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Abstract

The main features of how to build a Born’s Reciprocal Gravitational
theory in curved phase-spaces are developed. The scalar curvature of the
8D cotangent bundle (phase space) is explicitly evaluated and a gener-
alized gravitational action in 8D is constructed that yields the observed
value of the cosmological constant and the Brans-Dicke-Jordan Gravity
action in 4D as two special cases. It is found that the geometry of the
momentum space can be linked to the observed value of the cosmological
constant when the curvature in momentum space is very large, namely
the small size of P is of the order of (1/RHubble). More general 8D actions
can be developed that involve sums of 5 distinct types of torsion squared
terms and 3 distinct curvature scalarsR,P,S. Finally we develop a Born’s
reciprocal complex gravitational theory as a local gauge theory in 8D of
the deformed Quaplectic group that is given by the semi-direct product
of U(1, 3) with the deformed (noncommutative) Weyl-Heisenberg group
involving four noncommutative coordinates and momenta. The metric is
complex with symmetric real components and antisymmetric imaginary
ones. An action in 8D involving 2 curvature scalars and torsion squared
terms is presented.

1 Introduction : Born’s Reciprocal Relativity in
Phase Space

Born’s reciprocal (”dual”) relativity [1] was proposed long ago based on the
idea that coordinates and momenta should be unified on the same footing, and
consequently, if there is a limiting speed (temporal derivative of the position
coordinates) in Nature there should be a maximal force as well, since force is the
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temporal derivative of the momentum. A maximal speed limit (speed of light)
must be accompanied with a maximal proper force (which is also compatible
with a maximal and minimal length duality). The generalized velocity and
acceleration boosts (rotations) transformations of the 8D Phase space, where
Xi, T, E, P i; i = 1, 2, 3 are all boosted (rotated) into each-other, were given by
[2] based on the group U(1, 3) and which is the Born version of the Lorentz
group SO(1, 3).

The U(1, 3) = SU(1, 3) ⊗ U(1) group transformations leave invariant the
symplectic 2-form Ω = − dt∧dp0+δijdxi∧dpj ; i, j = 1, 2, 3 and also the following
Born-Green line interval in the 8D phase-space (in natural units h̄ = c = 1)

(dσ)2 = (dt)2 − (dx)2 − (dy)2 − (dz)2 +
1
b2

(
(dE)2 − (dpx)2 − (dpy)2 − (dpz)2

)
(1.1)

the rotations, velocity and force (acceleration) boosts leaving invariant the sym-
plectic 2-form and the line interval in the 8D phase-space are rather elaborate,
see [2] for details. These transformations can be simplified drastically when
the velocity and force (acceleration) boosts are both parallel to the x-direction
and leave the transverse directions y, z, py, pz intact. There is now a subgroup
U(1, 1) = SU(1, 1) ⊗ U(1) ⊂ U(1, 3) which leaves invariant the following line
interval

(dω)2 = (dT )2 − (dX)2 +
(dE)2 − (dP )2

b2
=

(dτ)2
(

1 +
(dE/dτ)2 − (dP/dτ)2

b2

)
= (dτ)2

(
1 − F 2

F 2
max

)
(1.2)

where one has factored out the proper time infinitesimal (dτ)2 = dT 2 − dX2 in
(2.2). The proper force interval (dE/dτ)2− (dP/dτ)2 = −F 2 < 0 is ”spacelike”
when the proper velocity interval (dT/dτ)2 − (dX/dτ)2 > 0 is timelike. The
analog of the Lorentz relativistic factor in eq-(2.2) involves the ratios of two
proper forces.

If (in natural units h̄ = c = 1) one sets the maximal proper-force to be given
by b ≡ mP Amax, where mP = (1/LP ) is the Planck mass and Amax = (1/Lp),
then b = (1/LP )2 may also be interpreted as the maximal string tension. The
units of b would be of (mass)2. In the most general case there are four scales
of time, energy, momentum and length that can be constructed from the three
constants b, c, h̄ as follows

λt =

√
h̄

bc
; λl =

√
h̄ c

b
; λp =

√
h̄ b

c
; λe =

√
h̄ b c (1.3)

The gravitational constant can be written as G = αG c4/b where αG is a di-
mensionless parameter to be determined experimentally. If αG = 1, then the
four scales (2.3) coincide with the Planck time, length, momentum and energy,
respectively.

The U(1, 1) group transformation laws of the phase-space coordinates X, T, P,E
which leave the interval (2.2) invariant are [2]
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T ′ = T coshξ + (
ξv X

c2
+

ξa P

b2
)

sinhξ

ξ
(1.4a)

E′ = E coshξ + (−ξa X + ξvP )
sinhξ

ξ
(1.4b)

X ′ = X coshξ + (ξv T − ξa E

b2
)

sinhξ

ξ
(1.4c)

P ′ = P coshξ + (
ξv E

c2
+ ξa T )

sinhξ

ξ
(1.4d)

ξv is the velocity-boost rapidity parameter and the ξa is the force (acceleration)
boost rapidity parameter of the primed-reference frame. These parameters are
defined respectively in terms of the velocity v = dX/dT and force f = dP/dT
(related to acceleration) as

tanh(
ξv

c
) =

v

c
; tanh(

ξa

b
) =

f

Fmax
(1.5)

It is straightforwad to verify that the transformations (1.4) leave invariant
the phase space interval c2(dT )2 − (dX)2 + ((dE)2 − c2(dP )2)/b2 but do not
leave separately invariant the proper time interval (dτ)2 = dT 2 − dX2, nor the
interval in energy-momentum space 1

b2 [(dE)2− c2(dP )2]. Only the combination

(dσ)2 = (dτ)2
(

1 − F 2

F 2
max

)
(1.6)

is truly left invariant under force (acceleration) boosts (1.4).
We explored in [5] some novel consequences of Born’s reciprocal Relativity

theory in flat phase-space and generalized the theory to the curved spacetime
scenario. We provided, in particular, six specific results resulting from Born’s
reciprocal Relativity and which are not present in Special Relativity. These are
: momentum-dependent time delay in the emission and detection of photons;
energy-dependent notion of locality; superluminal behavior; relative rotation of
photon trajectories due to the aberration of light; invariance of areas-cells in
phase-space and modified dispersion relations.

