
Parallelisation with a Grid Abstraction

Sven DE SMET a,1

a Student at Ghent University

Abstract. This paper describes a new technique for automatic parallelisation in the
Z-polyhedral model. The presented technique is applicable to arbitrarily nested
loopnests with iteration spaces that can be represented as unions of Z-polyhedra
and affine modular data-access functions. The technique partitions both iteration
and data spaces of the computation. The maximal amount of parallelism that can
be represented using grid partitions is extracted.

Keywords. Parallelisation, Z-polyhedral model, Lattice, Grid

Introduction

In order to optimally benefit from the incessant increase in parallel computational capac-
ity in modern architectures, the available parallelism in our algorithms must increase ac-
cordingly. Since manual parallelisation requires considerable effort from the developer,
we must resort to automatic parallelisation.

In recent decades, much research in the field of automatic parallelisation has focused
on structured computations that can be represented in the polyhedral model. This model
allows to represent and transform an important class of computationally intensive algo-
rithms and many parallelisation techniques have been developed for it. The Farkas algo-
rithm allows to extract the maximal amount of parallelism that can be represented with
multi-dimensional affine scheduling functions [1,2,3]. By extracting space partitions be-
fore every time partition during the recursive construction of the affine partitioning func-
tions, the coarseness of the available parallelism can be detected [4,5]. This results in a
specification that is well-suited for current hierarchical, parallel architectures.

It is well known that some computations contain more parallelism than can be ex-
tracted with affine spacetime mappings [6], and several techniques have been proposed
that aim to address this issue [7,8,9,10,11].

In this paper a new technique is presented that is applicable to computations with
general Z-polyhedral iteration spaces and affine modular data access functions. This
technique extends Lim and Lam’s affine spacetime partitioning technique [4,5] by en-
abling the extraction of more parallelism through the use of affine modular partitioning
functions. The technique also extends the unimodular transformation based approach by
Yu and D’Hollander [9] by making it applicable to general loopnests. Since the Farkas al-
gorithm allows to compute a schedule in polynomial time, a complete multi-dimensional
spacetime mapping that extracts maximal parallelism for the grid abstraction can be com-
puted in polynomial time.

1sven.desmet@cubiccarrot.com, http://www.cubiccarrot.com/salmoc/

1. Mathematical Background

This section briefly reviews the mathematics required in the rest of the paper.

1.1. Notation

Let a..bwith a, b ∈ Z denote the set of integers from a up to and including b: a..b, {i|i ∈
Z∧ a ≤ i ≤ b}. For a vector or tuple x, let |x| denote the number of elements it contains.

For a set A, let PA denote the set of all its subsets and LA,P(A2) denote the set

of binary relations on A. The Kleene Closure of A is denoted with A∗,
N
∪
i
Ai.

For a set of vectors X , the set finitely generated by X through the coefficient set Y
is the set of finite combinations of vectors in X with coefficients from Y , denoted with
〈X〉Y :

〈X〉Y , {
Z∑
z

c(z)z|(Z ⊆X)∧ (#Z ∈ N)∧ (c ∈ Z → Y)} , (1)

where #Z denotes the cardinality of the set Z.
For a relation l on A and a set B⊆A, let UA

lB denote the earliest l-successor of
B on A, which is defined by the axiom

PA
∀
B
UA

lB ∈ A∧
B
∀
b
bl UA

lB∧
A
∀
a
(

B
∀
b
bl a)⇒UA

lB l a (2)

1.2. Basic Definitions

An affine modular function is a function of the form λx.(cTx + b) mod d on Zn with
c ∈ Zn and b, d ∈ Z where mod denotes the modulo operation. We use Boute’s E-
definition of the modulo operation based on Euclid’s theorem [12], i.e.

amod b = c ≡ c ∈ 0..(|b| − 1)∧
Z
∃
k
a− c = kb . (3)

Let Fn denote the set of affine modular functions on Zn.
For a set F of functions, let E : F ∗ → PF be a function that maps any m-

dimensional function f ∈ Fm to a set containing its single-dimensional constituent
functions Ef , {fi|i ∈ 1..m}.

Let πS(L) denote the projection of a set L⊆Zm onto the dimensions in the set
S⊆ 1..m. For a set L⊆A × B we also let πB(L) denote the projection of L onto the
respective subspace B of the product.

