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Abstract

Recent experimental data from proteomics and genomics are interpreted here in ways that

challenge the predominant viewpoint in biology according to which the four evolutionary

processes, including mutation, recombination, natural selection and genetic drift, are

sufficient to explain the origination of species. The predominant viewpoint appears

incompatible with the finding that the sequenced genome of each species contains hundreds,

or even thousands, of unique genes - the genes that are not shared with any other species.

These unique genes and proteins, singletons, define the very character of every species.

Moreover, the distribution of protein families from the sequenced genomes indicates that the

complexity of genomes grows in a manner different from that of self-organizing networks:

the dominance of singletons leads to the conclusion that in living organisms a most unlikely

phenomenon can be the most common one. In order to provide proper rationale for these

conclusions related to the singletons, the paper first treats the frequency of functional proteins

among random sequences, followed by a discussion on the protein structure space, and it ends

by questioning the idea that protein domains represent conserved units of evolution.

Introduction

One of the first issues encountered in the early studies of proteins was their large size. In

1936, under the assumption that a protein has molecular weight of 20,000, Swiss physicists

Charles-Eugène Guye (who experimentally confirmed the prediction of Einstein’s special

theory of relativity about variation in the mass of electron with its speed) made several

calculations with 2,000 atoms arranged in the protein molecule at varying degrees of

asymmetry. At his favorite degree (0.9), the calculation showed that the probability of



2

formation of a particular protein molecule corresponded to one against 10321 [1]. Such

estimates compelled French biophysicist Pierre Lecomte du Noüy to question any scenario of

unguided origination of proteins, for this huge number of different protein molecules, if

made, would have a volume many times larger than the volume of the whole universe [2, 3].

In 1953, as part of his Nobel lecture, Hermann Staudinger contrasted the chance of formation

of a particular 100,000 molecular weight protein - one in 101270 - to the number of water

molecules present in Earth’s oceans - a mere 1046 [4]. In 1957, Isaac Asimov calculated that

if the whole universe were packed with neutrinos, and if each neutrino represented a

computer generating per second one billion proteins each of a different sequence over the

entire universe’s life, the total number of proteins generated would have reached just 10179

[5].

Prominent mathematicians and biologists discussed this mathematical challenge to neo-

Darwinian evolution at a special meeting in 1966 [6], but, as noted by Salisbury [7], the

question is whether the attending biologists understood the nature and magnitude of the

challenge. Over subsequent decades, the same challenge has been repeatedly raised by some

scientists only to be diffused by others, until its relevance apparently became unclear. Thus

physicist Charles Townes could remark: “The biologists may at first seem fortunate because

they have not run into brick walls such as physicists hit in finding quantum or relativistic

phenomena that are so strange and different. But this may be because biologists have not yet

penetrated far enough towards the really difficult problems where radical changes of

viewpoints may be essential” [8]. Here I argue that biologists have actually run into brick

walls; hence it is time for radical changes of viewpoints.

Size of protein sequence space

One strategy for defusing the problem associated with the finding of functional proteins by

random search through the enormous protein sequence space has been to arbitrarily reduce

the size of that space. Because the space size is related to protein length (L) as 20L, where 20

denotes the number of different amino acids of which proteins are made, the number of

unique protein sequences will rapidly decrease if one assumes that the number of different

amino acids can be less than 20. The same is true if one takes small L values. Dryden et al.

used this strategy to illustrate the feasibility of searching through the whole protein sequence
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space on Earth, estimating that the maximal number of different proteins that could have been

formed on planet Earth in geological time was 4 x 1043 [9]. In laboratory, researchers have

designed functional proteins with fewer than 20 amino acids [10, 11], but in nature all living

organisms studied thus far, from bacteria to man, use all 20 amino acids to build their

proteins. Therefore, the conclusions based on the calculations that rely on fewer than 20

amino acids are irrelevant in biology. Concerning protein length, the reported median lengths

of bacterial and eukaryotic proteins are 267 and 361 amino acids, respectively [12].

Furthermore, about 30% of proteins in eukaryotes have more than 500 amino acids, while

about 7% of them have more than 1,000 amino acids [13]. The largest known protein, titin, is

built of more than 30,000 amino acids [14]. Only such experimentally found values for L are

meaningful for calculating the real size of the protein sequence space, which thus corresponds

to a median figure of 10347 (20267) for bacterial, and 10470 (20361) for eukaryotic proteins.