The purpose of this work is to analyze the curved 8D phase space (cotan-
gent bundle) scenario within the context of the physics of a maximal proper
force and Born’s reciprocal relativity. The 8D tangent bundle of spacetime
within the context of Finsler geometry and the physics of a limiting value of the
proper acceleration in spacetime [4] has been studied by Brandt [3]. General-
ized 8D gravitational equations reduce to ordinary Einstein-Riemannian gravi-
tational equations in the infinite acceleration limit. A pedagogical monograph
on Finsler geometry can be found in [11] where, in particular, Clifford/spinor
structures were defined with respect to nonlinear connections associated with
certain nonholonomic modifications of Riemann–Cartan gravity.
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The outline of this work is organized as follows. In section 2 the scalar
curvature of the 8D cotangent bundle is explicitly evaluated and a generalized
gravitational action in 8D is constructed that yields the observed value of the
cosmological constant and the Brans-Dicke-Jordan Gravity action in 4D as two
special cases. It is found that the geometry of the momentum space can be
linked to the observed value of the cosmological constant when the curvature
in momentum space is very large, namely the small size of P is of the order of
(1/RHubble). More general 8D actions can be developed that involve sums of 5
distinct types of torsion squared terms and 3 distinct curvature scalars R,P,S.
Finally in section 3 we develop a Born’s reciprocal complex gravitational theory
as a local gauge theory in 8D of the deformed Quaplectic group that is given by
the semi-direct product of U(1, 3) with the deformed (noncommutative) Weyl-
Heisenberg group involving four noncommutative coordinates and momenta.
The metric is complex and has symmetric real components and antisymmetric
imaginary ones. An action in 8D involving 2 curvature scalars and torsion
squared terms is presented.

2 Born’s Reciprocal Gravity associated with
the 8D Cotangent Bundle of Spacetime

2.1 Gravity as Gauge Theory of Diffeomorphisms

This introductory section is necessary to be able to construct the scalar cur-
vature of the 8D Cotangent Bundle in the next section. The authors [6], [7],
[8], [9] have shown that m + n-dim Einstein gravity can be identified with an
m-dimensional generally invariant gauge theory of Diffs N , where N is an
n-dim manifold. This can be shown as follows.

Locally the m + n-dim space can be written as Σ = M×N and the metric
GAB can be decomposed as

GAB =
(

gµν(x, y) + e2gab(x, y) Aa
µ(x, y) Ab

ν(x, y) eAa
µ(x, y) gab(x, y)

eAb
ν(x, y) gab(x, y) gab(x, y)

)
,

(2.1)
The connection Aa

µ(x, y) is an example of the nonlinear connection which ap-
pears in Lagrange-Finsler and Hamilton-Cartan spaces [10], [11]. The decom-
position (2.1) must not be confused with the Kaluza-Klein reduction where one
imposes an isometry restriction on the GAB that turns Aa

µ into a gauge connec-
tion associated with the gauge group G generated by isometry. Dropping the
isometry restrictions allows all the fields to depend on all the coordinates x, y.
Nevertheless Aa

µ(x, y) can still be identified as a connection associated with the
infinite-dim gauge group of Diffs N .
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The gauge transformations are now given in terms of the Lie derivatives w.r.t
the internal space indices ya

Aµ ≡ Aa
µ ∂a, ξ ≡ ξa ∂a ⇒ LAµ

ξ = [ Aµ, ξ]a = Ab
µ ∂b ξa − ξb ∂b Aa

µ.
(2.2a)

as follows

δAa
µ = − 1

e
Dµξa = − 1

e
( ∂µ ξa − e [ Aµ, ξ]a ). (2.2b)

δgab = Lξ gab = [ξ, g]ab = ξc ∂c gab + gac ∂b ξc + gcb ∂a ξc. (2.2c)

δgµν = Lξ gµν = [ξ, gµν ] = ξa ∂a gµν . (2.2d)

In general, the Lie derivative LXT along the vector X = Xa ∂a of the mixed
tensor T in the internal space is defined by [12]

LX T a1a2.....an

b1b2.......bm
= ( Xc ∂c T a1a2.....an

b1b2.......bm
) +

m∑
i=1

(∂bi Xc) T a1a2......an

b1b2......c.....bm
−

n∑
i=1

(∂c Xai) T a1a2......c.....an

b1b2...........bm
. (2.2f)

there is a key minus sign in the last term of (2.2f) relative to the first two terms.
Using eq-(2.1) the authors [6], [7], [8], [9] have shown that the curvature scalar
R(m+n) in m + n-dim decomposes into the sum of several terms

R(m+n) = gµν R(m)
µν +

e2

4
gab F a

µν F b
ρτ gµρ gντ + gab R

(n)
ab +

1
4
gµν gab gcd [ (Dµ gac) (Dν gbd) − (Dµ gab)(Dν gcd) ] +

1
4

gab gµν gρτ [ ∂a gµρ ∂bgντ − ∂a gµν ∂b gρτ ] (2.3)

plus total derivative terms given by (
√
|det gµν |

√
|det gab|)−1 times

∂µ(
√
|det gµν |

√
|det gab| Jµ ) − ∂a(

√
|det gµν |

√
|det gab| eAa

µJµ) +

∂a(
√
|det gµν |

√
|det gab| Ja ), (2.4)

with the currents:

Jµ = gµν gab Dν gab, Ja = gab gµν ∂b gµν . (2.5)

Finally, the Einstein-Hilbert action in D = m + n dimensions can be rewritten
as

S =
1

2κ2

∫
dmx dny

√
|det(gµν)|

√
|det(gab)| R(m+n)(x, y). (2.6)
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where the expression for R(m+n)(x, y) is given by (2.3) plus the total derivative
terms (2.4). Therefore, Einstein gravity in D = m + n dimensions describes an
m-dim generally invariant field theory under the gauge transformations corre-
sponding to the Diffs N . Notice how Aa

µ couples to the graviton gµν , meaning
that the graviton is charged /gauged in this theory and also to the gab fields.
The “metric” gab on N can be identified as a non-linear sigma field whose self
interaction potential term is given by: gabR

(n)
ab .

The currents Jµ, Ja are functions of gµν , Aµ, gab. The “Ricci” tensor of the
horizontal space is a gauged Ricci tensor meaning that it is constructed using the
gauge covariant derivatives ∂µ− eAa

µ∂a. In the next section we shall display the
explicit expression for the gauged Ricci tensor when the 8D space is the cotan-
gent bundle of the D spacetime. The contribution of the currents to the action
is essential when there are boundaries involved; i.e. the proyective/conformal
boundary of AdS spaces which is relevant in the AdS/CFT correspondence.

When the internal manifold N is a homogeneous compact space one can
perform a harmonic expansion of the fields w.r.t the internal y coordinates, and
after integrating the action (2.6) w.r.t these y coordinates, one will generate
an infinite-component field theory on the m-dimensional space represented by
the x coordinates. A reduction of the Diffs N , via the inner automorphims
of a subgroup G of the Diffs N , yields the usual Einstein-Yang-Mills theory
interacting with a nonlinear sigma field. But in general, the theory described in
(2.3) is by far richer than the latter theory. A crucial fact of the decomposition
in (2.3) is that each single term is by itself independently invariant under Diffs
N .

In the special case when gµν(x) depends solely on x and gab(y) depends on y
then the spacetime gauged “Ricci scalar” coincides with the ordinary Ricci scalar
gµν(x) R

(m)
µν (x) and the internal space “Ricci scalar” gab(y)R(n)

ab (y) becomes the
true Ricci scalar of the internal space. However, the gauge field Aµ(x, y) still
retains its full dependence on both variables x, y.

