0om € E,
Hlxy: 01,y T Ol
L4 QO,?ZJE S(k[xl:@lv"wxm:@m])'

Then Rgmis the union of G; and Gbs.

LEMMA 5.4. Let m be a positive integer. Let x1,...,%m €V, with x; # x; fori # j. Let
D1y om € E and assume H[x1 : p1,...,&Tm : pm]. Define k = klx1 : @©1,...,Zm : ©m]
and let p,vp € S(k).

Under these assumptions we have
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o (M 1), (=) (M 9), 0) 5 (=) (M) (0, 9), %) € S(k),
Ve en @ om, (2) (N (@, ), )] € S(e),
Ve n @ om, (2) (N (e, ), 9)] € S(e).

Moreover # (y[x1 : @1, .., Tm : Om,
# (’Y[J?l Py Tm D Py (_>) ((/\>(30a (%
Proof.

~—

=) (M) (@), 9)]) and
,)]) are both true.

We can rewrite # (Y[z1 : @1, -, Tm  ©m, (=) (A) (1), ¥)]) as follows:
Po({#(k, (=) (N)(p,¥), 9) . 0)| 0 € E(K)})
Py({P= (# (k, (N) (. ¥),0) , # (k,p,0)) | o € E(R)})
Py({P (Pr (#(k, 0, 0), #(k, ¥, 0)) , # (K, 9,0)) | o € E(K)}).

This can be expressed as
for each o € E(k) if #(k, ¢,0) and #(k, ¢, o) then #(k, ¢,0),
which is clearly true.

In the same way we can prove the truth of

# (1 @1, 2 oms () (M) (@,9),9)]) -

Lemma permits us to create an axiom Agzg which is the union of two sets of
sentences.

Let G be the set of all sentences y[z1 : @1, .., Tm : ©m, (=) (A) (@, 1), )] such that

e m is a positive integer, x1,...,zm € V, x; # x; for i # j, p1,...,0m € E,
H[xl Py Tt @m]a

o o, )€ Sklry:p1,. ., Tm : ©m])-

Let G5 be the set of all sentences ¥[x1 : ©1,...,Zm : ©m, (=) (A)(, ), )] such that

e m is a positive integer, x1,...,zm € V, x; # x; for i # j, ¢1,...,0m € E,
H[.’El Py Tt @m]a

o o, € Sk[zy: w1,y Tm : ©m])-

Then Agzg is the union of G; and Gj.

LEMMA 5.5. Let m be a positive integer. Let x1,..., %y €V, with x; # x; fori # j. Let
Oy om € E and assume H[x1 : ©1,...,Tm : ©m]. Define k = k[x1 1 01,y Tm : ©m)
and let @,v, x € S(k).

Under these assumptions we have

o (=)0, 1), (=)W, x), (=)@, x) € S(k),
hd 7[$1 FPL - Tm P (—>)(§0a¢)] € S(e)f
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o 7[331 Py Tt @m7(_>)(,(/}7x)] € S(C),
o Y[T1: 1,y Tt Om, (=) (0, X

m

»
D
N~—

Moreover if

o #(7[1‘1 Py Tm L P (—>)(
o #(’y[l‘l CP1y e T ()DWH(—))(

then #(y[T1: @1, s Tm 2 @m, (=) (@, X)])-
Proof.
We can rewrite #(y[x1 : ©1,. ., Tm : ©m, (—)(p,¥)]) as follows:
Py({#(k, (=) (. ¥),0)| 0 € E(k)})
PV({PH (#(kv <)070)7 #(k,¢,0)) | o0& E(k)})

And we can rewrite #(y[z1: @1, -, Tm : Pm, (=) (¥, X)]) as follows:
Py({#(k, (=) (¥, x),0)| o € E(k)})
Py({P (#(k,1),0),#(k,x,0)) | 0 € E(k)}).

In other words for each o € E(k) if #(k, ¢,0) then #(k,,0), and if #(k,1,0) then
#(k,x,0). So, for each o € E(k), if #(k,p,0) then #(k, x,0). This can be written as
follows:

PV({P% (#(ka 8070')’ #(kaXa U)) | o€ E(k)})
Py({#(k, (=) (¢, x),0)| 0 € E(k)}),
#OV[T1 @1, T O, (=)0 X)])-

Lemma allows us to create a rule Rgy which is the set of all 3-tuples

Y[E1 T o1, Tt oms () (0, 9)]
’7[371 Py Tm L Py (—>)(¢7X)]7
’7[1‘1 CPLy - Tm L Py (_>)((p7X)]

such that
e m is a positive integer, x1,...,xm € V, x; # x; for i # j, ¢1,...,0m € E,

Hlzy: 01,y T Ol
i 50771}7X€S(k[x1:Sola"'ﬂbm:(pm})'

LEMMA 5.6. Let m be a positive integer. Let x1,...,Tmy1 € V, with x; # x; for i # j.
Let v1,...,0m+1 € E and assume H[zy : ©1,..., Tmi1 : Pmt1]-

Define k = k[x1: 01,y Tm+1 : ©m+1]. Of course H[x1 : 91, .., Tm : ©m] also holds
and we define h = k[z1 : ¢1,...,Tm : om]. Let x € S(h).



A different approach to logic 157

Let t € E(h) such that ¥Vp € E(h) #(h,t,p) € #(h, m+1,p).
Let t' € E(h) such that ¥p € 2(h) #(h,t', p) € #(h, ©m+1,p)-
Let o € S(k) such that Vy(t) N Vp(p) =0, Vo (t') N Vi(p) = 0.

Then we can define pr{Tm+t1/t}, ox{tms+1/t'} € S(h) and therefore

® V[T Q1 T Py () (X Pr{Tmr1 /t)})] € S(e)
o Y[T1 1, T om, ()X, (5)(#,1)] € S(e)
® V[T Q1 Tt Py () (X Pr{Zmrr /t'})] € S(e).

Moreover if

o H#(y[w1:o1, - T Om, ()06 rlTme/1})])
o #(V[r1 @1, T om, (=) (X, (F) (1))

then #(y[z1: 01, Zm 2 omy ()06 Pe{Tm1/T'})])-
Proof.
We define kg = e and for each i =1...m + 1 k; = k[x1 : 01,...,2; : @]
We saw in remark that foreachi=1...m+1
i € Es(ki—1), ki = ki—1 + (x4,94), dom(k;) ={1,...,i} .
There exists a positive integer n such that & € K(n), ¢ € E(n,k) and for each

i=1...m+1¢; € Es(n—1,ki—1). Clearly k = k[z1 : ©1,..., Zm+1 : Pm+1] = km+1 also
holds, so we have K(n;k;x1 : @1, -, Tma1 @ Pmt1)-

Moreover h = ky, so t € E(ky,) is such that Vp € E(kp,) #(km, t, p) € #(km, Pm+1,0)-
We have V() CV —var(ky) =V —{z1,...,2m}, soforeach j =1...m z; ¢ Vj(¢).

Therefore we can define pi{Tm+1/t} € E(k{zm+1/t}) = E(h), and clearly the same
holds for ¢/, so we can define @p{Tm1/t'} € E(k{zms1/t'}) = E(h).

By definition we know that for each p € Z(h) there exists o € E(k) such that
#(h, pp{rms1/thp) = F#(k,p,0). Since #(k,p,0) is true or false then so is
#(h, pp{Tm+1/t}, p). Therefore pr{zmyi1/t} € S(h).

Clearly the same holds for ¢/, so @r{@m1/t'} € S(h).

We can derive that (=) (x, pr{Tms1/t}), (=), x{Tmi1/t'}) € S(h).
Furtherly, (=)(t,t") € S(h) and so (=)(x, (=)(¢,t')) € S(h). Therefore
] € 5(e)

hd 7[931 Py It ‘P?nv( )(X @k{xm-‘rl/t})
® Y[z, wm s om, () (X ()G )] € S(e)
o Y[z1:pr, T om, () (G pr{Tmer/t})] € S(e).

Suppose the following both hold

a. #(Oy[rr o1, Tt @my ()06 @r{Tma1 /t})])
b. #(y[z1 15 @ oms () (X (F) (1))
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We can rewrite a. like this:
Py({#(h, (=) (x; ee{zmi1/t}), p)| p € E(h)})
Po({P- (#(h, x; p), #(h, pr{zmia /th, p)) | p € E(R)}) -
And we can rewrite b. like this:
Py({#(h, (=)0 5)(t, 1), )| p € E()})
Py({P= (#(h, X, p), #(h, (=)(t, 1), p)) | p € E(R)})
Py({P= (#(h,x, p), P=(#(h, 1, p), #(h,t",p))) | p € E(R)}) -

We have to show #(y[z1 : @1,y Zm : ©m, (=) @e{Tm+1/t'})]), which can be
rewritten:

PV({P—> (#(h7 X7p)7 #(h7 @k{mm-i-l/t/}’p)) I pE E(h)}) .
In other words we need to show that for each p € Z(h)

if #(h, x, p) then #(h, @i {@ms1/t'}. ).

Let p = (u,r) € Z(h) and assume #(h, x, p).
We have dom(p) = dom(h) = dom(k.,), S0 p/dom(k,,) = p- Let’s define o¢ = ¢,

o foreach j=1...mo; =0;_1 + (uj,75),
® Omt1 =0m + (‘rm+17#(kmat7p)) :

Because of a. #(h, gr{xm+1/t}, p) holds, so #(k, ¢, 0m+1) holds too.
Because of b. # (ki t', p) = #(h, ', p) = #(h,t,p) = #(km, t, p).
Therefore #(h, op{xmy1/t'}, p) holds too. m

Lemma [5.6] allows us to create a rule Rgg which is the set of all 3-tuples
( ’Y['xl CPL - Tm P (_>)(Xa Qﬁk{xm-‘rl/t})L )

’Y[xl CPL e T Py (—>)(Xa (:)(t7t/))]v
Y11, Tm  Pms ()G Pr{Tmt1/t'})]

such that
e m is a positive integer, x1,...,Tm41 € V, with x; # x; fori # j, ¢1,...,om41 € E,
Hzy: 01, Tyt Omyls
o if we define k = k[z1: ©1,.. ., Zmt1 : ©m+1] and h = k[z1 : @1,..., Tm : @] then
—X€ S(h)7

t € E(h), Vp € E(h) #(h,t,p) € #(h, Pm+1,p),
t' € E(h), Vp € 2(h) #(h,t',p) € #(h, @m+1, ),
0 € S(k), Vi(t) N Vi(p) =0, Vi(t') N Vi(p) = 0.
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LEMMA 5.7. Let m be a positive integer. Let x1,...,Ty €V, with x; # x; for i # j. Let
Ol om € E and assume H[Z1 1 ©1,...,Tm : ©m]. Define k = k[x1: 01, ., Tm : ©m)
and let o, € S(k).

Under these assumptions we have

o (=), p) € S(k),
o Y[T1: 01,y Tt Om, ) € S(€),
o Y[T1: 01,y Tt Om, (=) (U, 0)] € S(e).

Moreover Zf# (’Y[xl PPy Tm P 90]) then # (’Y[xl PPy Tm P (%)W, 90)])
also holds.

Proof.
Suppose # (Y[z1 : @1, -+, Tm : Pm,p]) holds. It can be rewritten as
Py({#(k, ¢,0)| o € E(K)}) -
We can rewrite # (Y[z1 : @1, ..., Tm : ©m, (=) (W, p)]) as
Py({#(k, (=) (¥, 0),0)| 0 € E(R)})
Py({Po (#(k, ¥, 0), #(k, ,0))| o € E(k)}) -
For each o € E(k) #(k, ¢, o) holds, this implies that

Py({P~(#(k, ¥, 0),#(k,p,0))| 0 € E(k)})
holds too and this completes the proof. m

Lemma allows us to create a rule Rgz which is the set of all pairs

(V1 o1, @ t omy @l V[T 1, T o, (2)(Y, 9)])
such that
e m is a positive integer, x1,...,xm € V, x; # x; for i # j, ¢1,...,0m € E,
Hlzy: 01, Tt Ol
o v € Sklxy:v1,. ., Tm: Om]).

LEMMA 5.8. Let m be a positive integer. Let z1,...,%y €V, with x; # x; fori # j. Let
Ol om € E and assume H[x1 : ©1,...,Tm : ©m]. Define k = k[x1: 01,y Tm : ©m)
and let o, v, x € E(k), 9 € S(k).

Under these assumptions we have

o (=), (—)( V), (=)0, (=), X)), (=)0, (=)(p, x)) € S(k)
i 7[331 CP1y e T L P,y (_>)<197( )(%1#))] € S(E),’

Y1 @1, Tm  om, ()0, (=), x))] € S(e);

VE1 @1, Tm om, (), (=)0, x))] € S(e)-

Moreover if

hd #(7[1:1 PP Tm P (—>)(19a (:)(9071/)))]);
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o #(V[r1 01, T om, (=) (0, (=) (¥, X))
then #(Y[x1 2 o1, Tm 2 omsy (=)0, (=) (@, X))])-
Proof.
We rewrite #(Y[1 : @15+ T ©m, () (9, (=) (p, )
Py({#(k, (=)0, (=)(p, ))70)| ocE(k )}) :
Py({P- (#(k,0,0), #(k, (=)(,¥),0)) | o € E(k)})
Py({P= (#(k,0,0), P-(#(k, ¢, 0), #(k, 1, 0))) |
Similarly we rewrite #(y[21 : @1, Tm : ©m, (=) (D, (=)(¥, x))]) as
Pu{P-, (#(k, 9, 0), P (#(k, 0, 0), #(k, x, o)) | 7 € Z(R)})
and we rewrite #(y[x1 : @1, Tm : ©m, (=) (9, (=)(p, x))]) as
Py({P- (#(k,0,0), P-(#(k,,0), #(k, x,0))) | 0 € E(k)}) .

If
hd #(’Y[l’l P T (pm7(_))( ) :)((p7¢))])7
o #(y[T1 et Tt oy () (D, (F) (X))

¥, (
7, (
both hold, then for each o € E(k) if #(k, ¥, o) then #(k, p, o) is equal to #(k, ¢, o),
which is equal to #(k, x, o).