Let Im f further denote the image of a function f and Ker f denote its kernel. Let
us further define the function Z : PZn → PFn that maps a subset S of Zn to the set of
affine modular functions that contain S in their kernel:

PZn

∀
S
Z(S), {f |f ∈ Fn ∧S⊆Ker f} (4)

1.3. Partitions

1.3.1. Basic definitions

A partition B of a set A is a set of subsets of A such that their disjoint union is equal

to A, i.e. A,
B
t
B
B. The cells of a partition are the subsets of which it consists. Let CA

denote the set of all partitions of A.
A partition P is at least as fine as a partition Q, denoted as P�Q (or, Q is at least

as coarse as P, Q�P), if every cell of P is contained in a cell of Q:

P�Q,
P

∀
P

Q

∃
Q
P ⊆Q (5)

A partition P is finer than a partition Q, denoted as P≺Q (or, Q is coarser than P,
Q�P) if P�Q∧P 6= Q.

The refining operation is defined as ⊗,UCA
� and the coarsening operation is de-

fined as �,UCA
� . The bottom of CA is ⊥A,UCA

� CA = {{a}|a ∈ A}, the finest ele-
ment, while the top of CA is>A,UCA

� CA = {A}, the coarsest element. For every set A,
the structure (CA, � ,⊗,�,⊥,>) forms a complete lattice.

1.3.2. Constructions

Let B|A, {B ∩ A|B ∈ B} denote the restriction of a partition B ∈ CB to a set A⊆B.
A partition bijection is a bijective relation between the cells of two partitions. A

partition bijection on the sets C and D also specifies a partition of C ∪ D where each
cell of the partition of C ∪ D is the union of a cell of the partition of C with its related
cell of the partition of D.

A partition on a set A can be specified using a function f ∈ A→ B to another set B
by allocating all elements that are mapped to the same value by f to a cell unique to this
value. Let us denote the resulting partition with A[f],

A[f], {{a|a ∈ A∧ f(a) = i}|i ∈ Im f} (6)

1.4. Affine grids, diophantine equations and modular functions

A linear grid GA⊆Zn is the set of all integral combinations of a finite set of integer
vectors A⊆Zn, i.e. GA, 〈A〉Z. The set A is a set of generators of GA. For a matrix
B we extend the notation to let GB denote the grid generated by the rows of B. Let Gn

denote the set of linear grids on Zn.
An affine grid GaA⊆Zn is the translation of a linear grid GA by an integer vector

a, i.e. GaA, {a + b | b ∈ GA}. The homogeneous space Zn+1,Z × Zn extends
Zn with a homogeneous dimension h (we here choose its dimension to be positioned
before the other dimensions). Let Ṽ denote the set that results from prepending the set V
with a homogeneous dimension in this way. An affine grid in Zn can be represented in
the homogeneous space as the intersection of the homogeneous plane that contains the

points of Zn for which h = 1 with the linear grid G({(1) ./ b} ∪
A
∪
a
{(0) ./ a}), where

./ denotes the concatenation of two vectors. Let G∗n denote the set of affine grids on Zn.

A unimodular matrix U is a square integer matrix for which |detU | = 1. This
implies U−1 is integral as well, and therefore that the transformation of multiplying an
element of S⊆Zn by a unimodular matrix gives a bijection between S and its image
under the unimodular transformation.

Let l(z) denote the index of the first non-zero element of a vector z ∈ Zn (or +∞
for the zero vector), then a matrix A ∈ Zm×n is in echelon form iff

2..m

∀
r

(Ar,∗ = 0)∨ (l(Ar−1,∗) < l(Ar,∗)) (7)

A matrix A is in hermite normal form (HNF) if it is in echelon form, does not contain
zero rows and satisfies

2..m

∀
r

1..(r−1)

∀
q

Ar,l(Ar,∗) > Aq,l(Ar,∗) ≥ 0 (8)

The HNF of a matrix can be obtained by left-multiplying it with an appropriate

unimodular matrix U and retaining the non-zero rows, i.e. UA =
[

HNF(A)
0

]
. Note that

GHNF(A) = GA since every row of HNF(A) is an integral combination of rows of A
and the integrality of U−1 ensures that every row ofA is an integral combination of rows
of HNF(A). The HNF can thus be used as a normal form representation for a grid. An
efficient algorithm exists to compute the HNF and a unimodular matrix that transforms
the input matrix into HNF [13].

If the generators of an affine grid are represented in homogeneous coordinates with
the homogeneous coordinate in the first position, the HNF form provides an easy way
to test whether the affine grid is empty. The affine grid contains an element only if the
top-left elementA0,0 is equal to one2. The remaining matrix then provides the generators
of the translated linear grid, with an additional column of zeroes for the homogeneous
coordinate.