We have shown [13] that in this particular case the D = m + n dimensional
gravitational action restricted to AdSm×Sn backgrounds admits a holographic
reduction to a lower d = m-dimensional Yang-Mills-like gauge theory of diffs of
Sn, interacting with a charged/gauged nonlinear sigma model plus boundary
terms, by a simple tuning of the radius of Sn and the size of the throat of the
AdSm space. Namely, in the case of AdS5 × S5, the holographic [13] reduction
occurs if, and only if, the size of the AdS5 throat coincides precisely with the ra-
dius of S5 ensuring a cancellation of the scalar curvatures gµνR

(m)
µν and gabR

(n)
ab

in eq-(2.3) [13] such that the scalar curvature (Einstein-Hilbert Lagrangian) in
D = 10 becomes

R(10) =
e2

4
gab(y) F a

µν(x, y) F b
ρτ (x, y) gµρ(x) gντ (x) +

1
4

gµν(x) gab(y) gcd(y) [ (Dµgac) (Dνgbd)− (Dµgab) (Dνgcd) ]. (2.7)

plus total derivative terms (boundary terms). The gauge covariant derivative
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Dµ gab = ∂µgab + [ Aµ, gab ]. (2.8a)

is defined in terms of the Lie-bracket above

[ Aµ , gab ] = (∂a Ac
µ(xµ, ya)) gcb(xµ, ya) + (∂b Ac

µ(xµ, ya)) gac(xµ, ya) +

Ac
µ(xµ, ya) ∂c gab(xµ, ya). (2.8b)

and the Yang-Mills like field strength is

F a
µν = ∂µ Aa

ν − ∂ν Aa
µ − [ Aµ, Aν ]a =

∂µ Aa
ν − ∂ν Aa

µ − Ac
µ ∂c Aa

ν + Ac
ν ∂c Aa

µ. (2.9)

Eq-(2.7) is nothing but the ”holographic” like reduction of the D = 10-dim
pure gravitational Einstein-Hilbert action to a 5-dim Yang-Mills-like action (of
diffeomorphisms of the internal S5 space) interacting with a charged nonlinear
sigma model (involving the gab field) plus boundary terms. The previous ar-
gument can also be generalized to gravitational actions restricted to de Sitter
spaces, like dSm ×Hn backgrounds as well, where Hn is an internal hyperbolic
noncompact space of constant negative curvarture, and dSm is a de Sitter space
of positive constant scalar curvature.

2.2 Scalar curvature of the 8D Cotangent Bundle

The scalar curvature of the 8D tangent bundle manifold in the anholonomic
frame adapted to the spacetime affine connection was given by [3] . The physics
underlying such construction corresponded to a maximal proper acceleration
principle in spacetime. In this section we shall evaluate, using a different
method than the one provided by Brandt [3] and [10], the scalar curvature of
the 8D cotangent bundle manifold based on the results of 2.1. The physics in
this case is that of a maximal proper force in spacetime which is associated
with Born’s reciprocal relativity principle.

The symplectic geometry of the cotangent bundle, the Poisson brackets of
Hamiltonian systems, the nonlinear connection, the construction of torsion and
curvature, the Bianchi and Ricci identities, the geodesic equations, etc ......
associated with Hamilton-Cartan spaces has been thoroughly studied by [10].
The geometry of the tangent bundle and Lagrange-Finsler spaces can also be
found in [10], [11]. There is a duality (via the Legendre map) between Lagrange
and Hamilton spaces and also between Finsler and Cartan spaces [10]. A recent
analysis of a Lagrangian-Hamiltonian formalism for first and higher order field
theories (higher order tangent spaces) has been provided by [15]. In this work
we shall follow a different approach than the one presented in [10] to construct
the scalar curvature of the 8D Cotangent Bundle.

In an 8D flat phase-space the infinitesimal interval is
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(dσ)2 = (dt)2 − (dx)2 − (dy)2 − (dz)2 +
1
b2

(
(dE)2 − (dpx)2 − (dpy)2 − (dpz)2

)
=

(dτ)2
(

1 +
(dE/dτ)2 − (dpi/dτ)(dpi/dτ)

b2

)
= (dτ)2

(
1 − F 2

F 2
max

)
(2.10)

where one has factored out the proper time infinitesimal

gµν dxµ dxν = (dτ)2 = (dt)2 − (dx)2 − (dy)2 − (dz)2 (2.11)

in (2.10) . The proper force square interval (dE/dτ)2 − (dpi/dτ)(dpi/dτ) =
−F 2 < 0 is ”spacelike” when the proper velocity interval (dt/dτ)2−(dxi/dτ)(dxi/dτ) >
0 is timelike.

In the following we shall denote the momenta variables as pα, α = 1, 2, 3, 4.
Rigorously speaking, the momenta variables in the 8D cotangent bundle should
be denoted by pµ and the coordinates by xµ so that with respect to a symmetric
nonlinear connection Nνµ(x, p) the canonical symplectic structure can be written
as ω = (dpµ − Nνµ(x, p)dxν) ∧ dxµ [10]. Given the decomposition of the 8D
cotangent space metric

GMN (x, p) =
(

gµν(x, p) + παβ(x, p) Aα
µ(x, p) Aβ

ν (x, p) Aα
µ(x, p) παβ(x, p)

Aβ
ν (x, p) παβ(x, p) παβ(x, p)

)
(2.12)

Aα
µ(x, p) is the nonlinear connection in this case. The 8D cotangent space

(curved phase-space) infinitesimal interval is given by

(dσ)2 = gµν dxµ dxν +
παβ

b2
(dpα + bAα

µ dxµ) (dpβ + bAβ
ν dxν) =

gµν dxµ dxν +
παβ

b2
(
dpα

dτ
+ bAα

µ

dxµ

dτ
) (

dpβ

dτ
+ bAβ

ν

dxν

dτ
) (dτ)2 =

(dτ)2
(

1 − F 2

F 2
max

)
; F 2

max = b2 (2.13)

after setting gµνdxµdxν = (dτ)2 and

F 2 = FαFα = − παβ (
dpα

dτ
+ bAα

µ

dxµ

dτ
) (

dpβ

dτ
+ bAβ

ν

dxν

dτ
) (2.14)

When all quantities do not have an explicit dependence on the momenta pα,
but they solely depend on the coordinates xµ, the correspondence (the field Aα

µ

is taken to be dimensionless)

παβ ↔ gαβ ; b Aα
µ ↔ pν Γα

µν ;
dxµ

dτ
↔ pµ

m
; Fα ↔ dpα

dτ
+m−1 Γα

µν pµ pν

(2.15)
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gives

F 2 ↔ − gαβ (
dpα

dτ
+ m−1 Γα

µν pµ pν) (
dpβ

dτ
+ m−1 Γβ

µν pµ pν) →

− gαβ (
dpα

dτ
+ m−1 {α

µν} pµ pν) (
dpβ

dτ
+ m−1 {β

µν} pµ pν) (2.16)

Therefore, eq-(2.16) furnishes a correspondence from F 2 to the (spacelike)
proper force squared experienced by a particle of mass m in ordinary curved Rie-
mannian spacetime, with metric gαβ(x) and Levi-Civita connection {α

µν}, when
Γα

µν → {α
µν} (Christoffel symbols). Based on these findings, one may interpret

the second/fourth terms in the right hand side of eq-(2.13) as the contributions
to the curved phase-space interval due the effects of the proper force acting on
the particle as indicated by the expression in the last term of eq-(2.13).