Protein structure space

Even a small protein composed of 100 amino acids comes from a set of 10130 different

possible sequences. As Lau and Dill stated in 1990 (15), it is essentially impossible for

chance to find a particular sequence in a set of such a magnitude, as is for a monkey dancing

on a typewriter to produce a Shakespearean play. Because this general argument of low

probability gained importance “as support for creationism” [15], Lau and Dill proposed the

“structure” hypothesis according to which nature seeks only a compact protein conformation

with the proper active site. This is an alternative to the view that nature “seeks” a particular

sequence. Since proteins of many different sequences can attain one kind of compact

conformation, the structure hypothesis reduced the searchable space, and was thus perceived

to increase the likelihood of finding a functional protein by a random process, such as random

mutations of neo-Darwinian evolution [15].

In the two decades since the above proposition, scientists have used various criteria to order

protein structure space. The primary information about three-dimensional (3D) structure of

proteins, obtained mainly using X-ray crystallography and NMR spectrometry, is deposited

in Protein Data Bank (PDB). Today there are over 60,000 entries in this databank. The first

online database SCOP (structural classification of proteins) was established in 1995, followed

by CATH (class, architecture, topology and homology) in 1997 [16, 17]. Both classifications
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rely on curators who delineate domains and folds within 3D structure of each individual

protein, and both classifications bring in taxonomy to involve evolutionary relationships.

Since the two basic entities of classification, domains and folds, are subjectively rather than

mathematically derived, the recognition of new folds and the quantification of similarity

among folds are difficult [18-23]. Current SCOP recognizes 1,195 and CATH 1,233 different

protein folds.

While some argue that a protein fold, and its relationship to other folds, cannot be defined

without considering the evolutionary context [23, 24], others define relationships between

protein folds purely mathematically in terms of a continuous similarity curve. The number of

folds sufficient for describing all protein structures then depends on the chosen similarity cut-

off value [18, 25, 26]. Recently, a new classification was described based on supersecondary

motifs (Smotifs), which are entities smaller than domains and folds. Smotifs are composed of

the two regular secondary structure elements, α-helix and/or β-sheet, linked by a loop. In

protein structures Smotifs come in various sequences and orientations with respect to each

other. A finite set of 324 such Smotifs appears sufficient for structural classification of each

folded protein of any possible sequence: the complete set of Smotifs was identified in the

proteins whose structures were known for at least ten years prior to the Smotifs publications

[27, 28]. Accordingly, proper description of the whole protein structure space is feasible

without any reference to taxonomic relationships that are incorporated in the SCOP database.

In another recent paper, the authors studied structural relationships of proteins in selected sets

from Protein Data Bank and compared them to artificial, compact, hydrogen-bonded

homopolypeptides. They concluded that connectivity features of the structure space stem

from intrinsic macromolecular properties of proteins, and that all protein structural

relationships can be fully explained without reference to any evolutionary assumptions [29].

Moreover, structure of a protein may be predicable based solely on the data about its amino

acid composition [30].

Regardless of whether the 324 Smotifs or 1,233 folds - or a similar number of other basic

elements - are sufficient for describing all 3D protein structures, the existence of the

enormous number of possible protein sequences necessarily means that a structure defined by

any particular fold or combination of Smotifs might be populated by a huge number of

unique protein sequences. Instances of proteins having essentially identical structure but

different sequences, with sequence similarity even below 10%, are well known [22, 31, 32].
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Sequence similarity of 8-9% is characteristic for the proteins of random sequences [33].

Moreover, sequence-similar but structure-dissimilar protein pairs are also numerous in the

Protein Data Bank [34]. Figure 1 shows two illustrative pairs. The finding of such orthogonal,

independent relationship between structure and sequence is a conundrum for anyone trying to

infer evolutionary relatedness (common ancestry) of two proteins from their 3D structural

similarity. Exactly at which point would the 3D structural similarity begin to carry more

weight than primary sequence similarity for inferring, or not inferring, common ancestry?

Evidently, this inference is based on both the degree of shared 3D similarity and someone’s

sense of how unlikely it is that this similarity could have arisen independently [22]. While the

similarity of protein structures can be described in various mathematical terms [35],

estimation of the likelihood of independent origination requires evolutionary modeling.