This implies that #(y[x1 : ©1,.. ., Tm : ©m, (=)D, (=)(v, Xx))]) holds. =

Lemma [5.8] allows us to create a rule Rgg which is the set of all 3-tuples
7[ o EEE m‘ﬁmy( )( ’(_)(<p7w))]’
’Y[xl PP Tm Py (_>)(19a (:)(wvx))]a
’Y[xl Py Tm L Py (_>)(19a (:)(<)07 X))]
such that
e m is a positive integer, x1,...,xm € V, x; # x; for i # j, ¢1,...,0m € E,
Hlzy: 01, T Ol
d 8071/%)( € E(k[xl TP Tm Qom])a RS S(k[xl PP T Sam])

LEMMA 5.9. Let m be a positive integer. Let x1,...,Tm+1 € V, with x; # x; for i # j.
Let 1,...,0m+1 € E and assume H[X1 1 ©1,. .., Timil : Qi)

Define k = k[x1 : 01,y Tmt1 : ©m+1]. Of course H[x1 : ©1,. .., Tm : ©m] also holds
and we define h = k[z1 : @1,...,Tm : ©m]. Let x € S(h).

Let t € E(h) such that ¥p € E(h) #(h,t, p) € #(h, Pm+1,p).
Let o € S(k) such that Vy(t) N V() = 0.
Then we can define pr{xm+1/t} € S(h) and furthermore

o N} @mt1: emr1,9)) € S(h),
hd 'Y[xl FPL - Tm P (—>)(Xa @k{zm-&-l/t})] € 5(6)7
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o Yz mm s om, ()06 )} @mtr s omir,9)))] € S(e)

Moreover if #(y[z1 : 1, ., Tm : Pm, (=) (X; pr{zm+1/t})]) then
#1015 T om, (=) (06 AV {Y (@t + Emr1,9)))]) -
Proof.

As we have seen in lemmal5.6] in these assumptions we can prove i {zm1/t} € S(h).

Since @m41 € Eg(h), Tme1 € V —wvar(h), k = h + (Tmt1, Pm+1) we can apply
lemma [3.1] and obtain that (3)({} (Zpt1 : @mt1,9)) € S(h).

Therefore

® V[T Q1 Tt Py () (X Pr{Tmy1/t})] € S(e),
® V[T Q1 Tt P, () (G B (Tt 1, 9)))] € S(e).

Suppose #(Y[z1 : ©1,-- s Tm * @ms (=) (X, Pr{Tm+1/t})]) holds, it can be rewritten
as

Py({#(h, (=) er{zm1/t}), p)l p € E(R)})
Py({P- (#(h, x, p), #(h, pr{zm+1/t}, p))| p € E()}) -

We need to prove #(y[z1 : @1, Zm : ©m, (=), Q) {} (Tmt1 : ©mt1,9)))]), and
this can be rewritten

Py({P=(#(h, X, p), # (0, B){} (@t = omy1s9)),p))l p € E(R)})
Py({P- (#(h, x, p), P ({#(k, ¢, 0)| 0 € E(k), p E 0}))| p € E(R)}) -

Let p € E(h) and suppose #(h,x,p). We need to show there exists o € Z(k) such
that p C o and #(k, p,0).

We have #(h, pp{xm+1/t},p), p € E(h) = E(k{zm+1/t}), dom(p) = {1,...,m}. Let
p = (u,r) and define o9 = ¢, for each j = 1...m o; = o0;1 + (u;,7j),
Om+1 = Om + (xm-‘rla #(h7 tvp))

By definition it results 0,41 € Z(k) and #(h, ox{xm+1/t}, p) = #(k, 0, 0m+1),
so #(k, ¢, 0m+1) holds true. Clearly p = 0., C 041, so our proof is finished. m

Lemma [5.9] allows us to create a rule Rgg which is the set of all pairs

( ’Y[xl Py Tt @m:(%)(Xvwk{xm-l-l/t})]’ )
Ve er - zm s oms ()06 ) (@t - omr1, 9)))]

such that
e m is a positive integer, z1,...,Zm41 € V, with a; # x; fori # j, o1,...,om+1 € E,
Hz1: 01,y Tt Pmti);
o if we define k = k[x1 : ¢1,.. ., Tmt1 : Pma1] and h = k[z1 1 ¢1,...,Tm : ©m] then
- X € S(h)7

— t € E(h), Vp € Z(h) #(h,t,p) € #(h, pm+1,p),
— p € S(k), Vu(t) N Vi(p) = 0.
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LEMMA 5.10. Let m be a positive integer. Let x1,..., &y, € V, with x; # x; fori # j. Let
Ol om € E and assume H[Z1 : ©1,...,Tm : ©m]. Define k = k[x1 1 01,y Tm : ©m)
and let @, 1, x € S(k).

Under these assumptions we have

o (=)((N)(@, 1), x), (=) (s (=), X)) € S(k),
o YT 1, T oms () (M) (0, 9), X)] € S(e),
L4 V[xl CP1y e T - Py (_>)(30a (—>)(¢7X))] S S(E)

Moreover if #(v[z1: @1, Tm = ©m, (=)(A)(p, ), x)]) then
#Over o1, oms ()@, (=) (8, X))
Proof.
We assume #(y[T1 : @1, - Tm : ©m, (=) ((A) (9, 1), X)]) which can be rewritten
Pv({#( (=) (A, ¥),x), 0)| o € E(F)})
Py({P- (#(k, (M) (@, ), 0), #(k, x, 0))| 0 € E(k)})
Py({P (PA(#(k, ¢, 0), #(k, ¥, 0)), #(k, x, 0))| 0 € E(k)}) -

Y

Of course we now try to show #(y[x1 : ©1,.- -, Tm : Pm, (=) (@, (=) (¥, x))]) which in
turn can be rewritten

By({#(k, (=) (e, (=) (¥, X)), 0)| 0 € E(F)})
({PH( #(k, @, 0), #(k, (=) (¢, x), 0))| 0 € E(k)})
Py({P~ (#(k, ,0), P (#(k, v, 0), #(k, X, 0)))| o € E(k)}) -

Let o € E(k), suppose #(k,p,0) and #(k,v,0), then we have #(k, x,o) and this
completes the proof. m
Lemma allows us to create a rule Rz which is the set of all pairs
(Vo1 s @1,y T s oms () (A (@ 0), XD Y21 2 @15y @ 2 oms (=) (05 (=) (9, X))])

such that
e m is a positive integer, x1,...,xm € V, x; # x; for i # j, ¢1,...,0om € E,
Hzy: @1, oy Tm : Om),
o @a¢ax S S(k['rl CP1y e T QOmD
LEMMA 5.11. Let m be a positive integer. Let T1,...,Tmy1 €V, with x; # x; for i # j.

Let 1,...,0m+1 € E and assume H[X1 : ©1,.. ., Tmil : Omt1)-

Define k = k[x1 : o1, ..., Tmt1 : ©m1]- Of course H[x1 : @1, ..., Tm ¢ ©m] also holds,
and we define h = k[z1 : p1,...,Tm : om]. Let b € S(h) N S(k) and ¢ € S(k).

Then the following hold

o (=)W, p) € S(k),
® Ymir s omyr, (=), 0)] € S(h),
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o (=)W Y[Tm1 s eme1.¢]) € S(h),
e Y[T1: 01,y Tt Py V[ Tmt1 : Pmt1s () (0, 0)]] € S(€),
o V[T Q1 T P (=) (W V[Emgr P, 9))] € S(e).

Moreover if #(Y[T1: @15, Tm * @i, V[ Emt1 : Om1, (=) (0, 9)]]) then
#O[z1 1015 Tt Oy (D) (W, Y[Tma1 T o1, @))]) -
Proof.
The two facts

® V[Tmi1: Pmi1, (=), )] € S(h),
o (=)W, Y[Tmr1 : Pmr1,¢]) € S(h)

clearly follow from definition
We can rewrite #(y[z1: 01, ., Zm : Pmy VTmt1 : Pm1, ()4, 9)]]) as
Po({#(h, v[wme1 s omr1, (2) (@, )] p)| p € E(R)})
Py({#(h, (V) ({} (@m41 : @mi1, (2)(,9))), p) p € E(R)})
Py({Py ({#(k, (=), 0),0)| 0 € E(k),p T a}) | p € E(M)}) ,
Py({Py ({ P~ (#(k, 9, 0), #(k, ,0))| 0 € E(k),p Eo}) [ p € E(R)}) -

In turn #(y[z1 : @1, T Py (=) (W, Y[Tmt1 : @ms1, ¢])]) can be rewritten as
Po({#(h, (=), Y[@m+1 : @ma1,€)): p)| p € E(R)})
Py({P- (# ( ¥, ), # (Y [Tms1 2 Oma1,0],0)) | p € E(R)})
Py({P- (# ( 2 0), # (0 (V) (3@t = o1 9)) 5 0)) | p € E(R)})
Py({P- (#(h, ),Pv ({#(k,p,0)| 0 € E(k),pE a})) [ p € E(h)}) .
We suppose #(Y[Z1 : @1, -, Tm * Pms V[Tm+1 * Pmr1, (=) (W, ¢)]]) holds and try to
show that #(y[z1 : @1, Zm 2 @m, (=) (W, Y[Zms1 2 Pmi1, ¢])]) holds too.

In this view let p € Z(h) and suppose #(h, 1, p), let o € E(k) such that p C 0. We
want to show that #(k, ¢, o) holds.

We want to apply lemma

Remark [3.3] tells us that k = h + (Zm41, @m+1), Pmt1 € Es(h), Tmi1 €V — var(h).
Moreover, since ¢ € E(k), Vi(¥) CV —var(k) and zp,41 ¢ Vi(¥).

Clearly there exist § € Z(h), s € #(h, m+1,0) such that o = § + (Tp41, 9).

By 1emmawe obtain that #(k,v, o) = #(h, 1, ).

We have p,d € R(0), S0 0 = 0 /dgom(s) and p = 0 /dqom (p)-
Since dom(d) = dom(h) = dom(p) it follows that p = § and #(k, ¢, o) = #(h, ¥, p).

Therefore #(k,1, o) holds true.
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Using our rewriting of #(y[x1 : ©1,.. -, Tm : OmsY[Tm+1 : @m+1, (=)W, 0)]]) we
obtain that #(k, ¢, o) holds true, and this completes the proof. m
Lemma [5.1T] allows us to create a rule Rz which is the set of all pairs

( ’Y[xl B2 R @m,7[$m+1 P Pm+1, (%)(wv@)“a )
’Y[xl PPy T L Pm (—>)(1/% 'Y[xmel P PmA1, QDD]

such that

e m is a positive integer, x1,...,Zm41 € V, wWith z; # x; for ¢ # j, ¢1,..., om41 € E,
Hzy: @1, Tmt1 : Pmt];

o if we define k = k[x1 : ¢1,...,Tm+1 : ©my1] and h = k[x1 : @1,...,Tm : ©m] then

¥ € S(h) N S(k) and ¢ € S(k).

LEMMA 5.12. Let m be a positive integer. Let ©1,...,Tmy1 €V, with x; # x; for ¢ # j.
Let 1,...,0m+1 € E and assume H[X1 : ©1,.. ., Tmil : Omt1)-

Define k = k[z1 : @1, ., Tmt1 : ©mi1]. Of course H[T1 : 01, .., Tm : ©m] also holds,
and we define h = k[z1 : p1,...,Tm : ©m]. Let p € S(k) and ¢ € S(h) N S(k).

Under these assumptions we have

o (=), ) € S(k),

L4 ’Y[xm-i-l S Pm+1, (—>)(’¢,(p)] € S(h)7

e () ({}@m+1 : omt1,9)) € S(h),

o (=) () {F@mtr s om+1,9)), 0) € S(h),

o V[T 01, Tt Py Y [Tmg1 Ot () (0, @)]] € S(e),

® Y[z1:on, . mm om, (=) (3) ((F@mtr © oma1,9)), 0)] € S(e).

Moreover if #(y[x1: 01, T * Py VTmi1 * Pmr1, ()0, @)]]) then
#Orlz1 o1, T om, () () ((HEmar 2 omi1,9)), 9)]) -
Proof.

Using remark [3.3] (and the notation in it) we can easily determine that h = k,,, € K,
k= km—i—l = km"’ (Im-i-lv S0m+1) =h+ (xm+17 @m-‘rl)v Pm+1 € ES(h)v Tm41 € V—UCLT(h).
Clearly (—)(v, ) € S(k) also holds so

® Y[Tmt1: Pmy1, (=)W, 0)] € S(h),
o (I ({H@mt1 : omi1,9)) € S(h),
o (=) () ({H@mtr - pm+1,9)) . 0) € S(h)

and this implies

L4 'Y[xl B2 R @mv’Y[xm+1 FPm+1s (_>)(7/}’<)0)]] € 5(6)7
® Yz1ipr, 2w om, (=) (3) (Hemer s oma1,¥)) ,9)] € S(e).
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Suppose #(Y[1 : @1,y Tm ¢+ Py V[Tmt1 © ©mt1, (=) (W, 9)]]). Tt can be rewritten
as

Po({#(h, v[wme1 s omrr, (2) (@, )] 0)| p € E(R)})
Py({#(h, (V) ({} (@ma1 2 omi1, (2)(,9))) 5 0) p € E(R)})
Py({Py ({#(k, (=) (@, 9),0) 0 € E(K), pE0})| p € )

By({B ({5 (#(k, ¥, 0), #(k, 9, 0))| 0 € E(k), pE a}) | p € E(R)}) -

——

In turn #(y[z1 : @1, Tm : ©m, (=) (D) ({3 (@ma1 : ©m+1,v)),9)]) can be rewrit-
ten as

Py({#(h, (=) (D) {(H@m+1 : omi1, %)), 9) 5 p)| p € E()})
Py({P- (#(h, 3) ({3 (@mi1 2 mr1,9)) 5 0), #(h, @, 0)) | p € E(R)})

(
Py({P~ (Ps ({#(k, ¥, 0)[ 0 € E(k),p E 0}), #(h, ¢, 0)) [ p €

[1]
—
=
=

To prove the last statement we suppose p € Z(h) and suppose there exists o € Z(k)
such that p C o and #(k, v, p). We need to prove #(h, ¢, p).