To simplify the calculations, it is expedient to choose an anholonomic (non-
coordinate basis) adapted to the spacetime conection such that the bundle line
element splits naturally into the sum of the spacetime line element and a fiber
line element without cross terms. In the anholonomic basis the bundle met-
ric has a simple block-diagonal form with entries gµν(x,p), gab(x,p);µ, ν =
1, 2, 3, 4; a, b = 1, 2, 3, 4. gµν(x,p) is now the metric of the base space of the 8D
cotangent bundle (phase space) and its fiber space metric gab(x,p) becomes now
the metric παβ(x,p) after a relabeling of the indices a, b → α, β;α, β = 1, 2, 3, 4.
Note that in general παβ 6= gαβ since the fiber space metric is not necessarily
the same as the base space metric.

By recurring to the results of the prior section 2.1 one learns that the scalar
curvature of the 8D cotangent bundle manifold can be decomposed as the sum

(8)R = (8)RMN GMN = (h)R + (v)R − 1
4

παβ Fα
µν F β

ρτ gµρ gντ +

1
4
gµν παβ πγσ [ (Dµ παγ) (Dν πβσ) − (Dµ παβ) (Dν πγσ) ] +

1
4

παβ gµν gρτ b2 [ (∂pα gµρ) (∂pβ gντ ) − (∂pα gµν) (∂pβ gρτ ) ] (2.17)

plus (
√
|det gµν |

√
|det παβ |)−1 times the total derivative terms.

After relabeling indices, making no differentiation among µ, ν, ρ... and α, β, γ,
the (”horizontal”) scalar curvature of the base space of the 8D cotangent bun-
dle manifold (h)R in eq-(2.17) is defined in terms of the horizontal symmetric
connection coefficients Γµ

αβ(x,p) given by

Γµ
αβ =

1
2

gµν [ (
∂

∂xβ
− b Aλ

β

∂

∂pλ
) gνα + (

∂

∂xα
− b Aλ

α

∂

∂pλ
) gνβ ] −

1
2

gµν [ (
∂

∂xν
− b Aλ

ν

∂

∂pλ
) gαβ ] ⇒ (2.18)
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Γµ
αβ = {µ

αβ} −
1
2

b gµν [ Aλ
β

∂gνα

∂pλ
+ Aλ

α

∂gνβ

∂pλ
− Aλ

ν

∂gαβ

∂pλ
] (2.19)

{µ
αβ} =

1
2

gµν [
∂

∂xβ
gνα +

∂

∂xα
gνβ − ∂

∂xν
gαβ ] (2.20)

The (”horizontal”) scalar curvature of the base space of the 8D cotangent bundle
becomes

(h)R = gµν

[
(

∂

∂xα
− b Aτ

α

∂

∂pτ
) Γα

µν − (
∂

∂xν
− b Aτ

ν

∂

∂pτ
) Γα

µα

]
+

gµν
[
Γα

µν Γβ
αβ − Γα

µβ Γβ
αν

]
= R + ∆ (2.21)

where ∆ are the corrections from the ordinary scalar Riemannian curvature.
The (”vertical”) scalar curvature of the cotangent space (fiber space) of the

8D cotangent bundle is

(v)R = πµν

[
b (

∂

∂p[α
Υα

µν]) + Υα
µ[ν Υβ

αβ]

]
(2.22)

where the anti-symmetrization of indices is indicated. The vertical symmet-
ric connection coefficients Υµ

αβ defined on the four-momentum cotangent space
(fibers) are given by

Υµ
αβ =

1
2

b πµλ [
∂

∂pα
πλβ +

∂

∂pβ
πλα − ∂

∂pλ
παβ ] (2.23)

The gauge field strength is

Fα
µν = (

∂

∂xµ
− b Aτ

µ

∂

∂pτ
) Aα

ν − (
∂

∂xν
− b Aτ

ν

∂

∂pτ
) Aα

µ (2.24)

The gauge covariant derivative Dµπαβ is defined

Dµ παβ =
∂

∂xµ
παβ − [ Aµ, παβ ]. (2.25)

in terms of the Lie-bracket

[ Aµ , παβ ] = b (
∂

∂pα
Aλ

µ) πλβ +b (
∂

∂pβ
Aλ

µ) παλ + b Aλ
µ (

∂

∂pλ
παβ). (2.26)

By analogy to ordinary gravity, a candidate geometrical (gravitational) ac-
tion defined in the 8D cotangent bundle is of the form

S =
1

2κ2

∫
Ω

d4x d4p
√
|det gµν |

√
|det παβ | (8)R(x,p) (2.27)
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where (8)R(x,p) is given by eqs-(2.17-2.26) and the domain of integration in
phase-space is denoted by Ω. Using the natural units h̄ = c = 1 and after
taking the curvature to have the canonical units of (length)−2 leads to the units
of (length)−1 (mass) for the coupling κ. One could add explicit torsion squared
terms to the action (2.27) as well, but for the moment we shall just focus on
the scalar curvature term and set the torsion (and nonmetricity) terms to zero.

The action is invariant under gauge transformations (diffeomorphisms of the
momentum space) given by

δAα
µ = − ( ∂µ ξα − [ Aµ, ξ]α ) (2.28a)

[ξ, Aµ]α = b ξσ ∂pσ Aα
µ − b Aσ

µ ∂pσ ξα (2.28b)

δπαβ = [ξ, π]αβ = b ξσ ∂pσ παβ + b πασ ∂pβ ξσ + b πσβ ∂pα ξσ. (2.29)

δgµν = [ξ, gµν ] = b ξα ∂pα gµν (2.30)

where gµν(x,p) and παβ(x,p). The gauge field strength transforms homoge-
neously

δFα
µν = [ξ, Fµν ]α = b ξσ ∂pσ Fα

µν − b Fσ
µν ∂pσ ξα (2.31)

The Lie bracket of a scalar Lagrangian density L =
√
|detg|

√
|detπ| L of weight

one and a vector field ξ = ξα∂pα is defined as

[ ξ, L ] = ξα ∂pα L + L ∂pα ξα = ∂pα (ξα L) (2.32)

there is a second extra term in the r.h.s of (2.32), so that under the above
infinitesimal gauge transformations the variation of the action S given by δS =∫

[ξ,L] =
∫

∂pα(ξαL) is a total derivative and it vanishes if L vanishes at pα =
±∞ and/or there are no boundaries in the integration domain of the pα variables
(the integration domain has compact support). Hence, the 8D action (2.27)
is invariant under gauge transformations (diffeomorphisms of the momentum
space).

In the most general case, one could have directly recurred to the local expres-
sions for the distinguished tensors of torsion and curvature given in [10]. There
are two different torsion 2-forms [10] in phase space involving 5 distinguished
tensors Tµ

νρ, Rµνρ, C
µν
ρ , Pµ

νρ, S
µν
ρ and one curvature 2-form in phase space involv-

ing 3 distinguished tensors Rµ
νρτ , Pµν

ρτ , Sµνρ
τ . For further details we refer to [10].