All evolutionary models rely on how certain changes affect fitness. But is changing a protein

fold beneficial or detrimental to fitness? Or, is maintaining a protein fold beneficial or

detrimental? Under physiological conditions, native metamorphic proteins are known to exist

in two alternative folds and both of them appear to be beneficial [36-38]. In contrast, when

native human prion protein changes its fold, the change causes a deadly disease know as

Creutzfeldt-Jakob disease [39]. Thus, fold changing can be beneficial, or it can be

detrimental. Furthermore, some native functional proteins lack a defined 3D structure

altogether, and thus belong to a group called “intrinsically unstructured proteins” [40]. In

view of the above experimental findings, on what basis can one choose the sign and

magnitude for the fitness effect due solely to, say, a RMSD 1.3 Å difference in the 3D

structures of two proteins? And yet fitness estimates are essential for population genetics

modeling. The results of such modeling can show whether a particular evolutionary scenario

is feasible or not. In this respect, one should bear in mind that in a 300 amino acid protein

there are 5,700 (19 x 300) ways for exchanging one amino acid for another, and that each one

of these 5,700 possibilities points to a unique direction in the fitness landscape [41]. A single

amino acid substitution can trigger a switch from one protein fold to another, but prior to that

one, multiple substitutions in the original sequence might be necessary. Thus Alexander et al.

[42] described 21 such prior substitutions; each one of them would have represented a

crossroad with thousands of directions had these substitutions occurred in vivo instead of in

vitro. Population genetics modeling becomes complicated when dealing with multiple amino

acid substitutions in one protein [43-46]. Even more complicated would be the studies

involving the fitness effects of multiple amino acid substitutions and in addition involving
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the fitness effects due to 3D structural changes in a series of proteins undergoing such

mutations. But, as a matter of principle, how can one possibly talk about a separate or

additional fitness effect due to a 3D structural change if the protein sequence determines its

structure, and the structure determines function and the function determines fitness? My

literature search for publications describing evolutionary modeling based on fitness effects of

protein structures gave no results. And according to a paper published in 2008: “the precise

determinants of the evolutionary fitness of protein structures remain unknown” [47] – 18

years since Lau and Dill proposed the „structure hypothesis“[15]. On the other hand, in a

number of papers it was shown that all relationships in the protein structure space can be

described in purely mathematical terms [18, 25-28], and a most recent study concludes that

„these results do not depend on evolution, rather just on the physics of protein structures”

[29]. If all relationships in the protein structure space can be described fully without the need

to invoke evolutionary explanations, then such explanations should not be invoked at all

(Ockham’s razor).

Frequency of functional proteins in protein sequence space

A single mutation, an insertion or a deletion, can in theory force a protein to switch its fold

and acquire a new function, especially when the number of inserted or deleted nucleotides is

not an integer of 3. Such mutations are known as frameshift mutations, as they completely

change the amino acid sequence downstream of the mutation point. The probability that the

new sequence is functional in combination with the unchanged upstream sequence correlates

with the frequency of folds in the protein sequence space. While scientists generally agree

that only a minority of all possible protein sequences has the property to fold and create a

stable 3D structure, the figure adequate to quantify that minority has been a subject of much

debate.

In 1976, Hubert Yockey estimated the probability of about 10-65 for finding one cytochrome c

sequence among random protein sequences [48]. For bacteriophage λ repressor, Reidhaar-

Olson and Sauer estimated that the probability was about 10-63 [49]. Based on β-lactamase

mutation data, Douglas Axe estimated the prevalence of functional folds to be in the range of

10-77 to 10-53 [50]. A comparison of these estimates with those concerning the total number of

protein molecules synthesized during Earth’s history - about 1040 [9, 51, 52] - leads to the
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conclusion that random assembling of amino acids could not have produced a single enzyme

during 4.5 billion years [48, 53]. On the other hand, Taylor et al. estimated that a random

protein library of about 1024 members would be sufficient for finding one chorismate mutase

molecule [54]. Moreover, from an actual library of 6x1012 proteins each containing 80

contiguous random amino acids, Keefe and Szostak isolated four ATP binding proteins and

concluded that the frequency of functional proteins in the sequence space may be as high as 1

in 1011, allowing for their discovery by entirely stochastic means [55]. However, subsequent

in vivo studies with this man-made ATP binding protein showed that it disrupted the normal

energetic balance of the cell, acting essentially as an antibiotic [56]. One can conclude,

therefore: had this protein been formed by random mutations, the cell with it would have left

no descendants. Furthermore, the probability of its formation in a cell would have been lower

than 10-11, because random DNA mutations introduce stop codons and frameshifts whereas

