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Here is presented a new exact solution of Ice dynamics in Glaciers in terms of viscous-

plastic theory of movements, for 2-dimensional case. In general case, 2-D solution of Ice 

dynamics could  be  classified  as  Riccati’s  type.  Due  to  a  very  special  character  of 

Riccati’s  type equation,  it’s  general  solution  is  proved  to  have  a  proper  gap of 

components of such a solution.

It  means  a  possibility  of  sudden  gradient  catastrophe at  definite  moment  of  time-

parameter, in  regard  to  the  components  of  solution  (2-D  profile  of  Glacier,  2-D 

components of ice velocity moving).

That’s why surging glacier seems to be accelerating from time to time: it’s velocity of 

moving is suddenly rising from few meters to hundreds meters /per day.
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A glacier is a massive, slowly moving mass of compacted snow and ice. The action of 

gravity moves the mass of ice down the slope side: glaciers are being moved from a 

millimeter to hundreds meters a day. There are two kinds of motion: 1) a slow sliding 

motion and an avalanche like flow; 2) the internal movement of glacial  ice, is a flow 

similar to plastic flow and viscous flow.

Glaciers move by two mechanisms: basal slip and viscous-plastic flow. In basal slip, 

the entire glacier slides over bedrock. A glacier also moves by plastic flow, in which it 

flows as a viscous fluid.

In accordance with [1], 2-dimensional case of glacial ice viscous-plastic flow should be 

represented in the Cartesian system of coordinates as below (axis Ox coincides to initial  

direction of glacial ice flow, which is assumed to be a plane-parallel flow,  z = const):
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- where  vx – is the component of ice velocity in the direction x of Cartesian system x, y; 

vy – the component of ice velocity in the direction y;  p – is an internal pressure in glacial 

ice;  G x,  G y – are the appropriate  projections of gravity (central force)  to the chosen 

initial  direction  x, y of  glacial  ice plane-parallel  flow;   Sxx,  Sxy – are  the appropriate 

components of stress tensor;  μ – is a coefficient of glacial ice dynamic viscosity;  τs – is a 

critical maximal level of stress in shared layer of glacial ice when it starts to move as 

viscous flow (stage of plastic flow: if an absolute meaning of stress tensor less than a critical maximal  

level of stress in shared layer < τs, → glacial ice does not move).

From (1.1) we obtain the appropriate equalities below:

 

Let’s assume in our modeling that the left part of (1.1) equals to zero due to negligible 

terms for the case of slowly moving glacial ice. But for the case of slow glacial ice flow 

system (1.1) could be reduced as below
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Then for finding a solution, we should cross-differentiate 1-st & 2-nd equation (1.2)  in 

regard to x & y, as well as we should combine it by a proper linear way (besides, on open air 

p (x, y) = const); in result, we obtain:

- it means that Sxy – is the harmonic function [2].

According to Liouville's theorem  :   “if  f  is a harmonic function defined on all of  Rn
  which 

is bounded above or bounded below, then  f  is constant” [2].

It is evident that Sxy, being the component of stress tensor, is bounded above - in regard to  

it’s absolute meanings - due to general physical sense [3].

So, we have: 1) Sxy is a harmonic function, 2) Sxy is bounded above. Thus, in accordance 

with Liouville's theorem, Sxy is a constant:  Sxy = const = 2C.  Then from (1.2) we obtain 

Sxx = - G x · x + G y · y + C0  (C0 = const ≠ 0), but:

- hence, we obtain in result:

Let’s choose C = 0, then above equality could be simplified to the form below

If we take also into consideration the continuity equation (see (1.2)):
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- we obtain that initial system (1.1) is reduced to representation below

The system above could be easily solved if G x = 0 or G y = 0. Indeed, let’s choose for 

example G y = 0, G x ≠ 0 in (1.3), then we obtain below (C1 = const ≠ 0):

- where [4]:
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Let’s choose in above equalities  C0 = τs (for the aim of clear presentation of final solution); in 

such a case the equalities above are simplified then we could obtain a final solution:

First  type  of  solutions  (1.4)  could  be  associated  with  pulsating  glaciers or  surging 

glaciers, which are characterized by periodic movements of glacial ice.

As for coordinate y = y (t), we could obtain from (1.3):

- Bernoulli’s type ordinary differential equation, which has a proper regular solution [4].

But in general case, if G x, G y ≠ 0, equations (1.3) could be classified as Riccati’s type. 

Due to a very special character of Riccati’s type equation, it’s general solution is proved 

to have a proper gap of components of such a solution [3-4].

It means a possibility of sudden gradient catastrophe [5]  at definite moment of time-

parameter, in regard to the components of solution (2-D profile of Glacier, 2-D components of  

ice velocity moving). That’s why Glacier seems to be  accelerating from time to time: it’s 

velocity of moving is suddenly rising from few meters to hundreds meters /per day.
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Let’s also explore the case C0 = τs, C1 = 0 (we choose all new constants below are equal to zero):

- here the last equation is also the Bernoulli’s type of ODE in regard to component y (t), 

which has a proper regular solution [4].
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