The latter 3 curvature tensors correspond to the horizontal, mixed and vertical
components of the curvature.

A natural action in the 8D phase space will involve sums of the 5 torsion
squared terms and contractions of the above 3 curvature distinguished tensors
with the metric leading to the curvature scalars R,P,S. All torsion and curva-
ture tensors are explicit functions of the nonlinear connection Nµν(x,p), which
is no longer purely symmetric since there is torsion, and the horizontal and
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vertical connection coefficients Γµ
νρ(x,p),Υνρ

µ (x,p) and their derivatives [10].
Matter terms could also be introduced leading, if possible, to a generalized
stress energy tensor on the 8D cotangent bundle and the extension of Einstein
field equations with matter.

It is worth pointing out that the horizontal (geodesics) paths corresponding
to a covariant derivative D associated with the nonlinear connection Nµν(x,p)
are characterized by the system of differential equations [10]

d2xµ

ds2
+ Γµ

νρ(x,p)
dxν

ds

dxρ

ds
= 0;

dpµ

ds
− Nνµ(x,p)

dxν

ds
= 0 (2.33)

And the vertical (geodesic) paths at a point xµ
0 are characterized by the system

of differential equations

xµ = xµ
0 ;

d2pµ

ds2
− 1

b
Υνρ

µ (x0,p)
dpν

ds

dpρ

ds
= 0 (2.34)

s is a parameter associated with the parametrized curves and one has inserted
the factor 1/b to match units in (2.34). Γµ

νρ(x,p),Υνρ
µ (x,p) are, respectively,

the horizontal and vertical connection coefficients of the covariant derivative D
associated with the nonlinear connection Nµν(x,p) in the 8D cotangent bundle
(phase-space).

2.3 Cosmological Constant, Brans-Dicke-Jordan Gravity
and Field Equations

When the scalar curvature of the momentum space is constant and inversely
proportional to the square of the characteristic momentum scale P−2, after
rescaling the momentum curvature by b2 in order to recover the same units as a
scalar curvature in spacetime, one gets a contribution to the momentum-integral
in eq-(2.27) defined on a compact momentum domain Dp region given by

∫
Dp

d4p
√
|det παβ | (v)R =

Ωp b2

P 2
∼ b2 P 4

P 2
= b2 P 2 (2.33)

one has taken into account that the volume Ωp of a compact momentum domain
region Dp is proportional to P 4. Inserting this contribution (v)R inside the
remaining spacetime integral of eq-(2.27) and equating it to the cosmological
constant term in the action gives

1
2κ2

∫
d4x

√
|det gµν | b2 P 2 =

1
16πGN

∫
d4x

√
|det gµν | 2 Λ ⇒

4π
L2

P b2 P 2

κ2
∼ Λ ∼ 1

R2
Hubble

; GN = L2
P = (mP )−2 (2.34)
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inserting into eq-(2.34) the following values (given in terms of the Planck mass
mP )

b ∼ m2
P , κ ∼ mP ⇒ P ∼ 1

RHubble
(2.35)

lead to the observed value of the extremely small cosmological constant when
the size of the momentum space domain is extremely small and given by P ∼

1
RHubble

. If one assigns the Planck length scale LP as the ”minimal” scale, by
Born’s reciprocity one should have a corresponding ”minimal” momentum scale
that one may set to be P ∼ 1

RHubble
. One may envision the compact momen-

tum space region of integration as a bounded Cartan homogeneous domain like
the ones studied by [14] in describing curved phase spaces. Noncompact domain
regions, like a de Sitter hyperboloid in momentum space, with constant momen-
tum curvature proportional to P−2 and a conformally flat metric in momentum
space,

παβ(p) ∼ ηαβ

1− (pγpγ/P 2)
(2.36)

will yield an infinite volume. For this reason it is desirable to choose compact
regions in momentum space or choosing field configurations that vanish at infin-
ity (compact support) such that the 8D action S in eq-(2.27) is finite. Despite
that the size of P ∼ (1/RHubble) is small does not mean that the rate of change
of the momenta (the forces) have to be small. For example, electrons inside the
atom are confined to a small region but have large velocities. Other range of
values for κ and P are possible. If mP = κ = P , the size of the momentum
space region is now very large, all the way to the Planck momentum scale, but
one gets a huge value for the cosmological constant in this case Λ ∼ (LP )−2

instead of (RHubble)−2. This large value of the cosmological constant is compat-
ible with a Planck size universe. A dynamical value of the cosmological constant
over time is also an appealing possibility when (v)R plays the role of a variable
and effective cosmological ”constant”. As the universe expands, the value of the
cosmological constant decreases from a very large initial value (LP )−2 to the
present day one (RHubble)−2.

To sum up, we have seen how the geometry of the momentum space can be
linked to the observed value of the cosmological constant when the curvature
in momentum space is very large, namely the small size of P is of the order of
(1/RHubble). Brans-Dicke-Jordan Gravity type of actions can also be recovered
from the 8D action in the special case that

Aµ = 0; παβ(x,p) = φ(x) ηαβ ; παβ = φ−1(x) ηαβ ; det(παβ) = φ4; gµν = gµν(x)
(2.37)

inserting these values (2.37) into the terms of the action (2.27) gives (v)R =
0;Fα

µν = 0; ... and (h)R = R (ordinary Ricci scalar curvature). After performing
the momentum integral leads to a Brans-Dicke-Jordan Gravity-like action, up

13



to numerical constants

V (Dp)
2κ2

∫
d4x

√
|det gµν |

(
φ2 R − 3 gµν ∂µφ ∂νφ

)
(2.38)

where V (Dp) =
∫
Dp

d4p is a measure of the momentum space region. The
scalar φ does not have the correct canonical dimensions in 4D. One may scale
φ → κφ = Φ giving the following action in terms of the canonical scalar field Φ

V (Dp)
2κ4

∫
d4x

√
|det gµν |

(
Φ2 R − 3 gµν ∂µΦ ∂νΦ

)
(2.39)

hence, when the measure of the momentum space region obeys (V (Dp)/2κ4) =
(1/16π) one recovers the Brans-Dicke-Jordan action with the coupling parame-
ter ω = 3

4 and after the change of variables ϕ = Φ2 is performed

1
16π

∫
d4x

√
|det gµν |

(
ϕ R − ω ϕ−1 gµν ∂µϕ ∂νϕ

)
(2.40)

The Einstein-Hilbert action for gravity is obtained when ϕ = 1
GN

.
In the most general case, the equations of motion associated with the 8D

action (2.27) associated with the geometry of the cotangent bundle are obtained
by performing a variation

δS

δgµν
= 0;

δS

δπαβ
= 0;

δS

δAα
µ

= 0 (2.41)

with gµν(x,p), παβ(x,p), Aα
µ(x,p) . These equations are quite cumbersome.