Keefe and Szostak avoided stop codons and frameshift mutations by experimental design

[55]. The importance of distinguishing the results of in vitro from in vivo studies is

highlighted by the finding that only a tiny fraction, one in about 1010, of the active mutants of

triosephosphate isomerase functioned properly in vivo [57]. It is also important to note that

nucleotide binding protein families are among the most populous of all: the NAD(P)-binding

Rossmann-like domains (CATH Code 3.40.50.720) include 70,263 different sequences, while

the P-loop containing nucleotide triphosphate hydrolases (CATH Code 3.40.50.300) include

184,999 different sequences [58].

A “macromolecular miracle”

In general, there are two aspects of biological function of every protein, and both depend on

correct 3D structure. Each protein specifically recognizes its cellular or extracellular

counterpart: for example an enzyme its substrate, hormone its receptor, lectin sugar, repressor

DNA, etc. In addition, proteins interact continuously or transiently with other proteins,

forming an interactive network. This second aspect is no less important, as illustrated in many

studies of protein-protein interactions [59, 60]. Exquisite structural requirements must often

be fulfilled for proper functioning of a protein. For example, in enzymes spatial

misplacement of catalytic residues by even a few tenths of an angstrom can mean the

difference between full activity and none at all [54]. And in the words of Francis Crick, “To

produce this miracle of molecular construction all the cell need do is to string together the
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amino acids (which make up the polypeptide chain) in the correct order” [61, italics in

original].

Let us assess the highest probability for finding this correct order by random trials and call it,

to stay in line with Crick’s term, a “macromolecular miracle”. The experimental data of

Keefe and Szostak indicate - if one disregards the above described reservations - that one

from a set of 1011 randomly assembled polypeptides can be functional in vitro, whereas the

data of Silverman et al. [57] show that of the 1010 in vitro functional proteins just one may

function properly in vivo. The combination of these two figures then defines a

“macromolecular miracle” as a probability of one against 1021. For simplicity, let us round

this figure to one against 1020.

It is important to recognize that the one in 1020 represents the upper limit, and as such this

figure is in agreement with all previous lower probability estimates. Moreover, there are two

components that contribute to this figure: first, there is a component related to the particular

activity of a protein - for example enzymatic activity that can be assayed in vitro or in vivo -

and second, there is a component related to proper functioning of that protein in the cellular

context: in a biochemical pathway, cycle or complex. Taking into account both contributions

is an essential requirement because a synthetic protein nicely active in the test tube can be

lethal in the cellular context, as shown by Stomel et al. for the ATP-binding protein of Keefe

and Szostak [55, 56]. Substituting a man-made protein for a natural one might turn out to be

easier than reported for triosephosphate isomerase, which is a key enzyme of the glycolysis

pathway. One can therefore question the pertinence of combining the estimated contributions

from two disparate studies on two unrelated proteins, but presently I am unaware of any other

studies more relevant than these two. It is likely that relative contributions of the two

components will differ from one future protein to the next, but the upper limit figure of one in

1020 is expected to remain valid.

In the context of protein sequences, the figure of one in 1020 means that along a polypeptide

chain the identity of amino acids at only 15 positions would stay fixed; at each other position

there could be any one of the 20 amino acids. With a 50 amino acid peptide, for example, the

expectation is then to find 1045 functional sequences out of the 1065 (2050) possible ones. That

expectation seems unrealistic. With the median length in eukaryotes of 361 amino acids, the

expectation to find 10450 functional proteins and only 1020 nonfunctional ones looks utterly
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ridiculous. Thus, allowing for the probability of finding one functional protein among 1020

random sequences is obviously extremely generous, bordering on unreasonably generous.

Nevertheless, for the sake of simplicity let us remain by this figure for “macromolecular

miracle” and apply it to all proteins regardless of their length and cellular context.