A system of linear diophantine equations is an equation of the formAz = 0 where
A is a integral matrix and z is an unknown integral vector. The set of solutions is equal to
the kernel of the multi-dimensional integral linear function λz.Az defined on Zn. Since
every linear combination of elements in the kernel is contained in the kernel too, the ker-
nel is a linear grid. A set of generators of this grid can be obtained by computing the HNF
of AT and an associated unimodular matrix U that transforms AT into HNF(AT), since

then UAT =
[
UX
U0

]
AT =

[
HNF(AT)

0

]
with U =

[
UX
U0

]
, i.e. UXAT = HNF(AT)

and U0A
T = 0. The rows of U0 then form a set of generators of the kernel of A. Indeed,

any integral linear combination of rows lies in the kernel too due to linearity. Further-
more, since U−1U = I we have HNF(U) = I and thus that GU = GI so that any vector
z ∈ Zn can be written as d+y with d ∈ GUX and y ∈ GU0. Since yAT = 0, z lies in the
kernel only if dAT = 0. Since d ∈ GUX , we have d = wTUX for some w ∈ Zrows(UX)

such that dAT = 0 implies dAT = (wTUX)AT = wTHNF(AT) = 0. Since the rows
of HNF(AT) are linearly independent, we see that w = 0 such that d = wTUX = 0 and
zAT = 0⇒ z ∈ GU0.

2It thus suffices to test whether the gcd of the coefficients of the first column of the original matrix is equal
to one.

Let U0(A) denote a matrix so that U0(A)A= 0 and let UX(A) denote the matrix so

that UX(A)A= HNF(A) and so that
[
UX(A)
U0(A)

]
is unimodular.

A system of affine diophantine equationsAz+c = 0 (with c ∈ Zm) can be solved

by solving the system of linear diophantine equations [c | A]
[
h
z

]
= 0. The result is a

linear grid in the homogeneous space that represents the affine grid equal to the kernel
of the affine function λz.Az + c defined on Zn.

A system of modular equations is an equation of the form Azmod d = 0 with
d ∈ Zm. For each i ∈ 1..m the equation Ai,∗zmod di = 0 forms a separate modular

equation. Since amod b = 0 iff
Z
∃
k
a= kb, the system of modular equations can be solved

by solving the system of linear diophantine equationsAz+diag(d)y = 0, where diag(d)
denotes the diagonal matrix with elements from d, and projecting the result onto the first
n dimensions. The generators of the projected linear grid can be obtained by retaining the
first n dimensions of the generators of the grid. A system of affine modular equations
can then be solved by solving the corresponding system of modular equations in the
homogenised space.

Representing an affine grid as the integral combination of a set of integral vectors
is equivalent to representing it as the solution of a system of affine modular equations.
A constraining representation as a system of affine modular equations can be converted
to its generating representation as described above, while converting the generating rep-
resentation to a constraining representation can be done through matrix inversion if the
matrix of generators is square [14].

Practically, we can use the same algorithm that allows to convert a matrix to its
HNF and also produces the unimodular transformation that converts the matrix to HNF.
Notice first that we can obtain a set of vectors that generate the linear functions that
contain a linear grid GA in their kernels as the rows of U0(AT). If the rows of the ma-
trix A are linearly independent, then UX(AT)AT is a full-rank upper-triangular ma-
trix. We can convert UX(AT)AT to a diagonal matrix diag(d) by applying unitary
row transformations and the transformation of multiplying a row by a non-zero inte-
ger. Let D denote the matrix that captures this sequence of transformations that trans-
form UX(AT)AT to a diagonal form, i.e. diag(d) = D(UX(AT)AT). We then have
((DUX(AT))i,∗AT)j = diδi,j = di(i = j). Every row of DUX(AT) thus contains a
vector with coefficients of a linear function that contains all of the generators of GA in
its kernel except for the generator that corresponds to the diagonal entry. This immedi-
ately allows to derive the modular functions that contain GA in their kernel since every
element of GA will be contained in the kernel of λx.(DUX(AT))i,∗xmod di for every
row i. Since the linear parts of all obtained functions are linearly independent, we obtain
all solutions. The functions for which di = 1 vanish everywhere and can therefore be
discarded. This method can also be adapted for the affine version, by taking care that the
affine supporting generator is included exactly once.

The affine grid hull of a set S⊆Zn is denoted with HS,UG∗
n

⊆ S. The affine grid
hull of a union of affine grids can be computed by taking the union of the homogeneous
generators of the affine grids.

1.5. Lemma on affine grids and modular functions

A basic problem when considering spacetime and data partitioning in the polyhedron
model has the general form

Q

∀
z
f(z) = 0⇒ g(z) = 0 (9)

where Q is a known set, f is a known function and g ∈ Fn,m is an unknown affine
modular function. This is easily rewritten as

Q ∩ Ker f
∀
z

g(z) = 0 (10)

which, by definition of Z , is equivalent to g ∈ Z(Q ∩ Ker f). In this subsection we
introduce some lemma which can be used to work with this type of problem.