By our assumption we know that #(k, ¢, o) holds.

We want to apply lemma

Remarktells us that kK = A+ (Timt1, ©m+1), Pm+1 € Es(h), Tymg1 € V —var(h).
Moreover, since ¢ € E(k), V() CV —var(k) and zp,41 ¢ V().

Clearly there exist § € Z(h), s € #(h, m+1,9) such that 0 = § + (41, 9).

By lemmawe obtain that #(k, p,0) = #(h, v, 0).

We have p,d € R(0), 50 6 = 0 /4om(s) and p = 0 /gom(p)-
Since dom(d) = dom(h) = dom(p) it follows that p = § and #(k, p,0) = #(h, ¢, p).

So #(h, ®, p) holds true and our proof is finished. m

Lemma [5.12] allows us to create a rule Ry which is the set of all pairs

( Y[z1: @1, T Py V[Tt P, () (0, 0], )
Yzt ers e Tm t Pms () () (H@mt1 : omt1,9)) 5 9)]

such that

e m is a positive integer, z1,...,Tm41 € V, with a; # x; fori # j, o1,...,om41 € E,
Hlzy o1, Tt - Qs

o if we define k = k[x1 : ¢1,...,Tma1 : ©my1] and h = k[xy : ©1,...,Zm 1 ©m] then

€ S(k) and ¢ € S(h) N S(k).

The next rule is a variation of the former one.
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LEMMA 5.13. Let m be a positive integer. Let x1, ..., Tm+1 € V, with x; # xj for i # j.
Let 1, ..., Om+1 € E and assume Hlxy : @1, ..., T4l © Pmtl)-

Define k = k[xy : o1, ..., Tm+1 : Pm+1]. Of course H[zy : 1, ..., T & Pm) also holds,
and we define h = k[z1 : ¢©1,...,Zm : pm]. Let x € S(h), ¥ € S(k) and ¢ € S(h)NS(k).

Under these assumptions we have

o (=), ) € S(k),

YTmt1 2 @mr1, (=) (W, )] € S(h),

(=) 06YTmt1 : emtr, () (@, 0)]) € S(h),

(3B {}@m+1 2 Pm+1,9)) € S(h)

(=) (@) H@mt1 - emt1,9)) ) € S(h),

(=) 06 (=) () {H@me1 s omr1,9)) ) € S(h),

QETERZ PR T Py () O6GY[Tm41  @mt1, () (@, 9)])] € S(e),
Y11, Tm  oms () (X () (B) ((H@mt1 : omt1,9)) ,9))] € S(e).

Moreover if #(vy[z1 : ¢1,. .., T 2 Oms (=) OGY [Tt 2 @mat, (=) (0, 9)])]) then
#Olz1 o1, Tt om, (2) (X () () ((Homtr  oma1, ), 0))]) -
Proof.

Just as in the proof of [5.12] we can derive

o (=), p) € S(k)

® V[Tmi1: Pmi1, (=), )] € S(h),

e (3) ({}@mt1: om+1,9)) € S(h),

o (=) () @mt1: mt1,)) 5 9) € S(h).

It clearly follows that

o (=) (Tmi1 : emrr, () (@, 9)]) € S(h),

o (=) 06(2) () (FEmsr - omi1,9)) , 9)) € S(h),

o Yrriers mm oms (=) 06Tt T emar, (2) (9, 9)])] € S(e),

o Yz ensmm s oms (=) (6 (=) (G) ((H@mt s emr1; ¥)),9)] € S(e).

Suppose #(’7[331 B2 P Tm - So’ma(_>) (X?V[xﬂ"rl*l : <Pm+1a(—>)(¢a§0)])]) It can be
rewritten as

Py({#(h, (=) 06 v[#me1 2 emir, (=) (0, 0)]) 5 p)| p € E(R)})
Py({P- (#(h, x; p); #(h [Tmar : omr, (=), 90)]0)) | p € E(R)})
Po({P (#(h, x; p), Py ({#(k, (=) (¥, 9),0)| 0 € E(k), p E 0})) [ p € E(M)})
Py({P (#(h, X p), Py ({ P (#(k, ¥, 0), #(k, 0, 0)) 0 € E(k),p E0})) | p € E(h)}).

In turn #(y[e1 2 @1, 2 s (=) 06 (=) (3) (@t £ @1, ) ,0))]) can be
rewritten as

Py({#(h, (=) (0 (=) (@) {(H@msr 2 ems1, ), 90)) . p)| p € E(R)})
Py({P- (#(h, x; p), #(h, (=) ((3) ({3 (@ms1 - omr1,9)) ) 0)) | p € E(R)})
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PV({P—> (#(h?Xap)’ P—) (#(h’ (3> ({}(-Tm-i-l P Pm+1, ¢)) ’ P); #(ha ') p))) | pE
PV({P—> (#(h’Xap)aP—) (PE ({#(k7w70—)| o€ E(k),/’ C U}) 7#(}1790 P))) | pE E(h)})

To prove the last statement we suppose p € Z(h) and #(h, x, p). Moreover we suppose
there exists o € Z(k) such that p C o and #(k, ¥, p). We need to prove #(h, ¢, p).

By our assumption we know that #(k, ¢, o) holds.

We want to apply lemma

Remark [3.3] tells us that k = b + (Ty11, Pmt1), Pmi1 € Es(h), Zmi1 € V —var(h).
Moreover, since ¢ € E(k), Vy(¢) CV —var(k) and zpm+1 ¢ V().

Clearly there exist § € 2(h), s € #(h, m+1,9) such that 0 = § + (zpm41, 9).

By lemmawe obtain that #(k, p,0) = #(h, v, 0).

We have p,d € R(0), 80 0 = 0 /4om(s) and p = 0 /qom(p)-
Since dom(d) = dom(h) = dom(p) it follows that p = § and #(k, p,0) = #(h, ¢, p).

So #(h, v, p) holds true and our proof is finished. m

Lemma allows us to create a rule Rzt which is the set of all pairs

( Yzt s o1se o Tm s Pms (=) GV [Tma1 2 @ma1, (=) (0, 0)])], )
Yz1 @1, Tm  em, () (6 (=) (@) (H@m1 2 emt1,9)) 5 9))]
such that

e m is a positive integer, x1,...,Zm41 € V, with z; # x; for ¢ # j, ¢1,..., om41 € E,
Hlz1: 01, Tmy1 : Pml;
o if we define k = k[x1 : ¢1,...,Tmt1 : ©my1] and h = k[x1 : @1,...,Tm : ©m] then

x € S(h), ¥ € S(k) and p € S(h) N S(k).

The next rule recalls the rule of standard logic which is called ‘modus ponens’ and
can be itself called ‘modus ponens’ .

LEMMA 5.14. Let m be a positive integer. Let x1, ..., &, € V, with x; # x; fori # j. Let
Ol om € E and assume H[xZ1 1 ©1,...,Tm : ©m]. Define k = k[x1: 01,...,Tm : ©m]
and let ¢,1,x € S(k).

Under these assumptions we have

o (=)@, ), (=), (=), X)), (=)@, x) € S(k),

o V[T Q1T somy(%)( Y)] € S(e),
QUL P ,(H)(so,( ), x))] € S(e),
YT @1, T wm,(ﬁ)(% x)] € S(e).

Moreover if

hd #(7[131 PP Tm P (—>)(%1/))D;
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o #(y[T1 i1 T o (2) (9, () (¥, X))])
then #(’7[‘771 PP Tm L Py (%)(% X)])
Proof.

We assume that

o #(V[z1iprs s omy ()0, D)),
o #(Vz1 i prs s o, (=)0 (=) (4 X))
both hold.
We can rewrite #(y[x1 : ©1,. ., Tm : Pm, (—)(p,¥)]) as
Py({#(k, (=) (e, ¥),0)| 0 € E(K)})
Py({P-(#(k, ¢,0), #(k, ¥, 0))| 0 € E(F)}) -

In turn #(y[z1: @1,y Tm : ©m, (=) (0, (=) (¥, x))]) can be rewritten
Py({#(k, (=) (e, (=)(¥, X)), 0)| 0 € E(k)})
Py({P- (#(k, ¢, 0), #(k, (=) (¥, X),0))| o € E(k)})
Py({ P (#(k, @, 0), P (#(k, ¥, 0), #(k, x,0)))| o € E(k)}) -

We have to prove #(y[z1: ¥1,. -, Tm : ©m, (=) (¥, x)]) which can be rewritten

Py({#(k, (=)(p, x),0)| 0 € E(F)}) ,
Py({P-(#(k, ¢,0), #(k, x,0))| o € E(k)}) -

Let o € Z(k) and let #(k, ¢, 0). We need to prove #(k, x, o).
We have #(k, 1, 0) and so #(k, x, o) holds too. m

Lemma [5.14] allows us to create a rule Rg1g which is the set of all 3-tuples
’Y[xl FP1Ly - Tm Py (—>)(<P»1/J)],
YEr o1 Tt m, (=) (0, (=) (4, X)),
’7[%1 FPL e Tm  Pm, (_>)(907X)}
such that
e m is a positive integer, x1,...,xm € V, x; # z; for i # j, ¢1,...,0m € E,

Hlzy: 01,y T Ol
i SDJ/%XGS(]@[%2<P1a---a5€m¢<PmD-

LEMMA 5.15. Let m be a positive integer. Let x1,...,Zpmy1 € V, with x; # x; fori # j.
Let 1,...,0m+1 € E and assume H[X1 1 ©1,. .., Timi1 : Pmt1)-

Define k = k[x1: 01,y Tmt1 : ©m+1]. Of course H[x1 : 91, .., Tm : ©m] also holds
and we define h = k[z1 : ¢1,...,Tm : om]. Let x € S(h).

Let t € E(h) such that Vp € Z(h) #(h,t,p) € #(h, ©m+1,p)-
Let o € S(k) such that Vy(t) N Vy(p) = 0.
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Then we can define pr{xm+1/t} € S(h) and furthermore

e M{} @mi1: pmi1, ) € S(h),
b 7[531 CPLy e Tm - P (—>)(X’ (V)({} (xm-i-l : @m—&-l#ﬂ)))] € S(G),
o Yziier T om, ()06 er{Tmei/t})] € S(e).
Moreover if #(y[x1 : o1, -, @ + @ms ()06 (VY (@ma1 1 omar, 9)))]) then
#(’Y[xl P Tm - P (—>)(X’ @k{xm-‘rl/t})]) :
Proof.
As we have seen in lemmal5.6] in these assumptions we can prove ¢ {zm1/t} € S(h).

Since @mi1 € Es(h), Tmy1 € V —wvar(h), k = h + (Tmy1, Pm+1) We can apply
lemma [3.1] and obtain that (V)({} (Zmt1 : @mt1,9)) € S(h).

Therefore

o Y1 en Tt oms (2) 06 (VT (@t oma1,9)))] € S(e),
e V[T Q1 Tt Py () (X Pr{Tmy1/t})] € S(e).

Suppose #(Y[T1 : 1, s Tm * Pm,s (=)0 (V)V} (Fms1 0 @ms1, ©)))]) holds, it can be
rewritten

PV({PH(#(hv X p)a #(h‘v (V)({} ($m+1 P Pm+1, SD))» p))| pEe E(h)}) ’
Py({P- (#(h, x, p), Py ({#(k, ¢,0)[ 0 € E(k),pE 0}))| p € E(R)}) -

We need to prove #(yY[x1 : @1,y Tm : ©m, (=) Pr{Zm+1/t})]) it can be rewritten
as

By({#(h, (=) 06 ee{zmer /1)), p)l p € E(R)})
Py({ P (#(h, X p), #(h, er{amsa [t} p))| p € E(R)}) -
Let p € Z(h) and suppose #(h, x, p). We need to show #(h, ox{zmt1/t}, p).
We have p € Z(h) = E(k{zm+1/t}), dom(p) = {1,...,m}. Let p = (u,r) and define
op=¢, foreach j=1...mo; =0;_1+ (4;,7}), Omt1 = Om + (Zmy1, #(h, T, 0)).

By definition it results o411 € Z(k) and #(h, pp{zms1/t}, p) = #(k, p, om+t1).
Clearly p = oy C 01, 80 #(k, ¢, 0m1) holds and #(h, pp{zm+1/t}, p) holds too. m

Lemma [5.15] allows us to create a rule Rg1g which is the set of all pairs

( YT @1, Tt Py (=) 06 (VY (Fmat : @ma1, 9)))] )
Y[z1 s 1, Tm s @ms ()06 Pr{Zmt/t})]

such that

e m is a positive integer, z1,...,Tm41 € V, with ; # x; fori # j, o1,...,om41 € E,
Hzy: 01, Tyt Omy]s

o if we define k = k[z1: 01, ., Tmt1 : ©my1] and h = K[z : p1,...,Tm : @] then
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— t€ E(h), Yp € E(h) #(h,t,p) € #(h, omt1,p),
— ¢ € S(k), Vi(t) NVi(p) = 0.

LEMMA 5.16. Let m be a positive integer. Let x1,...,&m € V, with x; # x; fori # j. Let
O,y om € E and assume H[xy : ©1,...,Tm : pm]. Definek =k[z1: 01,...,Zm : ©m]-

Leti=1...m such that for each j =1i...m x; & Vi(p;). Then

o (€)(zs, i) € S(k),

o Y[x1: 01, Tt Om, (€)(Ti,01)] € S(€),

hd #(7[1‘1 PP Tm L Py (6)(9%%)”
Proof.

We have k;—1 € K, 2; € V —var(k;—1), ¢; € Es(ki—1), ki = ki—1 + (24, ;).
By lemma x; € E(k;) and for each p; = p;—1 + (24,5) € Z(k;)

# (ki i, pi) = s € #(ki—1, Pis pi—1)-
If i = m then we have proved z; € E(k).

If i < m, since for each j =i+ 1...m x; ¢ Vy(x;), we can apply lemma and
derive that x; € E(k) and for each p € Z(k) there exists p; € Z(k;) such that p; C p and
#(kia T, Pz) = #(ka T,y p)

It also results ¢; € Es(ki—1) and for each j = i...m x; ¢ Vi(p;). Therefore, by
lemma ¢v; € E(k) and for each p € E(k) there exists p;,—1 € Z(k;—1) such that
pi—1 C p and #(k, i, p) = #(ki—1, i, pi—1) is a set.