To put the 1020 figure in the context of observable objects, about 1020 squares each measuring

1 mm2 would cover the whole surface of planet Earth (5.1 x 1014 m2). Searching through such

squares to find a single one with the correct number, at a rate of 1000 per second, would take

1017 seconds, or 3.2 billion years. Yet, based on the above discussed experimental data, one

in 1020 is the highest probability that a blind search has for finding among random sequences

an in vivo functional protein. This figure denotes the minimal height of the brick wall.

Size of the currently known protein sequence space

One result of rapid advances in DNA sequencing technology is the acquisition of protein

sequence data at an exponential rate: a recent extrapolation suggests that the number of

known protein sequences will reach one trillion (1012) in 2050 [62]. Currently, several online

databases collect protein sequence information and provide various tools for data

visualization and analysis. To mention just two of them: present (October 2010) SIMAP

database contains over 39 million non-redundant protein sequences, compared to 23 million

in September 2009 and 6 million in September 2007. SIMAP stands for the Similarity Matrix

of Proteins, and it enables the comparison of a new sequence against all known ones, without

biases due to taxonomy [63]. Gene3D provides structural annotation for proteins by assigning

them domains from the CATH resource, containing currently (update 9.2.0) over 11 million

sequences from 1,867 genomes, in contrast to about 4.5 million sequences from 527 genomes

in September 2007 [64].

What have we learned from these tens of millions of protein sequences originating from the

genomes of more than one thousand species? When proteins of similar sequences are grouped

into families, their distribution follows a power-law [65-72], prompting some authors to

suggest that the protein sequence space can be viewed as a network similar to the World

Wide Web, electrical power grid or collaboration network of movie actors, due to the

similarity of respective distribution graphs. There are thus small numbers of families with



10

thousands of member proteins having similar sequences, while, at the other extreme, there are

thousands of families with just a few members. The most numerous are “families” with only

one member; these lone proteins are usually called singletons. This regularity was evident

already from the analysis of 20 genomes in 2001 [66], and 83 genomes in 2003 [69]. As more

sequences were added to the databases more novel families were discovered, so that

according to one estimate about 180,000 families were needed for complete coverage of the

sequences in the Pfam database from 2008 [71]. Another study, published in the same year,

identified 190,000 protein families with more than 5 members - and additionally about

600,000 singletons - in a set of 1.9 million distinct protein sequences [73].

Novel protein sequences and scaling in self-organizing networks

Systems having many interactive members, where the members are sometimes called nodes

or vertices, are often depicted as a network in which connectivity among the members is best

described by a scale-free power-law distribution. A power-law, and the related Zipf and

Pareto laws [74], generally implies that weak phenomena occur extremely frequently,

whereas strong phenomena occur extremely infrequently, so that the number (N) of

phenomena with a given occurrence (F) declines according to N ~ F-a. Illustrative examples

of the phenomena include the Word Wide Web [75], urban growth of various cities [76],

citations of scientific papers [77] and collaborations of movie actors [78]. Such a distribution

was found to depend on two intrinsic mechanisms: first, networks expand continuously by the

addition of new members; and second, the new members attach preferentially to those that

are already well connected [78]. The above mentioned self-organizing networks are all

associated with human activities, but some natural phenomena, like earthquakes, show the

power-law distribution as well [79].

By plotting, on a log-log scale, the number of citations per paper against the total number of

citations one obtains the graph shown in Figure 2a, characterized by a disperse tail and a

dense head. At the tail, there are groups of small numbers of papers (1, 2, 3 and 4,

approximately) achieving citations thousands of times. Only a few individual papers from

this dataset approach the 10,000 citations mark. On the other hand, many papers are cited 100

times, even more of them 10 times, while the most numerous are the papers cited just once

(apart from those never cited). An analogous plot of earthquake distribution shows many
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earthquakes of low magnitudes, and an ever decreasing number of stronger earthquakes (Fig.

2b). Moreover, based on common appearance of actors in the same movie, actors’

collaboration network also shows a power-law distribution (Fig 2c). At the tail there are a few

superstars who collaborated with thousands of other actors, while newcomers at the head

collaborated with just a few.

Distribution of protein families in sequenced genomes is illustrated by a similar graph (Fig.