The following lemma allows us to determine a subset of ZA if we know a superset
of a set A:

Lemma 1.

(PZn)2

∀
A,B

A⊆B⇒ZA⊇ZB (11)

The following lemma allows us to replace the set P in ZP by HP and thus also
identifies the maximal precision that is required to obtain optimal solutions:

Lemma 2.

Z =Z ◦ H (12)

The following lemma closely resembles the Farkas lemma for polyhedra in that it
allows to write an affine modular function that vanishes on an affine lattice as an integral
combination of the affine modular constraints that define the affine lattice:

Lemma 3.

Fn

∀
h

Kerh 6= ∅⇒
Fn,1

∀
g

Zn

∀
z
h(z) = 0⇒ g(z) = 0

≡

g ∈ 〈Eh〉Z

(13)

Lemma 2 and lemma 3 imply that we can write every g ∈ Z(P) in an explicit form
if we know any affine modular function vanishing precisely on the affine lattice hull of
P . In particular, we can write this solution without redundant degrees of freedom by
deriving a basis for the corresponding solution space. Notice that when taking an integral
sum of affine modular functions, the modular coordinates of the summed components are
independent and are mapped to separate coordinates in the result. As a result of Bézout’s

lemma, these coordinates can be replaced by a single coordinate with the gcd of the
coefficients of the original modular coordinates as coefficient.

The following convenient lemma resemble De Morgan’s laws. This lemma allows
to convert between a union in the generating representation and an intersection in the
constraining representation:

Lemma 4.

PPZn

∀
T
Z(

T
∪
S
S) =

T
∩
S
Z(S) (14)

This lemma allows to convert between an intersection in the generating representa-
tion and an integral sum in the constraining representation:

Lemma 5.

PG∗
n

∀
T

(
T
∩
S
S 6= ∅)⇒ (Z(

T
∩
S
S) =

T∑
S

Z(S)) (15)

1.6. Grid partitions and grid partition bijections

A linear grid GA is a subgrid of a linear grid GB iff GA⊆GB. A linear subgrid can
be used to specify a grid partition of the containing supergrid by considering all trans-
lations of GA in GB and allocating two elements of the grid to the same cell iff they
are contained in the same translation of GA. Every affine grid contained in GB that is
a translation of GA then forms a cell of the partition. A linear grid GA can thus also be
used to specify a partition of an affine grid GbB if GA⊆GB by partitioning GB.

Since the cell grid of the partition that results from coarsening two grid partitions
defined by the cell grids GA and GB is the smallest cell grid that contains both original
cell grids, this cell grid is given by H(GA ∪ GB) =G(A ∪ B). The cell grid of the
partition that results from refining two grid partitions of two grid partitions defined by
the cell grids GA and GB is GA ∩ GB.

A non-empty affine grid GaA⊆C × D with C ,Zp and D,Zq implicitly spec-
ifies a grid partition bijection on two grid partitions P of GπC(a)πC(A) and Q of
GπD(a)πD(A). The subsets of homogeneous generators of GaA with coordinates that are
non-zero only for either the dimensions of C or D give the generators of the cell grid of
the associated partition. Let us denote the generators of the cell grid of P as TC(GaA),
i.e.

TC(GaA), rows(U0(π eD(

[
1 aT

0 A

]
))πC(A)) (16)

The generators of the cell grid of Q can be obtained in the same (but mirrored) way.
The same technique can also be applied when an affine grid GaA⊆Zp × Zq × . . .× Zr
specifies a multi-tuple grid partition bijection. The cell of the partition of the grid in

Cq for a grid GaA⊆
k
×
i= 1

Ci that specifies a multi-tuple grid partition bijection on this

product space is then given by

TC(GaA),
k
∪

i= 1,i6=q
rows(U0(πfCk

(

[
1 aT

0 A

]
))πCq

(A)) (17)

Notice that, if we want to determine the cell grids for each space in the product space, it
suffices to apply the HNF algorithm once for each of the spaces.

Coarsening grid partition bijections can be done by taking the union of the genera-
tors of the cell grids.

2. Parallelisation with a Grid Abstraction

2.1. Representation of Computations

A computation is a structure (Ω,Γ,∆,) where

• Ω is the set of operations executed during the computation.
• ∆ is the data space, the set of data elements accessed during the computation.

Information can be stored in a data element and can later be retrieved from it. The
data space is specified implicitly by Ω and Γ.

• Γ⊆Ω→ ∆ is the set of access functions that map an operation to a data element
accessed by it. (In the full version of this paper, partial functions will be accounted
for.)