By lemma we derive that (€)(z;,¢;) € S(k), and consequently
’7[m1 PP Tm  Pm (6)(xi7 901)] € S(E) :

Moreover we can rewrite #(y[Z1 : @1, Tm : ©m, (€)(x4,¢;)]) as follows
Pa({#(k, (€)(xi, 1), p)| p € E(R)}) ,
Py({Pe(#(k, i, p), #(k, i, )| p € E(K)}) -

To show this we have to prove that for each p € E(k) #(k, x;, p) belongs to #(k, i, p).
We know there exists p; € Z(k;) such that p; C p and #(k;, x4, pi) = #(k, zi, p)-

We also know there exist p;—1 € Z(ki—1), s € #(ki—1, @i, di—1) such that
pi = pi—1 + (i, 8) and #(k;, x4, pi) = s € #(ki—1, 9is pi-1)-
Furthermore there exists d;—1 € Z(k;—1) such that 6;—1 C p and
#(k, i, p) = #(ki-1, pi; 0i-1).
We have d;—1 = pjdom(k;_,) = Pi—1, SO
#(k, wis p) = #(ki, i, pi) € #(kiz1, @i, pim1) = #(k, @i, p) -
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Lemma permits us to create an axiom Agtg which is the set of all sentences
Y[T1 i @1,y Tt Om, (€) (24, i)] such that
e m is a positive integer, z1,...,z, € V, o # x5 for a # B, ¢1,...,0m € E,

H[:L’l:gol,..-,l'm:@m]a
e ;=1...m,
e for each j =i...m x; ¢ Vi(i).

LEMMA 5.17. Let m be a positive integer. Let T1,...,Tpmy1 €V, with x; # x; for i # j.
Let 1,...,0m+1 € E and assume H[xX1 1 ©1,. .., Timi1 : Omt1)-

Define k = k[x1 : o1, ., Tma1 : ©ma1]- Of course H[x1 : @1, ..., Tm : ©m] also holds,
we define h = k[z1: p1,...,Zm : ©m]. Let x € S(h), t € E(h).

Let ¢ € Eg(h) and i1 & Vi(p).
Under these assumptions

(€)(@m+1, ) € S(k),

M} @mtr s omars (€)(@mei1,9))) € S(h),

Ve en @ em, ()06 (DS @ma 2 @mtr, (€)(@mr, 9))))] € S(e),
(€)(t; om+1) € S(h),

Mo prsesm oms (=) 06 (€)(E ema))] € S(e),

(€)(t, ¢) € S(h),

VEr i en @ em, (2) (G (€)(E 9))] € S(e).

Moreover if

o #(V[T1 @1 Tm  oms ()6 (V) (@mtr 2 omt, (€)(@ma,9))))]) and
o #(’Y[xl P, T P, (_>)(X7 (E)(t7 me-i-l))])

then #(Y[z1: 1, Zm + Omy (=) (X (€)(E, 9))])-
Proof.

We have k = h + (Tim+1, Pm+1), Where h € K, 11 € V —var(h), pmi1 € Es(h).
Using lemma we can derive that x.,11 € E(k).

Since ¢ € Eq(h) and 41 ¢ V(@) we can apply lemmald.12|and obtain that ¢ € E(k)
and for each 0 = p+ (111, 8) € Z(k) #(k, ¢, 0) = #(h, p, p) is a set.

Therefore, by lemma we get (€)(zm1,p) € S(k).
By lemma [3.1] we obtain (V)({} (Zmt1 : @mt1, (€)(@m+1,9))) € S(h).

Clearly this implies that
Yer:@us @ em, (=) 06 (DES (@mer  @mir, (€)(@ma1, 9))))] € S(e).

Furthermore we have ¢ € E(h), om+1 € Es(h), so (€)(t, pms1) € S(h). It clearly
follows that y[x1 : @1, .., Zm : ©m, ()X, (€)(E, ©m+1))] € S(e).
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We have also ¢ € Es(h), so (€)(¢,¢) € S(h). It follows that
7[m1 PPy T f P (_>)(X7 (6)(t7 90))] € S(G)

We now assume

o #(vlrren s om, ()06 (VY (@mta e (€)(@mt,9))))]) and
o #(Vrrpr, o Tm s om, () (€)(E ems1))])

both hold and we try to prove #(vy[z1 : @1, ..., T+ Om, (=)0 (€) (5, 9))])-
We can rewrite

#(vler s ens sz oms (2) 06 (VY (@mar : mtss (€)(@ma1, 9)))))

Py({# (h, (=) 06 (V) ({} (@mt1  @m1s (€)(@mi1,9)))) 5 p) | p € E(R)})
Py({P= (# (h, x, p) » # (B, (V) ({3 (@1 = omprs (€)(@mr1,0))) 5 0)) [ p € E(R)})

Py({P~ (# (h, x, ), P ({# (K, (€)(#mi1,0),0) | 0 €E(K), pEo}))| peE(R)}) ,
Py({P (# (h, x, p) » Py ({Pe (#(k, xm+1,0), #(k, p,0)) | 0 € E(k), pEa}))| p€E(R)}) .

We can rewrite

#Ovler o1, T s om, () (6 (€)(E ©m+1))])

Po({#(h, (=) (x; (€)(t, omt1)), p) p € E(R)})
PV({P%(#(h’ X P), #(h> (E)(t7 (pm+1)7 P))| pE E(h)}) ’
Pv({PH(#(hv X p)a PE (#(hﬂf,p), #(ha ‘pm+17p)))| pE E(h)}) .

We can rewrite

as

Py({ P (#(h, x, p), #(h, (€)(t, ), p))| ,
Py({ P (#(h, X, p), Pe(#(h,t, p), #(h, 0, p)))| p € E(R)}) .

Let p € E(h) and assume #(h, x,p). We need to show that #(h,t,p) belongs to
#(h, ¢, p)-

Let 0 = p+ (zmi1, #(h,t, p)).
Since k = h+ (41, Pm+1) and #(h, t, p) belongs to #(h, Ym+1, p) we have o € Z(k).
By lemma [L.13| #(k, T 11,0) = #(h,t, p), so #(h,t,p) € #(k, p,0).
Since ¢ € E(h) and zpy41 ¢ Vi(¢) we can apply lemma and obtain
#(k, . 0) = #(h; ¢, p).
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By virtue of lemma we can create a rule Rggp which is the set of all 3-tuples

Va1 ers o @m s em, (=) 06 (VEE @mt : emir, (€)(@me1, 9))))])
7[331 PP Tm P (_>)<X7 (E)(tv LPerl))L
7[371 P T f P, (_>)<X7 (E)(tv L)0))]

such that
e m is a positive integer, x1,...,Tm41 € V, with x; # x; fori # j, ¢1,...,om41 € E,
Hlz1 i1, Tt omal;
o if we define k = k[z1: 01, ., Tmt1 : ©m+1] and h = k[z1 : @1,..., Tm : @] then
—X€ S(h)7
— te E(h),

—pE Es(h), Tm+1 ¢ %(‘P)

LEMMA 5.18. Let m be a positive integer. Let x1,...,&m € V, with x; # x; fori # j. Let
D1y om € E and assume H[x1 : p1,...,&Zm : pm]. Define k = klx1 : ©1,...,Zm : ©m]
and let o,vp € S(k).

Under these assumptions we have

e (=) (p,(N) (W, ()W), (7)(p) € S(k),
o YT 1, Tt oms (=) (9, (A) (9, (2) ()] € S(e),
o Y[T1: 1, Tt Om, (D)()] € S(e).

Moreover if #(y[T1: 01, Tm = Pm, (=) (0, (A) (¥, (2)(%)))]) then
#1015 T om, () (90)])-
Proof.

We can rewrite #(v[z1: @1, .., Tm : @ms, () (@, (A) (¥, (7)(1)))]) as
) o)l

By({#(k, (=) (@, (V) (0, (2)(@))) o)l 0 € E(R)})
Py({P (3 (k. 0), 3k, (N) (9, (2)(¥)) ,0)) | 0 € E(R)})
By({P- (#(k, ¢ ) n (# (ks 0, 0),# (K, (2) (), 0))) [ o € E(R)})
Py({P~ (#(k, 0, 0), Pa (#(k, ¥, 0), P~ (#(k,¢,0)))) | 0 € E(k)})

This can be expressed as ‘for each o € Z(k) either #(k, ¢, o) is false or both #(k, 1, o)
and (#(k, 1, o) is false) are true’.

Since #(k,1,0) cannot be both true and false at the same time we have that ‘for
each o € E(k) #(k, p,0) is false’. This is formally expressed as

Py({P~(#(k; ¢,0))] o € E(R)}) ,
Py({#(k, (2)(9),0)| o € E(F)}) ,

which we can finally rewrite as y[x1 : @1, .., Zm : @m, (7)(©)]. =
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Lemma allows us to create a rule Rggg which is the set of all pairs

(211 9110t s (=) (3 (A) (0, (VDA 5 91T+ P (D))
such that

e m is a positive integer, z1,...,zy € V, x; # x; for i # j, 1,...,0m € E,

Hzy: @1, .oy Tm : Om),
o o€ SKk[ry:p1,. ., Tm : ©m])-

LEMMA 5.19. Let m be a positive integer. Let x1,...,x,m € V, with x; # x; fori # j. Let
Ol 0m € E and assume H[x1 : p1,...,Tm : pm]. Define k =k[x1 : ©1,...,Zm : ©m]
and let o, € S(k).

Under these assumptions we have

e (=) (M), 0) s (=)0, (7)) (W) € S(k),
o V[T @1, Tt Pm, (7)) (A (0, 9))] € S(e),
® V[T Q1 Tt Pm, (), (7)())] € S(e).

)
(=) (M), ¥))]) then
)-

Moreover if #(y[x1: P15+ Tm : Om,s
#(y[z1 o1, T @mv(ﬁ)( () ()]

Proof.
We can rewrite #(y[x1 : ©1,. ., Tm : ©m, () (A) (e, 1))]) as
Py({#(k, ( ) (M) (e, )) o)l o € E(k)}),
Py({P~(#(k, (N)(p,v),0))] 0 € E(k)}) ,
Py({P-(Pr(#(k, ¢, 0), ( ¥,0)))| o € E(k)}) -

We can rewrite #(y[x1 : ©1,.. ., Tm : ©m, (=) (@, (7)(®))]) as

Py({#(k, (=) (0, () (@), 0)[ 0 € E(R)})
Py({P= (#(k, ¢, 0), #(k, (=) (¥), 0))| 0 € E(F)}) ,
Py({P~(#(k, ¢,0), P~(#(k, ¥, 0)))| o € E(k)}) .
Thus if #(y[x1 : @1, Tm : ©m, (7) (A)(p,9))]) we have that ‘for each o € E(k) it
is false that #(k, p,0) and #(k, ¢, o) are both true’.
In other words for each o € E(k) (#(k, p,0) is false) or (#(k, v, o) is false).
In other words for each o € E(k) P (#(k, p,0), P-(#(k,%,0))).
The last condition clearly implies #(v[x1 : @1, -, Tm : ©m, (=) (@, (7)(®))]). =

~—

Lemma allows us to create a rule Rgtg which is the set of all pairs

(Y1 @155 Tm  @ms (2) (A (@, V)] V[E1 2 @155 T 2 Py (=) (0, (42) (10))])

such that
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e m is a positive integer, x1,..., Tm €V, xy # x; for i # j, o1,..., om € F
Hlzi:p1,..., T Pm]
o v, € Sklry:p1,..., T Om))
LEMMA 5.20. Let m be a positive integer. Let x1, ..., Tmt1 €V, with x; # x; fori # j.

Let 1, ..., Om+1 € E and assume Hlxy : @1, ..., Tot1 © Pmtl)-

Define k = k[z1 : ©1,..., Tma1 : @mi1). Of course H[T1 : 01, .., Tm : ©m] also holds,
we define h = k[z1 : 1,..., Tt om]. Let x € S(h), ¢ € S(k).

Under these assumptions we have

b (V)({}({L‘m+1 : SOerl,(P)) € S(h);
() (NEHEmt1  eme1,0))) € S(h),

o (=) 06 () (M Emsr : emi1,9)))) € S(h),

o Yz @rs s mmoms (=) (06 (5) (D H@me1 2 emr1, )] € S(e),
o (2)(p) € S(k),

o N} @mr1 s omy1, (2)(9) € S(h),

o (=) 06 A @mrr : emir, (2)(9))) € S(h),

o Yz @n s mm o, (=) 06 D @mr 2 emir, (5)(9))))] € S(e).-

Moreover if #(vy[z1 : ¢1,. .., T+ Om, (=) 06 () (V) {H@mt1 : ©ms1,9))))]) then
#1015 T oms (2) 06 DG (@ma : @mar, (2)(9))))]) -
Proof.
We can rewrite #(y[z1 : 01, -, Zm : @ms (=) (X (2) (V) {HEmtr © omi1,9))))]) as
Py({#(h, (=) (x, )( )} @mt1 2 omr1,9)))),p)l p € E(R)})
Py({ P (#(h, x; p); #(hy (2) (V) ({3 @ma1 : oma1.9))) . 0)) | p € E(R)})
Py({P (#(h, x; p), P (#(h, (V) ({} (#mt1 - omt1,9)) 5 0)) | p € E(R)})
Py({ P (#(h, x; p), P~ (Be({#(k, p,0)| 0 € E(k), pEa})))| p € E(R)}) -

We can furtherly express this as

‘for each p € E(h) if #(h, x, p) then it is false that Py({#(k, ,0)| 0 € E(k), pC o})’,
‘for each p € E(h) if #(h, x, p) then it is false that (for each o € E(k) such that p C o

#(k, p, o) holds)’,
‘for each p € Z(h) if #(h,x,p) then (there exists o € Z(k) such that p C o and

#(k, p,0) is false)’.
We can rewrite #(1[21 1 91, m : 9 (=) (6 B)({HEmer : s,
Py({#(h, (=) (x. (3 )({}($m+1 Pm+1, (7)(9)))) s p)| p € E(h

)(@)))]) as

\./
——
\.//-\

Py({P= (#(h, x; p), #(h, B} (@mr1 2 pmrr, (5)(@))), ) | p € E(h)}) :
By({P- (#(h, x p), Ps({# (K, ()(p), o) 0 € E(K), pEo}))| p € E(R)})
Py({P- (#(h,x; p), Pa({P-(#(k, ¢,0))| 0 € E(k), pEo}))| p € E(R)}) -
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This can be furtherly rewritten as

‘for each p € E(h) if #(h, x, p) then Ps({P-(#(k,¢,0))| 0 € E(k), pC a}) ",
‘for each p € E(h) if #(h,x,p) then (there exists ¢ € Z(k) such that p C o and
#(k,p,0) is false)’.