2d). Comparable distributions have been observed with protein datasets from individual

sequenced genomes [65, 80], as well as with the datasets that encompassed all sequenced

genomes at various time points [66-72]. Here, at the tail of the distribution there are a few

large families each consisting of thousands of proteins having similar sequences, while at the

head there are many singletons. The evident similarity of this distribution curve with those of

Figure 2a-c has been interpreted as evidence for self-organizing nature of protein networks in

living organisms. It was thus inferred that the complexity of genomes grows in the same way

as the complexity of WWW, or actors’ network. These interpretations, however, are in error

because they have failed to take account of a fundamental difference, as described below.

The first condition that the networks of Figure 2 must fulfill is a continuous addition of new

members [78]. Thus, continuously new actors appear in movies, new earthquakes happen and

new scientific papers get published. Roughly one person in 105 acts in a movie, earthquakes

make one of less than 105 geological phenomena, and the fraction of scientific papers among

all publications is higher than one in 105. So, to enter the respective network - to become the

first point at the head of the distribution - the newcomers must overcome a barrier not higher

than one against 105. After the entry, to become prominent the newcomers have a chance of

about one in 105 again. Evidently, the two barriers, of entering and of becoming prominent,

are comparable, give or take a few orders of magnitude. What would happen if the entry

barrier were one thousand trillion (1015) times higher? Obviously, if just one in 1020 persons

could become an actor, we would know of no actors: there would be no records of them, and

analogously, there would be no records of scientific papers and earthquakes. And without the

records, no one could construct distribution graphs.

The frequency of functional proteins among random sequences is at most one in 1020 (see

above). The proteins of unrelated sequences are as different as the proteins of random

sequences [22, 81, 82] - and singletons per definition are exactly such unrelated proteins.
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Thus, to enter the distribution graph as a newcomer (Fig. 2d), each new protein (singleton)

must overcome the entry barrier of one against at least 1020. After the entry, singleton’s

chance of becoming prominent, that is to grow into one of the largest protein families, is

about one in 105 (Fig. 2d). Thus, it is much more difficult for a protein to become biologically

functional than to become, in many variations, widespread: the entry barrier is at least fifteen

orders of magnitude higher than the prominence barrier. This huge difference between the

entry and prominence barriers is what makes the protein family distribution graph unique. In

spite of this high entry barrier, in the sequenced genomes the protein newcomers (singletons)

always represent the largest, most common, group: if it were otherwise, the distribution graph

would break down. The mathematical models that incorporate data from all sequenced

genomes in effect “spy” on nature [21]. With the help of one such model we have just

uncovered something remarkable: in living organisms the most unlikely phenomenon can be

the most common one. This feature clearly distinguishes the complexity of living organisms

from the complexity of self-organizing networks.

Modeling of protein family distributions

Several research groups have attempted to model and explain various aspects of the observed

power-law distributions. One key aspect relates to the origin of singletons, while the other

concerns the growth of protein families. Huynen and Nimwegen argued that, to obey a

power-law distribution, the protein families had to behave in a coherent fashion, that is, the

probabilities of gene duplications within a family could not be independent; and likewise, the

probabilities of gene deletions could not be independent either [65]. How such coordination

might arise and be maintained was not explained. According to Gerstein and coworkers [66,

67], the observed distribution can be replicated only if two conditions are met: first, existing

genes must be duplicated for expansion of existing families, and second, novel genes must be

introduced by horizontal gene transfer or ab initio creation. Koonin and coworkers have

developed several versions of their gene birth-death-and-innovation model (BDIM). The

power-law distribution, however, could be reproduced only asymptotically, the family

evolution time required billions of years when empirical gene duplication rates were brought

in, the genes within a family needed to interact, and prodigious gene innovation rate was

necessary for maintaining a high influx of singletons [83-87]. Horizontal gene transfer

(HGT), rapid sequence divergence and ab initio gene creation were mentioned as the possible
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sources of singletons. In another attempt, Hughes and Liberles proposed that just gene

duplication and different pseudogenisation rates between gene families were sufficient for

emergence of the power-law distribution [88]. The authors ruled out horizontal gene transfer

and ab initio gene creation as the processes that could form new genes, because these

processes were rare in eukaryotes but the power-law distribution was observed also with

eukaryotic families. The evident problem with this study, however, is in that

pseudogenisation per definition leads to a loss of function: the resulting power-law

distribution of non-functional protein families is entirely different from the power-law

distribution of functional protein families.