• ∈ LΩ is a minimal partial order of the operations such that any execution of
the computation must respect to obtain valid results

For the static specification and analysis of computations, Ω and ∆ are often given
as the finite union of sets of a specific type. In this case, the finite union of operations is

indexed by S, the set of statements , Ω,
S
∪
s
Ωs, while the finite union of data elements

is indexed by V , the set of variables, ∆,
V
∪
v
∆v . Let Γvs ⊆Ωs → ∆v denote the access

functions from s ∈ S to v ∈ V .

2.2. Spacetime Partitioning

2.2.1. Space Partitioning

A partition Q ∈ C(Ω ∪ ∆) such that every operation is contained in the same cell as all
data elements that are accessed by it,

Γ

∀
f

Ω×∆

∀
ω,δ

δ= f(ω)⇒
Q

∃
Q
{ω, δ}⊆Q (18)

allows to describe communication-free parallelism.
A partition of Ω ∪ ∆ can be specified as a partition bijection between Ω and ∆. If

we specify this partition bijection with a pair of functions (Φ,Λ) ∈ (Ω→ A)×(∆→ A)
such that the related partitions are Ω[Φ] and ∆[Λ] and such that the elements in the cells
that are related by the bijection are mapped to the same value of the set A, then the
partitioning functions must satisfy

Γ

∀
f

Ω×∆

∀
ω,δ

δ= f(ω)⇒Λ(δ) = Φ(ω) (19)

If we consider single dimensional affine modular functions then we can interpret δ
and ω as the projections of a vector (δ, ω) =m ∈ ∆× Ω and rewrite the expression as

Γ

∀
f

Ω×∆

∀
ω,δ

(1∆ − f)(m) = 0⇒ (Λ− Φ)(m) = 0 (20)

where 1X is the identity function on X . We thus see that this expression has the same
form as the expression discussed in section 1.5 and can rewrite it as

(Λ− Φ) ∈
Γ
∩
f
Z(∆× Ω ∩ Ker (1∆ − f)) (21)

By lemma 4, we can further rewrite the expression as

(Λ− Φ) ∈ Z(
Γ
∪
f

(∆× Ω ∩ Ker (1∆ − f))) (22)

Let us define the argument to Z as Ψ:

Ψ,
Γ
∪
f

(∆× Ω ∩ Ker (1∆ − f)) (23)

We will assume for convenience that the sets ∆ and Ω are full-dimensional so that the
term ∆× Ω can be discarded.

Since lemma 2 allows to compute the solution space by first determining HΨ, we
can efficiently compute the argument to Z by taking the union of the generators of
Ker (1∆ − f) over the access function f ∈ Γ.

To detect maximal parallelism, we must find the finest partition that satisfies equa-
tion (18)

If ∆ and Ω consist of finite unions of sets indexed by V and S, then we first compute
a set Ψv,s for every pair (v, s) ∈ V × S ,

V×S
∀
v,s

Ψv,s,
Γv

s∪
f

(∆v × Ωs ∩ Ker (1∆v
− f)) (24)

Since the space partitions induced by a single variable v ∈ V only interact through
the coarsening of the partition of ∆v , we proceed by first determining the se of generators
Υv of the cell lattice of the partition of ∆v that results from combining the relations of
space and data partitions Ψv,s for all statements s ∈ S:

V
∀
v
Υv ,

S
∪
s
T∆v

(Ψv,s) (25)

and subsequently add these generators to the initial lattice partition relations to obtain
lattice partition relations that take all references to a specific variable into account:

V×S
∀

(v,s)
Ψ∗v,s = ΨG

v,s ∪ Υv , (26)

where ΨG
v,s denotes the set of generators of Ψv,s. In this union, the generators contained

in Υv are automatically extended with zeroes for the iteration space and homogeneous
dimensions.

From these relations we may now derive a multi-tuple lattice partition bijection on
the product of all iteration spaces of statements that access a variable v that takes all
references to v into account for every variable v. To this end we compute the HNF of
Ψ∗v,s for each (v, s) ∈ V × S where Γvs 6= ∅. Since the resulting generators will be
ordered by the generators of the partition of ∆v because these dimensions occur first, the
generators of the multi-tuple lattice partition bijection can be extracted by concatenating
the resulting generators of the partitions of the iteration space of the corresponding rows.

We thus obtain a multi-tuple lattice partition bijection on the iteration spaces for
every variable where each of these relations takes the coarsening induced by all accesses
to the respective variables into account. These lattice partition bijections are subsequently
coarsened by taking the union of all their sets of homogeneous generators to obtain a
lattice partition bijection that takes all accesses in the computation into account.