In certain special cases, for example, one could calculate the corrections to the
Schwarzschild solutions and the gravitational redshift found in the 8D tangent
bundle case associated with a Finsler spacetime base manifold [3]. The universal
upper limit on the attainable proper acceleration relative to the vacuum imposes
certain constraints on the possible differential geometric structures in the 8D
tangent bundle of the 4D spacetime. One is lead to a Finslerian structure for
spacetime, in which the spacetime metric depends not only on the spacetime
coordinates, but also on the four-velocity coordinates of the tangent-space. The
redshift receives corrections proportional to the factor (1− a2/a2

max)
1
2 [3].

3 Born’s Reciprocal Complex Gravity as a Gauge
Theory of the Quaplectic Group

In this section we shall take a different approach than studying the geometry
of the 8D cotangent bundle (phase-space) and instead construct an 8D local
gauge theory of the Quaplectic group (group proposed by [2]) in phase space.
For the sake of completeness, in this last section we extend our results [16] and
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construct a deformed Born reciprocal general relativity theory in curved phase
space (without the need to introduce star products) as a local gauge theory of the
deformed Quaplectic group that is given by the semi-direct product of U(1, 3)
with the deformed (noncommutative) Weyl-Heisenberg group corresponding to
noncommutative coordinates and momenta. The (deformed) Quaplectic group
acts as the automorphism group along the internal fiber coordinates. There-
fore we must not confuse the deformed complex gravity constructed here with
the noncommutative gravity work in the literature [22] where the spacetime
coordinates xµ are not commuting.

The procedure that led to the construction of a Born reciprocal general
relativity theory in a curved 4D spacetime [16] can be extended to an action
in the 8D real-dimensional Phase Space associated with the cotangent bundle
of 4D spacetime. The geometry of curved Phase spaces and bounded complex
homogeneous domains has been studied by [14]. The presence of matter sources
can be incorporated, for example, by recurring to the invariant action for a
point-particle in Born’s Reciprocal Relativity involving Casimir group invariant
quantities associated with the world-line of the particle.

The deformed Weyl-Heisenberg algebra involves the generators

Za =
1√
2

(
Xa

λl
− i

Pa

λp
); Z̄a =

1√
2

(
Xa

λl
+ i

Pa

λp
); a = 1, 2, 3, 4. (3.1)

Notice that we must not confuse the generators Xa, Pa (associated with the
fiber coordinates of the internal space of the fiber bundle) with the ordinary
base spacetime coordinates and momenta xµ, pµ. The gauge theory is con-
structed in the fiber bundle over the 8D base phase-space manifold which is an
8D curved space with commuting coordinates and momenta xµ = x0, x1, x2, x3;
pµ = p0, p1, p2, p3. To properly match the dimensions we shall scale the momen-
tum variables by the maximal proper-force b so that all coordinates have the
dimensions of length. We denote the coordinates of the 8D phase-space collec-
tively by YM ,M = 1, 2, 3, ...., 8 where the first four coordinates correspond to
xµ and the last four coordinates correspond to pµ/b.

The Hermitian generators Zab, Za, Z̄a, I of the U(1, 3) algebra and the deformed
Weyl-Heisenberg algebra obey the relations

(Zab)† = Zab; (Za)† = Z̄a; I† = I; a, b = 1, 2, 3, 4. (3.2)

The standard Quaplectic group [2] is given by the semi-direct product of the
U(1, 3) group and the unmodified Weyl-Heisenberg H(1, 3) group : Q(1, 3) ≡
U(1, 3) ⊗s H(1, 3) and is defined in terms of the generators Zab, Za, Z̄a, I with
a, b = 1, 2, 3, 4. A careful analysis reveals that the complex generators Za, Z̄a

(with Hermitian and anti-Hermitian pieces) of the deformed Weyl-Heisenberg
algebra can be defined in terms of the Hermitian U(1, 4) algebra generators
ZAB , where A,B = 1, 2, 3, 4, 5; a, b = 1, 2, 3, 4; ηAB = diag (+,−,−,−,−), as
follows

Za = (−i )1/2 ( Za5 − iZ5a ); Z̄a = ( i )1/2 ( Za5 + iZ5a ); Z55 =
I
2

(3.3)
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the Hermitian generators are ZAB ≡ EB
A and ZBA ≡ EA

B ; notice that the position
of the indices is very relevant because ZAB 6= ZBA. The commutators are

[Eb
a, Ed

c ] = − i δb
c Ed

a + i δd
a Eb

c ; [Ed
c , E5

a ] = − i δd
a E5

c ; [Ed
c , Ea

5 ] = i δa
c Ed

5 .
(3.4)

and [E5
5 , Ea

5 ] = −i δ5
5 Ea

5 .... such that now I(= 2Z55) no longer commutes with
Za, Z̄a. The generators Zab of the U(1, 3) algebra can be decomposed into the
Lorentz-subalgebra generators Lab and the ”shear”-like generators Mab as

Zab ≡
1
2

(Mab−iLab); Lab = L[ab] = i (Zab−Zba); Mab = M(ab) = (Zab+Zba),

(3.5)
one can see that the ”shear”-like generatorsMab are Hermitian and the Lorentz
generators Lab are anti − Hermitian with respect to the fiber internal space
indices. The explicit commutation relations of the Hermitian generators Zab

can be rewritten as

[Lab, Lcd] = (ηbcLad − ηacLbd − ηbdLac + ηadLbc). (3.6a)

[Mab, Mcd] = − (ηbcLad + ηacLbd + ηbdLac + ηadLbc). (3.6b)

[Lab, Mcd] = (ηbcMad − ηacMbd + ηbdMac − ηadMbc). (3.6c)

Defining Zab = 1
2 (Mab − iLab), Zcd = 1

2 (Mcd − iLcd) after straightforward
algebra it leads to the U(3, 1) commutators

[ Zab, Zcd ] = − i ( ηbc Zad − ηad Zcb ). (3.6d)

as expected, and which requires that the commutators [M,M ] ∼ L otherwise
one would not obtain the U(3, 1) commutation relations (3.9d) nor the Jacobi
identities will be satisfied. The commutators of the (anti-Hermitian) Lorentz
boosts generators Lab with the Xc, Pc generators are

[Lab, Xc] = ( ηbc Xa − ηac Xb ); [Lab, Pc] = ( ηbc Pa − ηac Pb ). (3.7a)

Since the Hermitian Mab generators are the reciprocal boosts transformations
which exchange X for P , in addition to boosting (rotating) those variables, one
has in

[Mab,
Xc

λl
] = − i

λp
( ηbc Pa + ηac Pb ); [Mab,

Pc

λp
] = − i

λl
( ηbc Xa + ηac Xb )

(3.7b)
such that upon recurring to the above equations after lowering indices it leads
to 1

1These commutators differ from those in [2] because he chose all generators X, P, M, L
to be anti-Hermitian so there are no i terms in the commutators in the r.h.s of eq-(3.7b) and
there are also sign changes
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[ Zab, Zc ] = − i

2
ηbc Za +

i

2
ηac Zb −

1
2

ηbc Z̄a − 1
2

ηac Z̄b

[ Zab, Z̄c ] = − i

2
ηbc Z̄a +

i

2
ηac Z̄b +

1
2

ηbc Za +
1
2

ηac Zb . (3.7c)

In the noncommutative Yang’s phase-space algebra case [17], associated with
a noncommutative phase space involving noncommuting spacetime coordinates
and momentum xµ, pµ, the generatorN which appears in the modified [xµ, pν ] =
ih̄ηµνN commutator is the exchange operator x ↔ p, [pµ,N ] = ih̄xµ/R2

H and
[xµ,N ] = iL2

P pµ/h̄. LP , RH are taken to be the minimal Planck and maximal
Hubble length scales, respectively. The Hubble upper scale RH corresponds to
a minimal momentum h̄/RH , because by ”duality” if there is a minimal length
there should be a minimal momentum also.