Horizontal gene transfer is common in prokaryotes but rare in eukaryotes [89-94], so HGT

cannot account for singletons in eukaryotic genomes, including the human genome and the

genomes of other mammals. For the origin of unique genes one has to turn to divergence of

the existing sequences beyond recognition, or to ab initio creation, where the ab initio

creation can happen either from non-coding DNA sequences present already in the genome or

by introduction of novel DNA sequences into the genome. Regardless of which one of these

three scenarios, or their combination, we consider, necessarily we come into the wasteland of

random sequences or we must start from that wasteland: facing the probability barrier of one

against at least 1020 cannot be avoided. The formation of each singleton requires surmounting

this probability barrier. Without the incorporation of this probability, or perhaps another one

that might be better supported by future experimental data, all models aiming to explain the

observed protein family distribution will remain unrealistic.

The distribution of protein folds and domains also follows a power-law [21, 66, 67, 70, 72,

80, 83, 87], as predicted by Coulson and Moult [95]. That prediction was considered

shocking [13]. Thus, in the sequenced genomes some domains are represented by thousands

of different, non-homologous sequences, whereas other domains are represented by a few or

by a single, unique sequence [21, 66, 67, 70, 72, 79, 83, 87, 95, 96]. For example, in a set of

about 250,000 protein sequences Grant et al. found about 170,000 domains that remained as

singletons [96]. These unique domains, called also orphan domains, represent the largest

group among all domain groups that make the distributions. This is a feature in common with

singletons from the distribution graph of protein sequence families.
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Dokholyan et al. have attempted to explain their protein domain universe graph (PDUG) in

terms of gene duplication and sequence divergence only [21]. In their explanation, however,

implicit was the assumption that in the protein structure space there were just two

alternatives: the old domain and a new domain, where each one of the two domains conferred

functionality to the protein regardless of the sequence divergence. That assumption is not

plausible because a vast majority of proteins would be non-functional after extensive

divergence by random mutations. The authors used a cutoff value of 25% sequence identity

for differentiating domains, corresponding to the sequence divergence of at least 75%. With

the mean domain length of about 160 amino acids [97], the 75% divergence corresponds to

120 substitutions. Experimental data for proteins undergoing 120 substitutions are lacking, so

it is currently impossible to provide any figure for the fraction of mutant proteins that might

be expected to remain active. On the other hand, experimental data with fewer mutations

show that the fraction of proteins retaining function declines exponentially with the

increasing numbers of amino acid substitutions [98-101]. The exact percentage of the mutants

remaining active is dependent on intrinsic properties of each starting protein; for example,

only about 1% of the TEM1 β-lactamase and hen lysozyme mutants remained active after just

5 substitutions [100, 101]. Based on the above, with confidence one can only state that a large

fraction of mutant proteins will be inactive following substitution of 75% of the original

amino acids. As noted by Drummond et al. [99], exploration of distant regions of sequence

space by random mutations alone appears highly inefficient. Mutations are supposed to arise

and get fixed in a population sequentially; in order to estimate how probable this is for 120

substitutions, one would need a population genetics model that demonstrates the feasibility of

so many substitutions in one single protein - but current models struggle typically with fewer

than 10 substitutions [43-46]. In another study that modeled evolutionary dynamics in terms

of stability of proteins, the probability of a stable protein native state - equivalent to protein

functionality - among random sequences was taken to be 0.23 [102]. This figure is again

much too high. In conclusion, all published models seeking to explain the power-law

distribution of protein domains, or of protein sequence families, remain deficient unless they

incorporate an experimentally supported figure for the probability of finding functional

proteins among random sequences.
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Singletons, orphans, ORF-ans, TRG-s and POF-s

In addition to the term singleton, other terms, with a similar if not synonymous meaning,

have been used to denote proteins and genes having no relatives. Thus, Siew and Fischer

define genomic ORFans as orphan open reading frames (ORF) with no significant sequence

similarity to other ORFs [103, 104]. Wilson et al. suggest that orphans should be named

“taxonomically restricted genes” (TRGs) [105, 106], and state that the abundance of orphan

genes is amongst the greatest surprises uncovered by the sequencing of eukaryotic and

bacterial genomes [105]. Earlier, Russell Doolittle affirmed that there are large numbers of

unidentified genes in a variety of organisms, with the origin and function of these unique

sequences remaining “baffling mysteries” [107].