Since the variables are often not accessed by all statements in the computation, the
multi-tuple relations of a variable may apply only to a subset of the set of statements. In
this case, the lattice partition bijections must be aligned with each other while coarsening
the multi-tuple relations of individual variables. This can be done by finding a common
element in one of the iteration spaces, which can be done by solving a system of dio-
phantine equations. If no such common element is found for any variable, then we can
consider the non-overlapping subsets of statements separately. This results in a constant
partition of the iteration spaces.

From the multi-tuple lattice partition bijection, we can extract the cell lattice of the
resulting partition of the iteration spaces. We then add the generators of these cell lattices
to Ψ∗v,s for each (v, s) ∈ V × S so that we obtain lattice partition bijection between the
data and iteration spaces that take all accesses in the computation into account.

Finally, we determine the affine modular functions by first converting each of the
generating representations of the resulting pairwise lattice partition bijections to their
constraining representation using the method described in section 1.4. To obtain the the
multi-tuple of affine modular functions, we combine the corresponding rows ofDX(AT)
where A is a matrix in HNF-form containing the generators of the pairwise lattice parti-
tion bijection and we combine the corresponding rows of HNF(U0(AT)).

V×S
∀

(v,s)
Ψv,s,Z(

Γv
s∪
f

(∆v × Ωs ∩ Ker (1∆v − f))) . (27)

2.2.2. Time Partitioning

For time partitioning, we can use affine partitioning which uses a double dualisation
through Fourier-Motzkin projection and the specially designed Algorithm A []. Fourier-
Motzkin projection has an exponential time complexity. It must however be observed that
the conjunction of time constraints imposed on the pairs of time partitioning functions
amounts to intersecting the cones of affine functions that result from applying Farkas’

Lemma to the individual dependence polyhedra. When considering more than two state-
ments, the coefficients for all the functions can be gathered in a vector and the inter-
section can be performed on the product space of the function coefficient vectors for all
statements. Preliminary experiments suggest that performing this intersection using the
Parma Polyhedra Library3 [15] is significantly faster than the original approach.

While obtaining the complete set of solutions using the affine partitioning approach
is interesting, in particular for the manual analysis of specific algorithms, performing the
intersection does not scale well since the size of the dual representation for polyhedra
can be exponentially larger than the original representation. For this reason, it seems
more interesting to use an approach like the Farkas algorithm if we are only interested
in a single solution (such as for parallelisation in a production compiler). However, this
algorithm uses Fourier-Motzkin projection to eliminate the Farkas multipliers which has
exponential time complexity and may also significantly increase the size of the represen-
tation. Furthermore, it uses parametric integer programming (PIP) [16], which also has
an exponential time complexity.

The intersection of the cones of affine functions obtained using Farkas’ Lemma is
equivalent to applying Farkas’ Lemma after computing the convex hull of the individual
dependence polyhedra. The maximally independent set of legal affine time partitioning
functions is obtained by eliminating redundant constraints from this polyhedron (which
can be done in polynomial time). As shown by Lim and Lam, an affine time partitioning
function that maximizes parallelism can be obtained as a combination of all constraints
of this polyhedron. This combination ensures that the maximal number of half-planes
that constrain this polyhedron are not included in the affine sets of the resulting finer cells
of operations. We can use an approach resembling the Farkas algorithm to obtain a single
time partitioning solution that maximizes parallelism without computing a convex hull
(or intersection) by constructing a linear programming problem that contains a variable
zi such that 0 ≤ zi ≤ 1 for every constraint of the individual dependence polyhedra
and use the sum of these variables to maximize the number of these constraints that are
not included. A reasoning similar as that used in the Farkas Algorithm can be used to
show that zi ∈ {0, 1} in the resulting solution such that zi can be interpreted as a binary
variable while using linear programming to solve the problem. The zi variables describe
the problem with a finer granularity than in the Farkas Algorithm since a variable is used
for every constraint of the dependence polyhedra rather than using a variable for every
dependence and might thus lead to more parallelism.

It can be seen that, for the purpose of the extraction of maximal parallelism (in
number of dimensions), the value added by a parametric solution of the problem using
PIP (as in [1]) is limited. Indeed, the coefficients of the parametric parts of the scheduling
functions of distinct statements are required to be equal by the Farkas Algorithm in order
to ensure that the resulting time partition is no more than one dimension finer than the
previous partition. The parametric part of the scheduling functions thus affects neither
the structure of the time partition nor the ordering of its cells. While the quast-solution
obtained by the Farkas Algorithm allows to split the context (the parameter space) into
a finite union of subspaces and specify a distinct scheduling solution for each of these
subspaces, we can use linear progamming instead of PIP if we use a single scheduling
solution that is valid for all possible values of the parameters (as in [3]). Since we can

3PPL also uses double dualisation, but the dualisation is performed using Chernikova’s algorithm, which is
significantly more efficient than the Fourier-Motzkin based approach.

avoid the elimination of Farkas Multipliers by simply discarding the value of the Farkas
multipliers in the obtained solution, the resulting method is completely polynomial.