The last condition is clearly ensured by our hypothesis. m

Lemma allows us to create a rule Rgzg which is the set of all pairs

( Ve ens o oms (=) 06 (3) (D HEmr 2 emi1, )], )
Voo ens s ems (=) 06 V{3 Emir s em, (5)(9))))]

such that

e m is a positive integer, z1,...,Zm41 € V, with a; # x; fori # j, o1,...,om41 € E,
Hlzy: o1, gt - Qmg]s

o if we define k = k[z1 : ¢1,...,Tmyt1 : @my1] and b = k[z1 : ©1,.. ., &y O] then

x € S(h), ¢ € S(k).

The next lemma is just a degenerate case of rule we probably could modify that
lemma to enclose also this case, but we choose to treat it separately.

LEMMA 5.21. Let 1 € V, ¢1 € E and assume Hxy : ¢1]. Define k = klxy : ¢1]. Let
v € S(k) and p € S(k) N S(e). Under these assumptions we have

)
101, (=)@, )] € S(e),
) {H@1 :91,9)) € S(e),
)(3) ({Hzr s ¢1,9)),0) € S(e).

Moreover if #(v[z1 : 1, (=) (¢, ¢)]) then #((—=) ((3) ({}z1 : 1,9)),9)).
Proof.
Suppose #(v[z1 : ¢1, (=) (¥, ¢)]). By definition we have

#((V {21 91, (=) (@, 9))))
and then

Py({#(k, (=) (¥, 9),0)| 0 € E(K)}) ,
PV({PH(#(kawU)’#<k7(p70-))| E(k>})

In turn #((—=) ((3) {}(z1 : ¢1,v)),¢)) can be rewritten as
P (#((3) ({21 £ 01,9))), #(0))
P (Ps({#(k, ¢, 0)] 0 € E(K)}), #(0)) -

In order to prove the last statement, we suppose there exists o € Z(k) such that
#(k, 1, o). This implies #(k, ¢, ), but we need to show that #(p) holds.



A different approach to logic 177

To this end we can consider that ¢ € S(e) and, since Vi () CV —wvar(k), z1 ¢ Vu(p).
So we can apply lemma There exists s € #(p1) such that o = € + (21, s), and by
the mentioned lemma we obtain #(k, p, ) = #(€, v, €) = #(p). =

Lemma allows us to create a rule Rgoy which is the set of all pairs

< Vz1 o1, (=)W, 9)], )
(=) () {Ha1:91,9)) ,9)
such that 1 € V, ¢1 € E, H[z1 : 1], ¥ € S(k[z1: ¢1]) and ¢ € S(k[z1 : ¢1]) N S(e).

LEMMA 5.22. Let p, 1, x € S(€). We have

o (=) (=2)(¥,x)) € S(e),
o (=)((M)(p,¥),x) € S(e).

Moreover if #((—) (0, (=) (¢, x))) then #((—=)((A) (e, ¥), X))
Proof.

Suppose #((—) (¢, (=) (%, x))) holds. It can be rewritten

P (#(0), #((=2)(¢, X)) 5
P (# (), Po (#(4), #(X))) -

In turn, #((—=)((A)(¢, 1), x)) can be rewritten

PL# (M) (e, 9)), #(X))
Suppose #(¢) and # (1) both hold, we need to show that #(x) holds. This is granted

by
P (#(p), P (# (1), #(X))) -

Lemma [5.22] allows us to create a rule Rz which is the set of all pairs

( (=), (=) (¥, X)), )
(=)((N) (%), X)
such that o, 1, x € S(e).



178 M. Avon

6. Deduction examples

6.1. First example. For each z,y natural numbers we say that = divides y if there
exists a natural number « such that y = za.

In our example we want to show that for each z,y, z natural numbers if z divides y
and y divides z then x divides z.

Of course, we first need to build an expression in our language to express this. To
build that expression we must add to our language two constant symbols:

e a constant symbol N to represent the set of natural numbers N, so that we have
#(N) =N;

e a constant symbol | to represent the ‘divides’ relation, so that #(|) is a function
defined on N x N by #(|)(«, 5) =3I e N: 8 = an.

The set F of operators is the same we have assumed in chapter [5] so it must contain
all of these symbols: =, A, V, =, <>V, 3, €, =.

The statement we wish to prove is the following:

Yo Ny Nz N (=) (MDD (), (DY, 2), (D, 2)] (Thy)

where x,y, z of course are variables in our language.

First of all we need to know this is a sentence in our language and that its meaning
is as expected. To this purpose we’ll use the following technical lemma.

LEMMA 6.1. Let m be a positive integer, T1,...,Tm €V, with x; # x; for i # j.
We have H[xy : N,...,Zm : N] and we define k = k[xy1 : N,...,zy : NJ.
Then for each i =1...m x; € E(k) and for each o € E(k) #(k,z;,0) € N.

Moreover for each a,...,a, € N if we define o9 = € and for each i =0...m — 1
Oir1 = 0i + (Tip1, @ip1) then op € E(K) and for each i =1...m #(k,x;,0m) = ;.
Proof.

We first show that H[z; : N, ..., 2y, : N] holds. Let kg = e.

First consider that N € C C E(e) and #(¢, N,e) = #(N) = N is a set. Therefore
N € E4(e), so H[z1 : N] holds. Let k1 = k[z1 : N, clearly var(k1) = {z1}.

Suppose m > 1 and let ¢ = 1...m — 1. Assume Hz; : N,...,x; : N] and
ki = klxr1 : N,...,x; : N|, var(k;) = {x1,...,2;}. To prove H[x; : N,...,z;41 : N]
we just need to prove N € E;(k;).

There exists a positive integer n such that k; € K(n), so by lemma[3.9 N € E(n, k;)
and for each o € Z(k;) #(k;, N,0) = #(N) is a set. So we have proved N € E4(k;), and
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it results H[zy : N,...,z;41 : N]. We also define k; 1 = k[z1 : N,...,2;41 : N], and we
have var(kit1) = {z1,...,%iy1}

We have proved that H[zy : N, ..., 2, : N] holds.

Let ¢ = 1...m. Clearly k; = k;—1 + (x;, N). There exists a positive integer n such
that k;—1 € K(n), and N € Es(k;—1), so N € Es(n,k;_1). Moreover z; ¢ var(k;_1), so
k; € K(n)+

It follows that x; € E(n+ 1,k;) C E(k;), for each o = p+ (z;,s) € Z(k;)

#(ki,zi,0) = s € #(ki1, N,p) = #(N) =N; Vy(z;) =0 .

If ¢ < m then for each j =4...m—1 we can assume z; € E(k;) and for each p € Z(k;)
#(kjv T, P) eN.

Clearly kjy1 = k;j+ (41, N). There exists a positive integer n such that z; € E(n, k;),
so k; € K(n). We have also N € E (k;), so N € Es(n, k;). Moreover z;41 ¢ var(k;), so
kj+1 € I((TL)Jr

Since ;41 ¢ Viy(x;) we have z; € E(n+ 1,kj11) € E(kj41). In addition, for each
0 =p+ (w1, 8) € E(kjy1) #(Kje1,20,0) = #(kj, 24, p) € N.

We have proved that x; € E(k) and for each o € Z(k) #(k, z;,0) € N.

Let a1,...,00, €N og =€ and foreach i =0...m — 1 0411 = 0y + (Tig1, Qit1).

We have 09 = € € E(¢) = E(ko).

Given i = 0...m — 1 we assume o; € E(k;). We have k;11 = k; + (zi41, N) and
there exists a positive integer n such that k; € K(n) and N € FEq(n,k;). Moreover
Tip1 ¢ var(k;), so kiy1 € K(n)*. To prove that 0,11 € Z(k;+1) we just need to prove
that a; 11 € #(kiy, N,0;) = #(N) = N. This is true, of course.

So we have proved that oy, € E(k).
Now let ¢ =1...m, we want to show that #(k, z;,om) = ;.

We begin by showing that #(k;,x;,0;) = ;. We have k; = k;—1 + (23, N) and
there exists a positive integer n such that k;_; € K(n) and N € Fq(n,k;_1). Moreover
x; ¢ var(ki_1), so k; € K(n)*, z; € E(n+ 1,k;). We have 0; = 0;_1 + (s, ;) € E(k;)
and #(k;, z;,0;) = a.

If i < m then let j = i...m — 1, we assume #(k;,z;,0;) = «; and try to show
#(kjy1,2i,0541) = ;. Clearly kjy1 = k;j + (241, N). There exists a positive integer n
such that z;, € E(n,kj), so k; € K(n). We have also N € FEg(k;), so
N € E(n,k;). Moreover z11 ¢ var(k;), so kjx1 € K(n)". Since z;41 ¢ Vi(z;) we
have z; € E(n+1,k;41).

It results Oj+1 =05 + (lL’j+1, OéjJrl) € E(ijrl) and

#(kjt1,xi,0541) = #(kj, x4,05) = .
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To show that expression belongs to S(e) we define k = k[z : N,y : N,z : NJ.
By|[6.1] we obtain that z,y, z € E(k) and for each o € Z(k) #(k, z,0), #(k,y,0), #(k, z,0)
are all members of N.

Moreover, | € E(k), for each o € E(k) #(k,|,0) = #(]) is a function with two
arguments and (#(k,x,0),#(k,y,0)), (#(k,y,0), #(k,z,0)), (#(k,z,0),#(k,z,0)) are

members of its domain.

So, by lemma [3.10] (|)(z,y), (|)(z, 2), (|)(y, z) all belong to E(k).

Moreover, for each o € Z(k)

#(k, ()(2,y),0) = #()F#(k, 2,0), #(k, y,0)) = I € N: (#(k,y,0) = #(k,2,0) - 1) ;
so #(k,(|)(z,y),0) is true or false. Therefore (|)(x,y) € S(k). In the same way we
can show that (|)(y, 2), (|)(x,2) € S(k).

By lemma [3.7] we have
(MWD, y), (D(y: 2)) € S(E), () (A, y), (D 2)), (D, 2)) € S(k).
By definition
Yo Nyy s Nz N (=) (AN 9), (D, 2))s ()(2,2))] € S(e) -

We have proved is a sentence and we’ll now show it has the correct meaning.

By theorem B #(1[a : Ny : N,z : N, (=) (A (. ), () (9 2)). (1), 2))]) s equiv-

alent to
Py({#(k, (=) (M ((D(z,9), (N(y, 2), (D(2,2)),0)] 0 € E(k)}) -

This condition can be rewritten in the following ways:

By({P- (#(k, (M ((D (2, 9), (D 2)), 0), # (ks (), 2)),0))| 0 € E(R)})
By({ P (PA(#(k, ()(z,y), 0), #(k, ()(y, 2), 0)), #(k, ([)(, 2)), 0))| o € E(K)})
|
|

|
H() (0 2, 0), (0, ,0), .
PP Py BT RO ) (0G0 2.0), (0 2. 7 € 1))

The last statement can be rewritten as follows:

for each o € Z(k)

#()(#(k, z,0), #(k,y,0)),
#()(#(k, y, 0), #(k, 2,0))

By lemma [6.1] we can furtherly rewrite it like this:

P (P, ( ) B H k7, 0), (k2 0)).

for each ay, s, a3 € N

P (Pn ( #()(ar, 02),# () (a2, 03) ), #(]) (a1, a3)).
Finally this can be rewritten

for each oy, a9, a3 € N if #(]) (a1, a2) and #(])(az, ag) then #(])(a1, as).
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This is the meaning of our sentence and that meaning is exactly as expected.

Our proof of statement will begin by trying to exploit the definition of symbol |.
To this end we need to add another constant symbol in our language. This is the sym-
bol * that stands for the product (or multiplication) operation in the domain N of natural
numbers. Therefore #(x) is a function defined on N x N and for each «, 5 € N #(x)(a, 8)
is the product of o and f3, in other words #(*)(«, 8) = a- 8. Given two expressions @, ¢ in
our language if (x)(p, 1) is also an expression in our language then it can be abbreviated
as (p1) (as used in mathematics).

LEMMA 6.2. Let m be a positive integer, x1,...,%m €V, with x; # x; fori # j.
We have H[xy : N, ...,z : N| and we define k = k[x1 : N,... &y : N].
Suppose i,j =1...m,i # j, suppose ¢ €V — var(k). Then

Ylor s Ny s Ny (60) () s 25), 3) (0 (3 N, (D) (a5, (i) € S(e):
# (vl Ny wm s N (9) (D 25), 3) ({3 (e N, (5)(2, (i0)))))]) is true.
Proof.
We have also H[z1 : N,..., 2 : N,c: N] and we can define
K =k[x1:N,...,zpm: N,c: N].

By lemmawe obtain that z;,z;,c € E(k"). Moreover * € E(k") also holds.

For each o/ € Z(k') #(k', *,0") = #(x) is a function with two arguments, #(k', x;,o”)
and #(k’, ¢,0”) belong to N, so by lemma [3.10] (+)(z;, c) € E(K').

By lemma [3.12 we have (=)(z;, (zic)) € S(K').

By lemma [3.]]

o {}(c: N, (=)(zj, (zic)) € E(K);

o (3 ({}(c: N, (=)(z;, (w:ic))) € S(k);

o for each o € E(k)
#(k, ) ({} (¢: N, (5)(=j, (2i0)))) , 0) =

= P3 ({#(F, (=)(=;, (zic),0")| o' € E(K), 0 C0'}) .

Lemma also tells us that z;,z; € E(k) and for each o € E(k) #(k,z;,0) € N,

#(k,z;,0) € N. Moreover | € E(k) also holds.

