MCS Physics

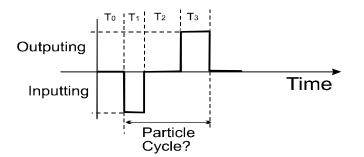
Article 2:

EMP and TIME

by Meir Amiram

P.O.B. 34359 Jerusalem, Israel 91343 e-mail: meir.amiram@gmail.com www.mcs-physics.org

Abstract


In <u>Article 1</u> I have concluded that there is an elementary mass particle *EMP*, comprising a gravity generator *GG* which is no less and no more than a mechanism capable of receiving a particular input from its environment and of returning a particular output to the environment, within a particular time frame^[1]. In the present article, I deduce that said time frame is divisible into three non overlapping time intervals: T_1 stands for the time interval during which the particle receives the input; T_2 stands for the time interval during which the input is processed by the particle; and T_3 stands for the time interval during which an output is returned from the particle to the environment.

Particle doings are time consuming

As inferable from quantum mechanics, the take-ins and give-offs of particles are not of a continuous character. As such, the lapse of time (as tiny as may be) which may occur between the moment a particle takes in and the moment it returns a give off, should not be ignored.

Actually, for particles associated with fields, three time intervals should be discussed: (i) the time it takes a particle to take in a particular input (this interval will be referred in my articles T_1); (ii) the time it takes a particle to give off a particular output (T_3); and (iii) the time it takes a particle to process a particular taken input (T_2) until a particular output is returned by. T_0 may also exist, between the tail of T_3 (the end of a give off) and the head of T_1 (the start of another take in). Note, that by now this article deals with particles in general. In articles to follow it will become apparent, however, that T_0 may be ignored, at least as far as gravity concerned. Since the remaining of this article concentrates in the gravity generating mechanism of an *EMP*, let assume $T_0 << T_1 + T_2 + T_3$ and omit it from further discussion.

It is tempting to name the sum $T_1+T_2+T_3$ of the three time intervals "particle cycle":

It should be noted, however, that such naming is misleading: as will be shown in articles to follow, the *EMP* has actually two interwoven operation cycles, which slightly complicate the definition of its "particle cycle".

Meanwhile, and based once more on the logic that a particle is a mechanism capable of receiving a particular input and of returning a particular output within a particular time frame, the following hidden features of particles in general and of a GG (gravity generator) in particular, may be concluded:

- (i) particles have cyclic operation; and
- (ii) in the course of a complete operation cycle, elementary particles perform three distinct activities during three distinct respective time intervals T_1 , T_2 and T_3 (or four, if T_0 is to be counted).

As I will show, the relations between these three time intervals play crucial roles in determining the workings of our universe.

In the next article titled *Hubble Expansion*, an equation predicting how the Hubble parameter H_0 varies as a function of time will be logically deduced and discussed.

Article sum up

Each GG has a cyclic operation the duration of which is (in some special way yet to be discussed) the sum of three time intervals: T_1 is the time interval during which the particle takes in; T_2 is the time interval during which the take in is processed by the particle; and T_3 is the time interval during which the particle gives off to the environment.

Glossary

- T_0 the time spent by a particle before starting to take in, following a give off
- T_1 the time spent by a particle to take in a particular input
- T_2 the time spent by a particle to process a particular taken input
- T_3 the time spent by a particle to give off a particular output

* * *

References

[1] Meir Amiram: MCS Physics Article 1: Particle (2011); *viXra:1106.0008 ([184] Quantum Gravity and String Theory*)