For multi-dimensional time partitioning, the generators of the affine function space
must be orthogonalized to the function space generated by the already obtained, coarser
partitions prior to including them in the linear programming problem to ensure that the
resulting solution is orthogonal to the affine partitioning functions of the coarser parti-
tions.

3. Conclusion

This paper is a slightly modified version of a draft paper that was submitted to ParCo
2011 (with added proofs) and is very preliminary. Since I do not have the resources to
complete this paper by increasing its clarity, adding examples, adding an experimental
evaluation and adding a section on related work, I’m making it available so that it may
be useful to others.

Acknowledgements

Useful information or feedback was gratefully received from Maurice Bruynooghe and
Harald Devos.

Initial research that provided the starting point for this paper was supported in part
by a PhD grant of the Institute for the Promotion of Innovation through Science and Tech-
nology in Flanders (IWT-Vlaanderen)4 and a BOF/GOA project5 and was also morally
supported by the Flexware (IWT/060068) project.

References

[1] Feautrier, P.: Some efficient solutions to the affine scheduling problem. Part I. One-dimensional time.
International Journal of Parallel Programming 21(5) (October 1992) 313–348

[2] Feautrier, P.: Some efficient solutions to the affine scheduling problem. Part II. Multidimensional time.
International Journal of Parallel Programming 21(6) (December 1992) 389–420

[3] Feautrier, P.: Scalable and modular scheduling. In: Computer Systems: Architectures, Modeling and
Simulation (SAMOS). Volume 3133 of Lecture Notes in Computer Science., Springer-Verlag Berlin
(2004) 433–442

[4] Lim, A.W., Lam, M.S.: Maximizing parallelism and minimizing synchronization with affine transforms.
In: Proceedings of the 24th ACM SIGPLAN-SIGACT symposium on Principles of programming lan-
guages, ACM Press (1997) 201–214

[5] Lim, A.W., Lam, M.S.: Maximizing parallelism and minimizing synchronization with affine partitions.
Parallel Computing 24(3–4) (May 1998) 445–475

[6] Beletska, A., San Pietro, P.: Extracting coarse-grained parallelism with the affine transformation frame-
work and its limitations. Electronic Modelling 5 (2006) 1–14

[7] Beletska, A., Bielecki, W., San Pietro, P.: Extracting coarse-grained parallelism in program loops with
the slicing framework. In: Proceedings of the Sixth International Symposium on Parallel and Distributed
Computing, Washington, DC, USA, IEEE Computer Society (2007) 29

4from 01/01/2008 to 31/08/2009
5from 01/07/2006 to 31/12/2007

[8] Yu, Y., D‘Hollander, E.H.: Non-uniform dependences partitioned by recurrence chains. In: Proceedings
of the 2004 International Conference on Parallel Processsing (ICPP‘04), IEEE (8 2004) 100–107

[9] Yu, Y., D‘Hollander, E.H.: Partitioning loops with variable dependence distances. In Lilja, D., ed.: Pro-
ceedings of the 2000 29th International Conference on Parallel Processing. Volume I., Toronto, Canada,
The IEEE Computer Society (8 2000) 209–218

[10] Griebl, M., Feautrier, P.A., Lengauer, C.: Index set splitting. Int. J. Parallel Programming 28(6) (2000)
607–631

[11] Griebl, M., Feautrier, P.A., Lengauer, C.: On index set splitting. (October 1999) 274–282
[12] Boute, R.: The euclidean definition of the functions div and mod. ACM Transactions on Programming

Languages and Systems 14 (1992) 127–144
[13] Storjohann, A., Labahn, G.: Asymptotically fast computation of hermite normal forms of integer matri-

ces. (1996) 259–266
[14] Bagnara, R., Dobson, K., Hill, P.M., Mundell, M., Zaffanella, E.: Grids: A domain for analyzing the

distribution of numerical values. 4407 (2007) 219–235
[15] Bagnara, R., Hill, P.M., Zaffanella, E.: The parma polyhedra library: Toward a complete set of numerical

abstractions for the analysis and verification of hardware and software systems. Sci. Comput. Program.
72 (June 2008) 3–21

[16] Feautrier, P.: Parametric integer programming. RAIRO Recherche Op’erationnelle 22 (1988)

A. Proofs

A.1. Lemma 1

(PZn)2

∀
A,B

A⊆B⇒ZA⊇ZB (28)

Proof. By rewriting the lemma using the definition of Z ,

(PZn)2

∀
A,B

A⊆B⇒{f |f ∈ Fn ∧A⊆Ker f}⊇{f |f ∈ Fn ∧B⊆Ker f} (29)

we see that the constraints on the functions in Z(A) is at least as strong as the constraints
on the functions in Z(B) if A⊆B so that we have Z(A)⊇Z(B) under this condition.