For each o € E(k) #(k,|,0) = #(]) is a function with two arguments and
(#(k,zi,0),#(k,x;,0)) is a member of its domain, therefore (|)(z;,z;) € E(k).

Moreover for each o € Z(k)
#(k’ (|)(.Ti,l'j>70') = #(|)(#<k7$i7U)’#(k’l'jva))
= 37’ eN: #(k,l‘j,d) = #(k7:ﬂi70) 15
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so #(k, (|)(xi,z;),0) is true or false and (|)(z;, z;) € S(k).
From there follows that
(&) (@i, 25), B) ({} (e: N, (=)(2, (zic))))) € S(k) ;
vl Ny a s N () (D 25), B) ({3 (e 2 N (5)(25, (230)))] € S(e) -

By theorem [3.6] we can rewrite

# (vl Ny N () (D (i, 25), (3) ({3 (e NS (=)(5, (i0)))])
as follows

Po({#(k, () (N (i, 25), ) ({} (¢ N, (F)(z), (i), 0)| 0 € Z(K)})
and this can be further rewritten

By({Pes (#(k, (D (@i, 25), o), #(k, (3) ({} (¢ : N, (=) (25, (2:c)))) s 0)| 0 € E(F)})

#(D(#(k Ly, 0 )7#(k7x]70')7 o -
PV(““( 4k, <><{}<c N, (= ><xj,<xzc>>>>,a>>' €Emh
kxz, #(k,xj,0)), oes
{P‘*( {# (', ( mxz o) o' € E(K), 0 T o'}) )' €=k
HO(# 1,0, #(k2,,) .
Pt (BB i 0 U ) o < 200, 7€ oty )17 €500

Ps({
H()H k21, 0), k2, 0)), _
P\’({P‘*( Pa (P (K 23, 0"), (K, 20,0") - #(K s e, )] o € Z(K),0 € o'}) )"’e“(’“)})‘

The final statement can also be expressed (more ‘textually’) as follows:

for each o € Z(k)

#(|)(#(k,zi,0), #(k,z;,0)) if and only if
there exists o’ € E(k') such that o C ¢’ and #(k', z;,0") = #(k', z;,0") - #(K', ¢, 0").

By definition we have
#(D(#(kaxiag)v#(kaxjvg)) = 377 eN: (#(k,xj,O') = #(k,l’i,(j) 77) :

Suppose #(|)(#(k, x;,0), #(k,x;,0)) holds.
There exists n € N such that #(k,z,,0) = #(k,z;,0) - 1.

We define ¢’ = o + (¢,n). We have ¢’ € Z(k’) and o C ¢’.

Moreover since z; € E(k), Vy(z;) = 0 and then ¢ ¢ Vj(z;) we can apply lemmam
and obtain that #(k',z;,0") = #(k,z;,0). Similarly #(k',x;,0’) = #(k,x;,0). Using
lemma we obtain #(k’, ¢, o’) = n. Therefore

#(k/7xj70-/) = #(k7xj70-) = #(ku T, U) n= #(/{/71'1-70'/) : #(klvc7 0/) .
Conversely suppose there exists ¢’ € Z(k’) such that o C ¢’ and

#(kla Zj, O'/) = #(k/a L, OJ) ' #(klv c, OJ)'
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There exists a positive integer n such that & € K(n), N € Es(n,k). Since
c € V —wvar(k) we have ¥ = k + (¢, N) € K(n)t, so there exist p € Z(k),
s € #(k, N, p) = N such that p+ (¢,s) = o’

Now we have to consider that p C ¢/, so p = G‘;dom(p), and similarly ¢ £ ¢/, so
0 =0} 4om(o)- Moreover dom(p) = dom(k) = dom(c) so

pP= OJ/dom(p) = Ul/dom(a) =0
Since z; € E(k), Vy(z;) = 0 and then ¢ ¢ V4 (z;) we can apply lemma[4.12|and obtain

that #(k',x;,0") = #(k,z;, p) = #(k,z;,0). Similarly #(k', z;,0") = #(k x;,0). So we
have

#(k,xj,0) = #(k,x;,0) - #(K ,c,0”).
By lemmawe have #(k', ¢, 0’) € N, so #(|)(#(k, zi,0), #(k,z;,0)) is proved. m

This lemma allows us to create an axiom which is the set Agm of all expressions

Yz Ny s N, () (D, 25), 3) () (e N, (=)(x, (zi0)))))]
such that m is a positive integer, z1,...,z,, € V, with z, # zg for a # B,
ihwj=1...m,i#j,ce€V —var(klxy: N,..., 2y : N]).

LEMMA 6.3. Let m be a positive integer, x1,...,%m €V, with x; # x; fori # j.
We have H[xy : N, ..., 2 : N] and we define k = k[x1 : N,... &y : N].
Suppose i1,1a,13 are distinct members of {1,...,m}. Then
Ve Ny o N (=) () () (@i iy )y i) 5 () (i, (4) (3, 23)))] € S(e);
#(v[zr s Ny wm o N (=) () () (@i, i), Tag) 5 (%) (@5 (4) (@, @3,)))]) 15 true.
Proof.
By lemma [6.1] we obtain that
o foreach j =1...3 z;; € E(k);
o for each o € Z(k) #(k,z;;,0) € N.

Also * belongs to E(k). For each o € E(k) #(k, *,0) = #(x) is a function with two ar-
guments and (#(k)xil’ )a #(k7xi2, ))
(¥)(24,,2i,) € E(k) and for each o € E(k)

#(k, () (23, 24,), 0) = # (%) (#(k, 23y, 0), #(k, iy, 0)) = #(k, iy, 0) - #(k, 4, 0) €N
Clearly we have also (+) (%) (s, , 21, ), 7s,) € E(k).
Similarly (%) (21, (+)(xs,, 2s,)) € E(k) so by lemma
(=) ((0) () @iy, @in ), @is) , (%) (@i, () (45, w3, ))) € S(K)

is a member of its domain, so

and

Vi Ny s N (=) () () (@, 24,), i) 5 () (2, (4) (2005, 245)))] € S(€)-
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By theorem we can rewrite
# (’7 [Il i N, Ty N (:) ((*) ((*)(‘Tn ) ziQ)? xis) ) (*) (xilﬂ (*)($227x13)))])

as follows

(
(k7 (*) ((*)(Iilaxh)vggis)ag)v =
(K, () (21, ()13, 31,)) ) ) o € Z(k)))

#( (#(kv(*)(xi17$i2)7U)?#(kvxiB’U))’ o =
PP ( () (B (ks 21y, 0), 2k, () (3. 72, 0) ) o< 2

) #(k’xiua)’#(k’xizaa))v#(k7xi370))’ > ‘ o= E(k‘)})

(#(kvxiug) : #(kvzizva)) ’ #(kvmiava)v =
R () Gtk mesm)- iy )12 €300)

The last condition is clearly true, since for each o € Z(k)
(#(k,25,,0)  #(k,xiy,0)) - #(k,x4i5,0) and #(k,z;,,0) - (#(k, 24, 0) - #(k, 245, 0)) are
the same. =

Lemma allows us to create an axiom which is the set Ag of all expressions

Yz Noooomm 2 Ny (=) () ((0) (@05 @0, ), Ty ) 5 (%) (@5 (6) (@43, 245 )))]
such that m is a positive integer, z1,...,z,, € V, with z, # x5 for a # §,
i1,12,13 are distinct members of {1,...,m}.

6.1.1. The proof. We have already defined the sets C and F in our language, as follows:
C=A{N,[,+};
F={AV,—, ¢,V 3 €=}
Moreover we define V = {z,y, z,¢,d, e}.

Our deductive system includes the axioms and rules we’ve listed in chapter [5| and in
this section 6.1

The first step in our proof of statement uses axiom Agzy

Yl Noy: N,z : N () () ey), ) () (e: N (=), @) (6.1.1)
Then we can use Rgg to derive a new statement from
e Ny Nz s N (=) () ay), B) ([} (e N, (5)(y, (@) (6.1.2)
In the next step we use axiom Ag
Aa: Ny Nz s N (=) (D)D), (), ) () 9))- (6.1.3)

At this point we can apply rule Rgg to and and obtain
Y Ny Nz N(=) (A, 9), (D, 2)), B) ({3 (e N, (=)(y, (20)))))]. - (6.1.4)



A different approach to logic 185

In much the same way we can obtain
Yz : Ny N,z N, (=) (M((D(,9), (DY, 2), @) ({}Hd: N, (=)(2 (yd)))))]. (6.1.5)

The next two statements are instances of axiom Ay

~ {x:N,y N,z:N,c:N,d: N, (=) ((/\)( 88 g;”fl;% ),(:)(y, (xc)))}, (6.1.6)

~ {x :N,y:N,z:N,c:N,d: N, (—) <(/\)( 88 82;; >,(—)(z,(yd)))]. (6.1.7)

In fact if we define h = k[x : N,y : N,z : N,c: N,d : N] then z,y,2,¢,d € E(h) and
for each o € Z(h) #(h,z,0),#(h,y,0),#(h,z,0),#(h,c,0),#(h,d,c) € N.

Moreover * € E(h) and for each o € Z(h) #(h,*,0) = #(x) is a function with two
arguments and (#(h,z,0), #(h,c,0)) is a member of its domain. Therefore (zc) € E(k)
and similarly (yd) € E(h).

By lemma we get (=)(y, (zc)) € S(h) and (=)(z,(yd)) € S(h) and the two
statements are instances of Agz.

To proceed with our proof, our idea is to apply rule Rgg to and

We have z,y,2,¢,d,e e V, N€ E, Hlz: N,y: N,z: N,c: N,d: N,e: N].

We have already defined h = k[z : N,y : N,z : N,c: N,d : N] and we define
k=k[lx:N,y: Nz:N,c: N,d: N,e: NJ.

We want to apply rule Rgg with

o (M) ((5)(, (xc)), (=)(2, (yd))) in the role of X,
e (=)(z, (ed)) in the role of ¢,

e y in the role of ¢,
e (zc) in the role of ¢'.

It has been shown above that (A) ((=)(y, (zc)), (=)(z, (yd))) € S(h).

It’s easy to see that (=)(z,(ed)) € S(k). In fact e,d,* € E(k), for each o € Z(k)
#(k,x,0) = #(*) is a function with two arguments, and #(k,d, o), #(k,e,o0) € N. This
implies that (ed) € E(k). Since z € E(k) we obtain (=)(z, (ed)) € S(k).

Clearly y € E(h) and for each p € E(h) #(h,y,p) € N=#(h, N, p).

Moreover x,c¢,* € E(h), for each p € E(h) #(h,*, p) = #(x) is a function with two
arguments and #(h, z, p),#(h,c,p) € N. This implies that (zc) € E(h) and for each
p € E(h)

#(h, (zc), p) = #(x)(#(h, x, p), #(h, ¢, p)) = #(h, . p) - #(h, ¢, p) € N =#(h, N, p).

We can use assumption [2.1.10[ to evaluate V3 (y) and Vi((zc)). That assumption tells
us that V;(y) = 0 and Vi ((zc)) = V(%) U Vi (z) U V() = . Therefore, clearly,

Va(y) N Vo((=)(2, (ed))) = 0; Vi((2c)) N Ve((=)(2, (ed))) =0 .
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In order to calculate (=)(z, (ed))r{e/y} and (=)(z, (ed))r{e/(xc)} we can exploit def-
inition In one part of it we established that one of five conditions holds true and a
consequent calculation of @i {z;/t}.

By lemma we know there exists a positive integer n’ such that
K(n';k;x : Nyy : N,z @ Nye: Nyd @ Nye : N), (=)(z,(ed)) € E(n',k) and we can
define (=)(z, (ed))r{e/y} and (=)(z, (ed))r{e/(xc)}.

There also exists a positive integer n’ such that z,(ed) € E(n” k). If we set
n = max{n’,n"}, then clearly z, (ed) € E(n, k), so (=)(z, (ed)) belongs to E4(n + 1,k).

We have also K(n+ 1;k;z: Nyy: N,z: N,c: N,d: N,e: N) and
(=)(z, (ed)) € E(n+1,k). So definition tells us there exist k € K(n): s C k, f € F,
a positive integer m, ¥1,...,%m € E(n,k) such that (=)(z, (ed)) = (f)(¥1,-..,%m),
(=)(z, (ed)) belongs to E(n + 1, k) etc..

Clearly f is the symbol = and m = 2, z = i1 € E(n, k), (ed) = 2 € E(n, k). At this
point we observe that Vi ((ed)) C var(k).

We can use assumption [2.1.10] to evaluate Vy((ed)). That assumption tells us that
Vi((ed)) = Vi(x) UVy(e) UVy(d) = {d,e}. So e € V¢((ed)) C var(k).

This implies k # €. Let’s rename our variables as follows
Ul =T, U2 =Y, uz = 2,ug = C,us = d,ug =€

and for each j =1...6 let ¥; = N.

By [477] we can derive there exists a positive integer ¢ < 6 such that ¢ < n,
K(n;k;uq 0 91,...,uq4 1 9q). We have var(k) = {u1,...,u4}, so if ¢ < 6 then e ¢ var(x).
But e € var(k) holds so ¢ = 6 and k = k. We have also

(=)(z, (ed)rfe/y} = (=) (z{e/y}, (ed)r{e/y})

and similarly
(=)(z (ed))i{e/(z0)} = (=) (zr{e/(zc)}, (ed)rfe/(zc)}) -
We can see immediately that zp{e/y} = z and zr{e/(zc)} = z.

In order to evaluate (ed)r{e/y} and (ed)r{e/(zc)}, we know that
K(n;k;x : Nyy: N,z : Nyc: N,d: N,e: N) holds, (ed) € E(n,k) and we can define
both (ed)r{e/y} and (ed)r{e/(zc)}.

For reasons of clarity we need to redefine n’,n” and n. We can start by saying that
there exists a positive integer n’ such that K(n';k;2 : N,y : N,z: N,c: N,d: N,e: N)
holds, (ed) € E(n', k) and we can define both (ed)r{e/y} and (ed)r{e/(zc)}.