Yang’s [17] noncommutative phase space algebra is isomorphic to the confor-
mal algebra so(4, 2) ∼ su(2, 2) after the correspondence xµ ↔ Lµ5, pµ ↔ Lµ6,
and N ↔ L56. In the deformed Quaplectic algebra case, it is in addition to the
I generator, the Mab generator which plays the role of the exchange operator
of X with P and which also appears in the deformed Weyl-Heisenberg algebra
leading to a matrix-valued generalized Planck-constant, and noncommutative
fiber coordinates, as follows

[
Xa

λl
,
Pb

λp
] = i αh̄ (ηab I+Mab); [Xa, Xb] = − (λl)2 L[ab]; [Pa, Pb] = (λp)2 L[ab];

(3.8)
One could interpret the term ηab I + Mab as a matrix-valued Planck constant
h̄ab (in units of h̄). The deformed (noncommutative) Weyl-Heisenberg algebra
can also be rewritten as

[Za, Z̄b] = −αh̄ ( ηab I + Mab ); [Za, Zb] = [Z̄a, Z̄b] = −i Z[ab] = −Lab.

[Za, I] = 2 Z̄a; [Z̄a, I] = − 2 Za; [Zab, I] = 0. I = 2 Z55. (3.9)

where [Xa

λl
, I] = 2iPa

λp
; [Pa

λp
, I] = 2iXa

λl
and the metric ηab = (+1,−1,−1,−1) is

used to raise and lower indices . The deformed Quaplectic algebra obeys the
Jacobi identities. No longer I commutes with Za, Z̄a, it exchanges them, as
one can see from eq-(3.9) since Z55 = I/2.

The complex frame Ea
M which is no longer a square matrix and transforms

under the fundamental representation of U(1, 3) is defined as

Ea
M =

1√
2

( ea
M + ifa

M ); Ēa
M =

1√
2

( ea
M − ifa

M ). M = 1, 2, 3, ......, 8.

(3.10)
The complex Hermitian metric is given by

GMN = Ēa
M Eb

N ηab = g(MN) + ig[MN ] = g(MN) + iBMN . (3.11)
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such that

(GMN )† = ḠNM = GMN ; ḠMN = GNM . (3.12)

where the bar denotes complex conjugation. Despite that the metric is complex
the infinitesimal line element is real

ds2 = GMN dY M dY N = g(MN) dY M dY N , because i g[MN ] dY M dY N = 0.
(3.13)

The (deformed) Quaplectic-algebra-valued anti-Hermitian gauge field (AM )† = −
AM is given by

AM = Ωab
M Zab +

i

Lp
( Ea

M Za + Ēa
M Z̄a ) + i ΩM I . (3.14)

where a length scale that we chose to coincide with the the Planck length scale
LP has been introduced in the second terms in the r.h.s since the connection AM

must have units of (length)−1. In natural units of h̄ = c = 1 the gravitational
coupling in 4D is G = L2

P . Decomposing the anti-Hermitian components of the
connection Ωab

M into anti-symmetric [ab] and symmetric (ab) pieces with respect
to the internal indices

Ωab
M = Ω[ab]

M + i Ω(ab)
M . (3.15)

gives the anti-Hermitian U(1, 3)-valued connection

Ωab
M Zab = (Ω[ab]

M + i Ω(ab)
M )

1
2
(Mab − i Lab) =

− i

2
Ω[ab]

M Lab +
i

2
Ω(ab)

M Mab ⇒ (Ωab
M Zab)† = − Ωab

M Zab. (3.16)

since (Zab)† = Zab

The deformed Quaplectic algebra-valued (anti-Hermitian) field strength is
given by

FMN = ∂MAN − ∂NAM + [AM , AN ] =

F ab
MN Zab + i (F a

MN Za + F̄ a
MN Z̄a) + FMN I =

i

2
F

(ab)
MN Mab −

i

2
F

[ab]
MN Lab + i (F a

MN Za + F̄ a
MN Z̄a) + FMN I (3.17)

after decomposing Zab = 1
2 (Mab − iLab). The components of the curvature

two-form associated with the anti-Hermitian connection Ωab
M = Ω[ab]

M + iΩ(ab)
M

are

−i F
[ab]
MN = ∂MΩ[ab]

N − ∂NΩ[ab]
M + Ω[ac]

[M Ω[cb]
N ] −

Ω(ac)
[M Ω(cb)

N ] +
1

L2
P

Ea
[M Eb

N ] +
1

L2
P

Ēa
[M Ēb

N ] . (3.18)
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i F
(ab)
MN = ∂MΩ(ab)

N − ∂NΩ(ab)
M + Ω(ac)

[M Ω[cb]
N ] + Ω(bc)

[M Ω[ca]
N ] +

1
L2

P

Ea
[M Ēb

N ] +
1

L2
P

Eb
[M Ēa

N ] (3.19)

where a summation over the repeated c indices is implied and [MN ] denotes
the anti-symmetrization of indices with weight one. Notice the presence of the
extra terms EE in the above expressions for the deformed field strengths due
to the noncommutative [Za, Zb] 6= 0, and which in turn, modifies the Weyl-
Heisenberg algebra due to the Jacobi identities. In the undeformed ordinary
Quaplectic-algebra case these terms are absent because [Za, Zb] = 0, ... and,
furthermore, there is no Mab term in the ordinary Weyl-Heisenberg algebra.
These extra terms Ea ∧Eb, .... in eqs-(3.18,3.19) are one of the hallmarks of the
deformed Quaplectic gauge field theory formulation of the deformed Born’s
Reciprocal Complex Gravity.