A.2. Lemma 2

Z =Z ◦ H (30)

Proof. Since for any S⊆Zn we have S⊆HS, lemma 1 immediately gives

PZn

∀
S
Z(S)⊇ (Z ◦ H)(S) . (31)

In order to prove

PZn

∀
S
Z(S)⊆ (Z ◦ H)(S) (32)

we must show that

PZn

∀
S

Fn

∀
g

(
S

∀
s
g(s) = 0)⇒ (

HS
∀
t
g(t) = 0) . (33)

Any g ∈ Fn can be written using its linear part gL, its constant coefficient gC and its

modular coefficient gM where
Zn

∀
v
g(v) = 〈gL|v〉+ gC mod gM . This allows us to rewrite

the expression as

PZn

∀
S

Fn

∀
g

(
S

∀
s
〈gL|s〉+ gC mod gM = 0)⇒ (

HS
∀
t
〈gL|t〉+ gC mod gM = 0) . (34)

Any t ∈ HS must, by definition of H, be an integral, affine combination of points
in S. This means that it must be an integral combination so that the coefficient of the
combination sum to 1. Assume that the set U ⊆S is affinely combined to form t, that is

t=
U∑
u
c(u)u and

U∑
u
c(u) = 1, then

〈gL|t〉+ gC = 〈gL|
U∑
u

c(u)u〉+ gC

=
U∑
u

c(u)〈gL|u〉+
U∑
u

c(u)gC

=
U∑
u

c(u)(〈gL|u〉+ gC)

=
U∑
u

c(u)g(u)

= 0

(35)

thereby concluding the proof.

A.3. Lemma 4

PPZn

∀
T
Z(

T
∪
S
S) =

T
∩
S
Z(S) (36)

Proof. Indeed, for any T ⊆PZn,

Z(
T
∪
S
S) = {f |(f ∈ Fn)∧ (

T
∪
S
S

∀
s
f(s) = 0)}

= {f |(f ∈ Fn)∧ (
T

∀
S

S

∀
s
f(s) = 0)}

=
T
∩
S
{g|(g ∈ Fn)∧ (

S

∀
s
g(s) = 0)}

=
T
∩
S
Z(S)

(37)

A.4. Lemma 5

PG∗
n

∀
T

(
T
∩
S
S 6= ∅)⇒ (Z(

T
∩
S
S) =

T∑
S

Z(S)) (38)

Proof. It is clear that

Z(
T
∩
S
S)⊇

T∑
S

Z(S) , (39)

since a sum of affine modular functions that each vanish on every set S in T will vanish
on the intersection of those sets.

We now consider two cases:

• If the intersection of the sets in T is the empty set, then there are no constraints
on the affine modular functions in the first set.

• If the intersection is not empty, let us take any function h� : T → Fn for which

T

∀
S
(hS ∈ Z(S))∧ (KerhS =S) . (40)

Since any affine lattice is equal to the kernel of an affine modular function, such
a function exists. We can then write

T

∀
S
S= {v|(v ∈ Zn)∧ (hS(v) = 0)} (41)

and

T
∩
S
S= {v|(v ∈ V)∧

T

∀
S
hS(v) = 0}

= {v|(v ∈ V)∧ (
T
./
S
hS)(v) = 0)}

= Ker
T
./
S
hS

. (42)

By lemma 3 we can then infer that for any g ∈ Fn

g ∈ Z(
T
∩
S
S) ≡ Eg⊆〈E T

./
S
hS〉Z

≡ Eg⊆〈
T
∪
S
EhS〉Z

(43)

Note that

〈
T
∪
S
EhS〉Z⊆E

T∑
S

Z(S) . (44)

where we have overloaded the function E to be applicable to a set of functions

in the sense that EF ,
F
∪
f
Ef for any F ⊆Fn. Indeed, since EhS ⊆EZ(S) we can

always find a function in the second set that is equal to a function in the first set by
choosing a sum of elements in EhS as the chosen term of Z(S). We can therefore
derive

g ∈ Z(
T
∩
S
S)⇒Eg⊆E

T∑
S

Z(S) . (45)

By combining this with

Eg⊆E
T∑
S

Z(S)⇒ g ∈
T∑
S

Z(S) (46)

we may conclude

Z(
T
∩
S
S)⊆

T∑
S

Z(S) (47)

if the intersection of the sets in T is non-emtpy.

Combining (39) with (47) then proves the lemma.