There also exists a positive integer n” such that *,e,d € E(n” k). If we set
n = maz{n/,n"}, then clearly x,e,d € E(n,k). For each o € E(k) #(k,*,0) = #(x)
is a function with two arguments, and #(k,d,o),#(k,e,o) € N. This implies that
(ed) € E.(n+1,k).
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We have also K(n+ 1;k;2: Nyy: N,z: N,c: N,d: N,e: N), (ed) € E(n+ 1,k). So
definition tells us there exist k € K(n): k C k, a positive integer m,
Y, 01, m € E(n, k) such that (x)(e,d) = (¢¥)(¥1,...,%m), (¥)(e,d) € E(n + 1,k)

etc..

Clearly *x = ¢, m =2, e =91 € E(n,k), d =1 € E(n,k). At this point we observe
that Vy(e) C var(k).

We can use assumption [2.1.10 to evaluate Vy(e). That assumption tells us that
Vi(e) ={e}. So e € Vy(e) C var(k).

This implies x # €. We rename our variables as above
UL =T, Up =Y, Uz = Z,Ug = Cus = d,Ug = €
and for each j =1...6 let ¥; = N.

By we can derive there exists a positive integer ¢ < 6 such that ¢ < n,
K(n; k;ur 2 91,0 uq 1 ¥q). We have var(k) = {u1,...,uq}, so if ¢ < 6 then e ¢ var(x).
But e € var(x) holds so ¢ = 6 and k = k. We have also

(ed)rfe/y} = ((rle/yD()ule/y}s (Drle/y}) = (¥)(y.d) ,

and similarly
(ed)i{e/(zc)} = ((+)r{e/(zc)})((e)r{e/(zc)}, (d)r{e/(xc)}) = (+)((wc), d) .
Therefore

(=) (2, (ed)le/y} = (=) (zr{e/y}, (ed)r{e/y}) = (=) (2, (+)(y,d))

and similarly
(=)(z, (ed))i{e/(z0)} = (=) (zrfe/(xc)}, (ed)rfe/(xc)}) = (=) (2, (+)((xc), d)) .

So if we apply rule Rgg to and we obtain
vla: Ny :Nz:NeiNd:N, (=) ((/\) ( E ;EZ gg;; ) (=) (2, (*)((mc),d)))} . (6.1.8)

The next statement is an instance of axiom Agzy

vl :N,y: N,z:N,c: N, d: N,(=)((x)((zc),d), (x)(x, (cd)))] . (6.1.9)

Using rule Rgz we obtain

o e v vz NN v (0 (SR ) G a0 @)
(6.1.10)

We can apply rule Rgg to [6.1.8] and [6.1.10] to obtain
5 [w :N,y:N,z:N,c: N,d:N,(—) ((/\) ( Ezggz Ezgggﬂ ) , (=) (z, (%) (z, (cd))))} . (6.1.11)

To proceed, our idea is now to apply rule Rgg to[6.1.11]
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We have z,y,z,¢,d,e e V, N€ E, Hjxz: N,y : N,z: N,c: N,d: N,e: N].
We want to apply our rule with the following assumptions:

klx : N;y: N,z:N,c: N,d: N,e: NJ takes the role of k;

hlz : Nyy: N,z: N,c: N,d: NJ] takes the role of h;

(A) (=), (x0)), (=)(z, (yd))) takes the role of x;

(cd) takes the role of ¢;
(=)(z, (%)(z,e)) takes the role of .

It has been shown above that (A) ((=)(y, (zc)), (=)(z, (yd))) € S(h).

We observe c¢,d,x € E(h), for each p € E(h) #(h,*,p) = #(*) is a function with
two arguments and #(h, ¢, p), #(h, d, p) € N. This implies that (cd) € E(h) and for each
p € E(h)

#(h, (cd), p) = #()(#(h, ¢, p), # (. d, p)) = #(h, ¢, p) - #(h, d, p) € N = #(h, N, p).

We can add that Vi ((cd)) = Vi () U Vi(c) U V3 (d) = 0.

It’s also easy to see that (=)(z, (ze)) € S(k). In fact z,e,x € E(k), for each o € Z(k)
#(k,*,0) = #(*) is a function with two arguments, and #(k,z, o), #(k,e,o) € N. This
implies that (ze) € E(k). Since z € E(k) we obtain (=)(z, (ze)) € S(k).

In order to calculate (=)(z, (ze))r{e/(cd)} we can exploit definition In one part
of it we established that one of five conditions holds true and a consequent calculation of

or{xi/t}.

By the proof of lemma [5.6] we know there exists a positive integer n’ such that
K(n';k;x : Nyy : N,z @ Nye: N,d : Nye: N), (=)(z (ze)) € E(n',k) and we can
define (=)(z, (ze))r{e/(cd)} at step n’ of our inductive process in definition

There also exists a positive integer n” such that z,(ze) € E(n” k). If we set
n = maz{n/,n"}, then clearly z, (ze) € E(n,k), so (=)(z, (ze)) belongs to E4(n + 1,k).

We have also KX(n+ 1;k;z: Nyy: N,z: N,c: N,d: N,e: N) and
(=)(z,(ze)) € E(n+ 1,k). So (=)(z, (ze))r{e/(cd)} can also be defined at step n + 1 of
our inductive process and definition tells us there exist k € K(n): K C k, f € F,

a positive integer m, ¥1,...,¢%, € E(n,k) such that (=)(z,(ze)) = (f)(¥1,...,%m),
(=)(z, (xe)) belongs to E(n+ 1,k) etc..

Clearly f is the symbol = and m = 2, z = ¢; € E(n, k), (xe) =1y € E(n, k). At this
point we observe that Vi ((xze)) C var(k).

We can use assumption [2.1.10| to evaluate Vy((ze)). That assumption tells us that
Vi((ze)) = Vi(x) UVi(z) UVi(e) = {e,z}. So e € Vi((ze)) C var(k).
This implies x # €. Let’s rename our variables as follows
Ul = T,Uz = Y,u3z = 2,us = C,u5 = d,ug = €

and for each j =1...6 let ¥; = N.
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By [£77] we can derive there exists a positive integer ¢ < 6 such that ¢ < n,
K(n;k;uq 0 91, .. ,uq 1 9g). We have var(k) = {ui,...,uq}, so if ¢ < 6 then e ¢ var(x).
But e € var(k) holds so ¢ = 6 and k = k. We have also

(=)(z, (ze))u{e/(cd)} = (=) (z{e/(cd)}, (ze)r{e/(cd)})
We can see immediately that zi{e/(cd)} = z.
In order to evaluate (ze)r{e/(cd)}, we know that
K(n;k;xz : N,y : N,z : N,c: N,d: Nye: N) holds, (ze) € E(n,k) and we can define
(ze)r{e/(cd)} at step n of our inductive defintion process.
For reasons of clarity we need to redefine n’,n” and n. We can start by saying that

there exists a positive integer n’ such that K(n';k;z : Ny : N,z: N,c: N,d: N,e: N)
holds, (ze) € E(n', k) and we can define (ze)r{e/(cd)} at step n'.

There also exists a positive integer n” such that *,z,e € E(n” k). If we set
n = maz{n’,n"}, then clearly x,x,e € E(n,k). For each o € Z(k) #(k,*,0) = #(*)
is a function with two arguments, and #(k,z,0),#(k,e,0) € N. This implies that
(zve) € Ec(n+1,k).

We have also K(n+ 1;k;2: N,y : N,z: N,c: N,d: N,e: N), (ze) € E(n+1,k) and
we can define (ze){e/(cd)} at step n+ 1. So definition [4.16] tells us there exist £ € K(n):
k C k, a positive integer m, ¥, 91, ..., ¥, € E(n, k) such that
(%)(z,e) = (V) (W1, ..., ¥m), (x)(z,e) € E(n+ 1,k) etc..

Clearly * =1, m =2, x =1 € E(n,k), e =19 € E(n,k). At this point we observe
that V¢(e) C var(k).

We can use assumption [2.1.10 to evaluate Vy(e). That assumption tells us that
Vi(e) = {e}. So e € V¢(e) C var(k).

This implies k # €. We rename our variables as above
Uy = T, U2 = Y,U3 = 2,Uq = C, U5 = dauﬁ =€
and for each j =1...6let ¥; = N.

By we can derive there exists a positive integer ¢ < 6 such that ¢ < n,
K(n;k;uq 201, ..., uq : 9q). We have var(k) = {u1,...,uq}, so if ¢ < 6 then e ¢ var(k).
But e € var(x) holds so ¢ = 6 and k = k. We have also

(ze)r{e/(cd)} = ((x)r{e/(cd)})((x)r{e/(cd)}, (e)r{e/(cd)}) = (+)(x, (cd))
and therefore

(=)(z, (ze))ele/(cd)} = (=) (zx{e/(cd)}, (ze)r{e/(cd)}) = (=) (2, (%) (2, (cd)))

If we go back to our proof, we see that we can derive

Ny Neei NN (=)0, (20)), v
IR I A () s RC I I S TENER)
1
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We can use the following instance of axiom Agy

vl :N,y: N,z:N,c: N, d: N, (<) (([)(z,2),3) {} (e : N, (=)(z, (ze)))))] . (6.1.13)

Using rule g we can derive
Yo Noy: Noz: Nye: Nod: N, (=) () ({} (e : N, (5)(z (we) . (), 2))] .« (6.1.14)

We can apply rule Rgm to[6.1.12] and [6.1.14] to obtain

yl|z:N,y:N,z:N,c:N,d: N, (—) <(/\)( 8883; >,(|)(x,z))]. (6.1.15)

We can now apply rule Rgtg. With the definition h = k[z : N,y : N,z : N,c: N,d : N]
we have (])(z, ), (=)(y, (zc)), (=)(z, (yd)) € S(h). So by Rg1my we obtain

Y[z :Ny:N,z:N,c: N,d: N, (=) (=), (z0)), (=)((=)(2, (yd)), (1)(z,2)))] -
(6.1.16)

By lemma [3.5] this can be rewritten

Ve Ny N,z:Nye: Nyyld: N, (=) (=), (zc), (=) (=) (2 (yd)), () (z, 2)))]] -
(6.1.17)
We can apply rule Rgqusing k = k[xz : N,y : N,z: N,c: N,d: N]|,
h =k[x: N,y: N,z: N,c: N]. We consider that (—)((=)(z, (yd)), (|)(z,2)) € S(k),
(=), (zc)) € S(k).
Moreover, x,c,x € E(h) and for each ¢ € Z(h) #(h,*,0) = #(x) is a function
with two arguments and (#(h,z,0),#(h,c,0)) is a member of its domain. Therefore

(zc) € E(h). We also observe that y € E(h) and therefore (=)(y, (z¢)) € S(h). Thus we
derive

Y[z :Ny:N,z:N,c: N, (=) (=), (), v[d: N, (=)((=)(z, (yd)), (1) (=, 2))])] -
(6.1.18)

This can be rewritten

Yl Ny N,z:Noye: N, (=) (5)(y, (zc),v[d : N, (=)((=)(2, (yd), (1) (=, 2))])
6.1

Il
.19)
We intend to apply rule RgTy using

e k=Fk[z:N,y:N,z: N,c: NJ,

e h=k[x:N,y: N,z:NJ,

o Y= (=)(y, (zc)) € S(k),

e o =7[d: N,(=)((=)(z, (yd)), ()(z, 2))] € S(k).

To be able to apply that rule we need to show that

vld: N, (=2)(F)(z (yd), ((z, 2))] € S(h) .

Let K = k[z : N,y : N,z : N,d: N]. By lemmal6.1]z, y, z,d € E(k), for each o € E(k)
#(I{7 x? 0’)7#(I€7 y’ O’)?#(H’ 270)7#(/{7 d7 U) e N'
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Therefore (yd) € E(k), (=)(z, (yd)) € S(k), (|)(x,2) € S(k),
(=)((=)(z (yd)), (D(x, 2)) € S(k) and v [d : N, (=)((=)(2, (yd)), (D(z, 2))] € S(h).

We obtain

Yz Nyy: N,z: N, (=) (3) {He: N, (=), (20)) ,v[d : N, (=)(=)(z, (yd), () (=, 2))])] -
(6.1.20)

We can apply rule Rgg to and [6.1.20] and obtain

Yz Ny : N,z N, (=) (MN((D(, ), Dy, 2),7[d: N, (=)(=)(z, (yd)), () (z, 2)])] -
6.1.21)
At this point we need to apply rule RgTg using
e k=FKlz:N,y:N,z: N,d: NJ,
e h=k[x:N,y: N,z:NJ,
o x = M(D(=,9), (D(y,2)) € S(h),
* ¥ =(=)(z (yd)) € S(k),
e p=(])(z,2) € S(h)yNS(k).
We obtain
Ve Ny Nz N, (=) (M) (D5 9), (D, 2)), (=) () {Hd : N, (=)(z, (yd)))) , (1) (2, 2)))] -
(6.1.22)

The final step in our proof consists in applying the ‘modus ponens’ rule Rg1q to
and [6.1.22] We get

Vo Ny Nz N (=) (MDD (=, 9), (D, 2)), () (=, 2))] - (6.1.23)
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6.2. Second example. In this other example we want to prove a form of the Bocardo
syllogism. In Ferreirds’ referenced paper ([3]), on paragraph 3.1, the syllogism is expressed
as follows:

Some A are not B. All C are B. Therefore, some A are not C.

Suppose A, B and C represent sets, the statement we actually want to prove is the
following:

If ( (there exists x € A such that = ¢ B) and (for each y € C y € B) ) then
(there exists z € A such that z ¢ C).

In order to formalize this, our language must be as follows

C={A,B,C},
f: {_'7/\7\/7_>7<_>7V7E|767:}7
V={z,y,z},

where A, B, C' are constants each representing a set.

At this point we suppose we can formalize the statement as

3 (0} (e A (5) (), BY))., s
() (m) ( e ) LB ({3} (2 A () ((€)( ,cm))( .
Tha

We’ll soon see a proof of this statement and within the proof we’ll also prove is
a sentence in our language.

First of all we need the following lemma, that can be applied to the general language
of chapter

LEMMA 6.4. Let m be a positive integer, x1,...,Tm € V, with x; # x; for i # j. Let
A1, ..., A € C such that for each i =1...m #(A;) is a set. Let D € C such that #(D)
is a set. We have Hxy : A1, ..., Zm 2 A, If we define k = k[z1 : A1, ..., T+ Ap] then
for eachi=1...m (€)(z;, D) € S(k).