The components of the torsion two-form are

F a
MN = ∂MEa

N − ∂NEa
M − i Ω[ac]

[M Ec
N ] + i Ω(ac)

[M Ēc
N ] −2i Ēa

[M ΩN ]. (3.20a)

F̄ a
MN = ∂M Ēa

N − ∂N Ēa
M + i Ω[ac]

[M Ēc
N ] − i Ω(ac)

[M Ec
N ] +2i Ea

[M ΩN ]. (3.20b)

The remaining field strength has roughly the same form as a U(1) field
strength in noncommutative spaces due to the additional contribution of Bµν

resulting from the nonabelian nature of the Weyl-Heisenberg algebra in the
internal space (fibers) and which is reminiscent of the noncommutativity of the
coordinates with the momentum :

FMN = i ∂MΩN − i ∂NΩM +
1

L2
P

Ea
M Ēb

N ηab −
1

L2
P

Ēa
M Eb

N ηab =

i ∂MΩN −i ∂NΩM +
1

L2
P

( GMN − GNM ) = i Ω[MN ] +i
2

L2
P

G[MN ] (3.21)

after recurring to the commutation relations (for αh = 1) in eqs-(3.8,3.9) and
the Hermitian property of the metric

GMN = Ēa
M Eb

N ηab = [ ηab Ēb
N Ea

M ]∗ = (GNM )∗ ⇒ (GMN )∗ = GNM .
(3.22)

where ∗ stands for (bar) complex conjugation.
The curvature tensor is defined in terms of the anti-Hermitian connection

Ω[ab]
M + i Ω(ab)

N as

RQ
MNP ≡ 1

4
( F

[ab]
MN + i F

(ab)
MN ) (EQ

a EbP + ĒQ
a ĒbP + EQ

a ĒbP + ĒQ
a EbP ).

(3.23)
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where the explicit components F
[ab]
MN and F

(ab)
MN can be read from the defining re-

lations (3.18, 3.19). Note that both values of values of F
[ab]
MN and F

(ab)
MN are purely

imaginary such that one may rewrite the complex-valued F ab
MN field strength

as (F (ab)
MN + iF [ab]

MN ) for real valued F (ab)
MN , F [ab]

MN expressions. The contraction of
indices yields two different complex-valued (Hermitian) Ricci tensors.

RMP = gKN gQK RQ
MNP = δN

Q RQ
MNP = R(MP ) + i R[MP ]; (RMP )∗ = RPM

(3.24)
and

SMλ = gKN gKQ RQ
MNP = S(MP ) + i S[MP ]; (SMP )∗ = SPM (3.25)

due to the fact that

gKN gQK = δN
Q and gKN gKQ 6= δN

Q . (3.26)

because gKQ 6= gQK . The position of the indices is crucial. There is a third
Ricci tensor Q[MN ] = RQ

MNP δP
Q related to the curl of the nonmetricity Weyl

vector QM [19] which one may set to zero. However, in the most general case
one should include nonmetricity.

A further contraction yields the generalized (real-valued) Ricci scalars

R = (g(MP ) + i g[MP ]) ( R(MP ) + i R[MP ] ) =

R = g(MP ) R(MP ) − BMP R[MP ]; g[MP ] ≡ BMP . (3.27a)

S = (g(MP ) + i g[MP ]) ( S(MP ) + i S[MP ] ) =

S = g(MP ) S(MP ) − BMP S[MP ]. (3.27b)

The first term g(MP ) R(MP ) corresponds to the usual scalar curvature of the
ordinary Riemannian geometry. The presence of the extra terms BMP R[MP ]

and BMP S[MP ] due to the anti-symmetric components of the metric and the
two different types of Ricci tensors are one of the hallmarks of the deformed
Born complex gravity. We should notice that the inverse complex metric is

g(MP ) + ig[MP ] = [ g(MP ) + ig[MP ] ]−1 6= (g(MP ))−1 + (ig[MP ])−1. (3.28)

so g(MP ) is now a complicated expression of both g(MP ) and g[MP ] = BMP . The
same occurs with g[MP ] = BMP . Rigorously we should have used a different
notation for the inverse metric g̃(MP ) + iB̃[MP ], but for notational simplicity
we chose to drop the tilde symbol.

One could add an extra contribution to the complex-gravity real-valued
action stemming from the terms iBMP FMP which is very reminiscent of the
BF terms in Schwarz Topological field theory and in Plebanksi’s formulation
of gravity. In the most general case, one must include both the contributions

20



from the torsion and the i BMP FMP terms. The contractions involving GMP =
g(MP ) + iBMP with the components FMP (due to the antisymmetry property
of FMP = −FPM ) lead to

i BMP FMP = − BMP ( ∂MΩP − ∂P ΩM ) − 2 BMP BMP =

− BMP ΩMP − 2 BMP BMP . (3.29)

where we have set the length scale LP = 1 for convenience. These BF terms
contain a mass-like term for the BMP field. When the torsion is not constrained
to vanish one must include those contributions as well. The real-valued torsion
two-form is (F a

MNZa + F̄ a
MN Z̄a)dY M ∧ dY N and the torsion tensor and torsion

vector are

TP
MN = F a

MN EP
a ; T̄P

MN = ĒP
a F̄ a

MN ; TMNP = gPQ TQ
MN ;

T̄MNP = T̄Q
MN (gPQ)∗ = T̄Q

MN gQP ; TM = δN
P TP

MN ; T̄M = T̄P
MN δN

P .
(3.30)

The (real-valued) action, linear in the two (real-valued) Ricci curvature
scalars and quadratic in the torsion is of the form

1
2κ2

2

∫
Ω8

d8Y
√
| det (g(MN) + iBMN ) | ( a1 R+ a2 S + a3 TMNQ TMNQ + a4 TM TM+c.c).

(3.31)

| det (g(MN) + iBMN ) | =
√

det (g(MN) + iBMN ) det (g(MN) − iBMN )
(3.32)

where one must add the complex conjugate (cc) terms in order to have a real-
valued action. κ2

2 is a suitable coupling introduced to render the action dimen-
sionless. The action (3.31) is invariant under infinitesimal U(1, 3) gauge trans-
formations of the complex tetrad δEa

µ = (ξa
b(1) + iξa

b(2))E
b
µ where the real ξ

(1)
[ab]

and imaginary ξ
(2)
(ab) components of the complex parameter are anti-symmetric

and symmetric, respectively, with respect to the indices a, b for anti-Hermitian
infinitesimal U(1, 3) gauge transformations.

The a1, a2, a3, a4 are suitable numerical coefficients that will be constrained
to have certain values if one wishes to avoid the presence of ghosts, tachyons and
higher order poles in the propagator, not unlike it occurs in Moffat’s nonsym-
metric gravity theory [19]. The instabilities of Moffat’s nonsymmetric gravity
found by [20] are bypassed when one extends the theory to spacetimes with
complex coordinates [21]. The 8D real-dim phase space can be realized as a 4D
complex-dimensional space endowed with a symplectic and complex structure.

To conclude, the complex deformed Born Reciprocal Gravitational theory
advanced here differs from the modified gravitational theories in the literature
[19], [21], [18], and it is mainly due to the fact that we have constructed a
deformed complex Born’s reciprocal gravitational theory in 4D as a gauge theory
of the deformed Quaplectic group given by the semidirect product of U(1, 3)
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with the deformed (noncommutative) Weyl-Heisenberg algebra of eqs-(3.8, 3.9).
Finally, gravitational theories based on Born’s reciprocal relativity principle
involving a maximal speed limit and a maximal proper force, is a very promising
avenue to quantize gravity that does not rely in breaking the Lorentz symmetry
at the Planck scale, in contrast to other approaches based on deformations of
the Poincare algebra, Hopf algebras, quantum groups, etc...
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