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Abstract. This paper proposes to use a group theoretical model for the optimization
of algorithms. We first investigate some of the fundamental properties that are re-
quired in order to allow the optimization of parallelism and communication. Next,
we explore how a group theoretical model of computations can satisfy these re-
quirements. As an application example, we demonstrate how this group theoretical
model can uncover new optimization possibilities in the polyhedral model.
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1. Introduction

In order to optimally benefit from the incessant increase in parallel computational capac-
ity in modern architectures, the available parallelism in our algorithms must increase ac-
cordingly. Since manual parallelisation and optimization of communication in a parallel
architecture requires considerable effort from the developer, we must resort to automatic
techniques.

In recent decades, much research in the field of automatic optimization of algorithms
has focused on structured computations that can be represented in the polyhedral model.
This model allows to represent and transform a large class of computationally intensive
algorithms based on techniques from linear algebra, the theory of polyhedra and linear
programming. Parallelism and communication can be optimized with affine spacetime
and data mappings. However, it is well known that some computations contain more
parallelism than can be extracted with affine mappings [1] and a similar observation
can be made about the optimization of communication. Several techniques have been
proposed to resolve this issue [2,3,4,5,6], but each of them suffers from drawbacks such
as restricted applicability or complexity issues.

The polyhedral model and the techniques developed for it have several properties
that enable efficient optimization of the algorithms they can represent and manipulate:

• A representation of structured sets of operations and data elements and the rela-
tion between these sets.

• A representation of hierarchies of partitions of the operations and data elements
and the relation between these partitions.
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• The ability to efficiently enumerate the cells (and subcells) of partition hierar-
chies.

• The ability to efficiently compute an abstraction of the transitive closure of rela-
tions on the considered sets.

The reader is strongly encouraged to read [7] and [8] in order to acquire a better
understanding of the importance of these properties and the remainder of this paper.

In this paper, we investigate how group theory may allow to represent and manip-
ulate significantly more general algorithms than allowed by the polyhedral model while
maintaining these important properties.

2. A Group Theoretical Model

In the polyhedral model, the sets of operations and data elements are restricted to sets that
are unions of affine grids intersected with polyhedral bounds or parametrised families of
these sets. Each operation or data element is then identified with an integer vector.

For the model based on group theory we aim to represent more general sets. To
this end we consider permutation groups. A permutation representation (G, A, f) is
a group G that acts on a set A through a function f ∈ G → IA (where IA is the
set of bijections on A) such that f(1) is the identity transformation and the function
composition operation ◦ is compatible with the group operation,

G2

∀
g,h

f(h) ◦ f(g) = f(g · h)

For a partition P of a set P , the permutation group (G,P, f) allows to represent a
set of partitions that are coarser than P using the group structure of G. For any subgroup
S of G, two elements of P are contained in the same cell of the partition of P induced
by S through the permutation group (G,P, f) iff their containing cells of P lie on the
same orbit of S. An enumerable set of generators thus allows us to represent a structured
partition.

If we use the normal subgroups of a group G to construct partitions in this way, then
these partitions can themselves be used as the sets of a permutation group to construct
coarser partitions. For a normal subgroup N EG, the quotient group G/N can be used as
a group for a permutation representation of the coarser partitions. The lattice of normal
subgroups of G thus induces a hierarchy of partitions on P that is a lattice-structured
abstraction of the set of all partitions of P . Refining and coarsening the respective parti-
tions induced by two groups H and F can be done by intersecting groups H and F and
considering the group generated by the union of generators of H and F respectively.

If the elements of the subgroups of G can be enumerated efficiently, then the cells
and subcells in a partition hierarchy can also be enumerated efficiently, since for any
normal subgroup N of G, both N and G/N are subgroups of G.

If we let an element of G encode a relation on the elements of P (such as a depen-
dence relation), then for a set H ⊆G of relations, the subgroup generated by H repre-
sents an efficient abstraction of the transitive closure of these relations.

Relations on separate sets can be described using the cardinal product construction
of the groups on the respective sets.



3. Application Example: The Polyhedral Model

In [7] a first application example of the group theoretical model has been provided. The
sets that were considered are Z-polyhedra. The set of bijections on the Z-polyhedra that
were considered are the integral translations. The group G was identified with the set
of bijections. Since the integral translations are commutative, every subgroup of G is
a normal subgroup. The commutativity allowed to significantly simplify the necessary
operations.

It is natural to ask whether a more general application of the group theoretical model
to the polyhedral model is possible by considering more general transformations as bi-
jections. Since a bijective transformation must be invertible, the group of unimodular
transformations is precisely the set of bijections we can consider.

The group of unimodular transformations is a subgroup of the general linear group.
The structure of the general linear group has been well-studied. The Bruhat decomposi-
tions of the general linear group allow us to analyze the elements of the general linear
group as a combination of permutation and triangular matrices. For the unimodular trans-
formations, the determinant of these matrices must be equal to 1 or −1. We can there-
fore reduce the problem to the study of unitary skewing transformations and permutation
transformations.

The group structure of permutation transformations is identical to the symmetric
group of a finite set with a number of elements equal to the number of dimensions. The
normal structure of the finite symmetric groups is well-studied and it is possible to scan
the elements of the symmetric group and its subgroups.

We thus see that the group of unimodular transformations provides an interesting
candidate to further extend the optimization methods that have been developed for the
polyhedral model. For instance, the example provided by Lim and Lam as an example
of a computation in the polyhedral model that contains no communication-free paral-
lelism ([9,10], example 2), can be parallelised without requiring communication by con-
sidering the symmetries of the computation which can be efficiently represented using a
permutation representation based on unimodular transformations. The group theoretical
approach provides an alternative to the index set splitting approach that does not suffer
from the increase in complexity that results from splitting the index sets into multiple
subsets (when multiple symmetries that lead to multiple splits are involved).

4. Related work

Besch and Pohl studied a first, more restricted application of group theory to parallelisa-
tion that did not consider the theory of permutation representations or the lattice structure
of normal subgroups and the partitions it induces [11].

5. Conclusion

This paper is a slightly modified version of a draft paper that was submitted to ParCo
2011 and is very preliminary. Since I do not have the resources to complete this paper
by increasing its clarity, extending the experimental evaluation and adding a section on
related work, I’m making it available so that it may be useful to others.
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