Proof.

We first consider that A; € E(e) and #(A;) is a set, so 41 € Es(e) and Hlx : A4].
Let ky = k[x : A1)

If m > 1 then for each ¢ = 1...m — 1 we suppose H[zy : Ay,...,2z; : A;] holds and
we define k‘l = k[.]?l : Al, R IS Az]
Clearly A;11 € E(k;) and for each p € E(k;) #(ki, Ait1,p) = #(Air1) is a set.
So Ajt1 € E(k;), which implies H[zy : Aj,...,2i41 @ Aiy1] (and we can define
ki+1 = k[:El : Al, ey L4 0 Ai+1]).



A different approach to logic 193

This proves that H[xy : Ay,..., &y : Ay] holds.

Let i = 1...m. We have A; € E4(k;—1) and k; = k;—1 + (x;, 4;). So we can apply
lemma and obtain that z; € E(k;). If ¢ = m this implies z; € E(k).

If i < m we consider that for each j = ¢+ 1...m z; ¢ V,(x;). So we can apply
lemma and prove z; € E(k).

Moreover D € E(k) and for each o € Z(k) #(k, D, o) = #(D) is a set. By lemma
we have (€)(x;, D) € S(k). m

6.2.1. The proof. To provide a proof of statement we’ll make use of a deductive
system which includes all the axioms and rules listed in chapter

If we go back to the language we have introduced for our proof, using the former lemma
we can derive H[z : A] and we can define h = k[z : A]. Moreover (€)(z, B) € S(h), so

(=)((€)(z, B)) € S(h).

We also have H[z : A,y : C] and we define ky, = k[z : A,y : C].

We have (€)(y, B) € S(k,) and by lemma B.1] (V)({}(y : C, (€)(y, B))) € S(h).
Thus (A) (=)((€)(z, B)), M){}(y : C,(€)(y, B)))) also belongs to S(h).
Moreover H[z : A,z : A] and we define k, = k[z : A,z : A].

We have (€)(z,C) € S(k.) and by lemma [3.1] (V)({}(z : 4, (€)(2,C))) € S(h).

The first sentence in our proof is an instance of axiom Agz.
(m)((e) (=, B)),
) {x:fua) (w( ™ (@0 w sy ) )m( e o By ))}

M}z A,(e)(2,0)))
(6.2.1)

By Agz we also obtain
. () B)), e
74 (0 (50 o6 sy ) O@E@B)] 622
By and rule Rgx

(A)( (=)((€)(=, B)), )
vz A (=) [ (N Wy C(e)w, B) )7 |, (2)(€)(=, B))
({3 : 4, (e

I\
:\
~—
—
n

Q
~—
~—
~

Another instance of Az is the following

(/\)( (_‘)((e)(x?B))v >
z: A (=) [ (A) My :C.(e)w. B))) )7 | . (M{Hz: A4, (€)(%C)))

Y

By axiom Agg we obtain
Y[z : A, (€)(z, A)]. (6.2.5)
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By and rule Rg7 we also get

(/\) < (ﬁ)«e)(va))a >
z: A (=) | (N) MMy :C.(e)w.B)) ) | . (€)=, A))|.
(M {}z: 4, (€)(2,0)))

Since z € E(h), C € E4(h) etc. we can apply rule Rgg to and [6.2.6] m and obtain

7[96 Al ( (A( {}y c B))))’)«e)(x,c)) .
9 (e A (), >>>

By axiom Agg
. C)(E)w. B)), .
y|esa e (0 Gan sy ) O0EC@Em)| . 629
By and rule Rgx

(A)( (=)(€)(=, B)), )
vz A (=) (N My : G )y, B) )7 | (DEHy: C (), B)) | | -

v (6.2.6)

(6.2.7)

y:C, (e
M {}z: A, (e)(20)))
(6.2.9)

Since x € E(h), B € E(h) etc. we can apply rule Rp17 to“ andm 6.2.9[and obtain

7[36 A, ( (A( {}y c B»))’),<e><x,3>>]. (6.2.10)
DA GO

By [6.2.10 and Rgg

(). B,
. [x A,) ((/\) ( ™ (b5t s ) ) 0 (e m) )) |

(62.11)
By Rgs
o |24, (=) (m) ( W( Py < (O B ) ))] - (6.212)
(D A, (€)=, 0N)
By Ryt
v|esa e (0 Gan e sy ) O A©E0M)]
(6.2.13)
By Ry
v e (0 (s sy ) @0 A G EN)].
(6.2.14)
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By Hzm

| () O (). B),
[ (e o (S S ey )] eam

Using lemma [6.4] we obtain that (€)(y, B) € S(k[y : C]) and (€)(z,C) € S(k[z : A]).

By lemma [3.1] we obtain that (V)({}(y : C, (€)(y, B))) € S(e) and similarly
B3z : A, ()((e)(=,0)))) € S(e).

We can apply rule Rgzq to and obtain
- (O @ 4 @B ) ( HBLCEEED ) 6210

Finally, by Rgzy, we obtain

G) (1} 4, V() BY)), R
e (0 (DT CUS ) @06 A @00 ©217)

6.2.2. Additional notes. We have proved statement this also means that is
a sentence in our language. It seems quite obvious that the statement’s meaning is as
expected, anyway to complete the argument we also want to prove this.

We need the following lemma, that can be applied to the general language of chapter[5]

LEMMA 6.5. Let uw € V, D € C such that #(D) is a set. We have H[u : D] and we can
define h = k[u : D]. Then, for each o € E(h) #(h,u,0) € #(D). Moreover, for each
o € #(D), if we define 0 = € + (u, ) then o € Z(h) and #(h,u,0) = a.

Proof.
We have D € E(1,¢) and #(¢, D, ¢) is a set, so D € E (1,¢), h=¢+ (u, D) € K(1)*
and
E(h) ={e+ (u,s)|s € #(e, D,e)} = {e+ (u,s)| s € #(D)}.
Therefore, for each o € Z(h) there exists s € #(D) such that ¢ = € + (u, s).
It follows by lemma [4.13] that #(h,u,0) = s € #(D )

Now let a € #(D) and o = €+ (u, @), clearly o € Z(h) and by [L13|#(h,u,0) =a. =

We now examine the meaning of (3) ({}(z : 4, (=)((€)(z, B)))).
We can rewrite #((3) ({}(z : 4, (=)((€)(x, B))))) as
)|

Py({# (Kl - A, (5)((€) (2, B)),0)| o € E(k[x - A])}) ,
Ps({P-(#(klz : A], (€)(x, B),0))| 0 € E(k[z : A])}) ,
Ps({P-(Pe(#(k[z : A],z,0),#(B)))| o € E(k[x : A])})
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This can be furtherly expressed as
‘there exists o € E(k[z : A]) such that P.(Pec(#(k[z : A],z,0),#(B)))’,
which is the same as

‘there exists o, € #(A) such that P.(Pc(ay, #(B)))’,
‘there exists a, € #(A) such that a, doesn’t belong to #(B)’.

Similarly we can rewrite #((V)({}(y : C, (€)(y, B)))) as
Py({#(kly : C1,(€)(y, B),0)| 0 € E(k[y : C)})
Py({Pe(#(kly : Cl,y,0),#(kly : C], B,0))| o € E(k[y : C])})
Py({Pe(#(kly : Cl,y,0),#(B))| o € E(k[y : C])})
This can be furtherly expressed as
‘for each o € Z(k[y : O) Pe(#(kly : Cl,y,0),#(B))’,
which is the same as
‘for each o, € #(C) Pe(ay, #(B))’,
‘for each o, € #(C') o, belongs to #(B)’.
Similarly we can also rewrite #((3) ({}(z: A, (—=)((€)(z,C))))) as
Ps({#(k[z : Al,(m)((€)(2,C)),0)| 0 € E(k[z : A])})
Pa({P- (k[ 5 AL, (€)(2,C), 0))| 7 € Skl : A])})
Ps({P-(Pe(#(klz : A, 2,0), (C)))l o €E(k[z: A]}) .
This can be furtherly expressed as
‘there exists o € E(k[z : A]) such that P_(Pc(#(k[z : 4], z,0),#(C)))’,
which is the same as

‘there exists a, € #(A) such that P-(Pc(a.,#(C))),
‘there exists a, € #(A) such that «, doesn’t belong to #(C)’.

At this point we can rewrite

) () 4, (@B, OO
# (1 (0 (958 SIS @064 Ciee.om))

SR

() (D) 4, ()(E)(w, BN, Ao
P (m (B e 2 DU ) (@0 4. V) M)
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This can be furtherly expressed as:

“if (there exists o, € #(A) such that a, doesn’t belong to #(B)) and
(for each o, € #(C') a, belongs to #(B)) then
(there exists a, € #(A) such that «, doesn’t belong to #(C))’.

So the statement which we have proved has the expected meaning.
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7. Consistency, paradoxes and further study

We have proved that a deductive system is sound, i.e. if we can derive a sentence ¢ in
our system then #(¢) holds. We now discuss the consistency of a deductive system.

A deductive system D = (A, R) is said to be consistent if and only if for each ¢
sentence in £ (Fp ¢) and (Fp (—)(p)) aren’t both true.

LEMMA 7.1. Let D = (A, R) be a deductive system in L. Then D is consistent.
Proof.

Suppose there exists a sentence o such that Fp ¢ and Fp (—)(¢) both hold. By the
soundness property we have #(p) and #((—)(¢)). Clearly

#((2)(@)) = #(e, (7)), €) = P~(#()) = #(¢) is false.

So #(¢) would be true and false at the same time, a plain contradiction. =

A paradox is usually a situation in which a contradiction or inconsistency occurs,
in other words a paradox arises when we can build a sentence ¢ such that both ¢ and
(=)(¢) can be derived. Since our system is consistent it shouldn’t be possible to have
true paradoxes in it, anyway it seems appropriate to discuss how our system relates with
some of the most famous paradoxical arguments.

We begin with Russell’s paradox. Assume we can build the set A of all those sets
X such that X is not a member of X. Clearly, if A € A then A ¢ A and conversely if
A ¢ Athen A € A. We have proved both A € A and its negation, and this is the Russel’s
paradox.
It seems in our system we cannot generate this paradox since building a set is permitted
only if you rely on already defined sets. When trying to build set A in our language we
could obtain something like this:

{H=(e)(X, X)), X) -

However it is clear this isn’t a legal expression in our language, since in our language
if you want to build a context-independent expression using a variable X, then you have
to assign a domain to X.

We now turn to Cantor’s paradox. Often the wording of this paradox involves the
theory of cardinal numbers (see e.g. Mendelson’s book [4]), but here we use a simpler
wording.

First of all we prove that for each set A there doesn’t exist a surjective function with
domain A and codomain P(A) (where P(A) is the power set of A).
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Let f be a function from A to P(A). Let B = {z € Alz ¢ f(z)}.
Suppose there exists y € A such that B = f(y). If y € B then y ¢ f(y) = B, and
conversely if y ¢ B = f(y) then y € B. So there isn’t y € A such that B = f(y) and
therefore f is not surjective.

At this point, suppose there exists a set {2 such that any member of € is a set and
any set is a member of ). Clearly €2 and all of its subsets belong to 2, so we can define
a function f from Q to P(§) such that for each X C Q f(X) = X. Obviously this is a
surjective function, and we have a contradiction.

The contradiction is due to having assumed the existence of 2. In this case too in
our language we cannot build an expression with such meaning. One expression like the
following:

{}(set(X), X)

is not a valid expression in our language.

Finally we want to examine the liar paradox. Let’s consider how the paradox is stated
in Mendelson’s book.

A man says, ‘I am lying’. If he is lying, then what he says is true, so he is not lying.
If he is not lying, then what he says is false, so he is lying. In any case, he is lying and
he is not lying.

Mendelson classifies this paradox as a ‘semantic paradox’ because it makes use of
concepts which need not occur within our standard mathematical language. I agree that,
in his formulation, the paradox has some step which seems not mathematically rigorous.

We'll try to provide a more rigorous wording of the paradox.

Let A be a set, and let § be the condition ‘for each = in A z is false’. Suppose ¢ is
the only member of A. In this case if § is true then it is false; if on the contrary ¢ is false
then it is true.

The explanation of the paradox is the following: simply ¢ cannot be the only item
in set A. In fact, suppose A has only one element, and let’s call it . This implies ¢ is
equivalent to ‘@ is false’ so it seems acceptable that d is not .

Another approach to the explanation is the following.

If 0 is true then for each z in A z is false, so § is not in A. By contraposition if § is
in A then ¢ is false.
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Moreover if § is false and the uniqueness condition ‘for each x in A z = ¢’ is true then
¢ is true, thus if § is false then ‘for each z in A x = §’ is false too. By contraposition if
‘for each  in A x = §’ then ¢ is true.

Therefore if 0 is the only element in A then § is true and false at the same time. This
implies § cannot be the only item in A.

On the basis of this argument I consider the liar paradox as an apparent paradox that
actually has an explanation. What is the relation between our approach to logic and the
liar paradox?

Standard logic isn’t very suitable to express this paradox. In fact first-order logic is not
designed to construct a condition like our condition ¢ (= ‘for each z in A z is false’), and
moreover, it is clearly not designed to say ‘0 belongs to set A’. These conditions aren’t
plainly leading to inconsistency, so it is desirable they can be expressed in a general
approach to logic. And our system permits to express them. The paradox isn’t ought to
simply using these conditions, it is due to an assumption that is clearly false, and the
so-called paradox is simply the proof of its falseness.

Of course, further investigations about our approach to logic can be performed. For
instance, we can be asked about the completeness of the system. A deductive system
D = (A, R) is said to be complete if and only if for each ¢ sentence in £ if #(p) holds
then Fp . It was easy to prove the soundness of our system, unfortunately the topic of
completeness is more difficult, and in general there is no reason to expect that complete-
ness holds. For instance Cutland’s book [I] has interesting material in this regard.

Another interesting (and not extremely easy) topic is about comparing the expressive
power of our system with the one of standard logic systems.
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