In order to understand why the finding of singletons (ORF-ans, or TRG-s) represented such a

great surprise, let us look at the contemporary expectations. They were possibly best outlined

by Chothia et al. in 2003 [108]: “all but a small proportion of the protein repertoire is formed

by members of families that go back to the origin of eukaryotes or the origin of the different

kingdoms.” And further: “The earliest evolution of the protein repertoire must have involved

the ab initio invention of new proteins. At a very low level, this may still take place. But it is

clear that the dominant mechanisms for expansion of the protein repertoire, in biology as we

know it, are gene duplication, divergence and recombination.” Consequently: “we will be

able to trace much of the evolution of complexity by examining the duplication and

recombination of these families in different genomes.” About 1000 evolutionary independent

protein families were expected to encompass all protein diversity [109]. In line with the

above, there was an additional expectation of forthcoming grand unification of biology [110].

However, the power-law distribution of protein families and the sheer abundance of

singletons have exposed utopian nature of these expectations and, at the same time, opened

several important issues.

Siew and Fischer succinctly described the issues at stake: “If proteins in different organisms

have descended from common ancestral proteins by duplication and adaptive variation, why

is that so many today show no similarity to each other?” And further: “Do these rapidly

evolving ORFans correspond to nonessential proteins or to species determinants?” [103].
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A recent study, based on 573 sequenced bacterial genomes, has concluded that the entire pool

of bacterial genes - the bacterial pan-genome - looks as though of infinite size, because every

additional bacterial genome sequenced has added over 200 new singletons [111]. In

agreement with this conclusion are the results of the Global Ocean Sampling project reported

by Yooseph et al., who found a linear increase in the number of singletons with the number

of new protein sequences, even when the number of the new sequences ran into millions

[112]. The trend towards higher numbers of singletons per genome seems to coincide with a

higher proportion of the eukaryotic genomes sequenced. In other words, eukaryotes generally

contain a larger number of singletons than eubacteria and archaea.

When a relative to a singleton is found, together the two proteins create a family. In the

absence of biochemical data, nothing can be said about biological function of that protein

family as long as no established domain or structural motif is discernable from the amino acid

sequences. Such proteins of obscure function, or POFs, make about 25% of the proteins

found in each genome [113, 114]. POFs tend to be shorter than the proteins of defined

function [114].

Today, almost ten years since the announcement of the first draft of the human genome

sequence, no structural assignment is available for about 38% of human proteins [64]: at

present we thus lack basic information about a large fraction of the proteins of human

proteome [115]. In the initial publications on the sequence of the human genome, functional

characterization of all proteins was recognized as one of the research priorities [116, 117],

because understanding human biology is impossible without understanding the function of

each individual protein. Subsequently, Richard Roberts called for a community-wide action

in order to focus research efforts on complete characterization of the proteome of one

organism [118]. In contrast, researchers from the Protein Structure Initiative have selected

targets for structural characterization with little consideration about the species from which

they come: the target had to belong to a large protein family, while proteins from the families

with fewer than 10 members were explicitly excluded [58]. If other researchers followed

these criteria, structural characterization of all human proteins would never be completed.

Functional characterization of all human proteins is important not only for biological but also

for commercial reasons, since uncharacterized human proteins represent an unexplored

reservoir of drug targets for pharmaceutical and biotech industry [119]. When three-

dimensional structures of ORFan proteins are determined, they often resemble previously
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observed folds (120, 121). It should be noted that although a solved protein 3D structure

represents an important piece of information, alone it is insufficient or even misleading for

functional characterization of that protein [122-125]. Classic biochemistry is indispensible.

Cumulative changes in the total number of identified singletons, and their abundance in

relation to other protein sequence families, can be followed from the studies that have

periodically summarized advances in sequencing of the genomes of various species. Thus, in

2003, based on the data from 83 genomes, Enright et al. [69] identified 41,133 singletons

from a total of 449,033 protein sequences. In this dataset the singletons made 9.2% of all

proteins. By dividing the number of singletons with the number of genomes (41,133/83), we

can see that there were on average 495 singletons in each genome. Interestingly, the same

study reported that just 48 protein families were common to the genomes of all species. In

this dataset, therefore, on average the unique proteins outnumber the common proteins by an

order of magnitude (495 versus 48).

Based on the data from 120 sequenced genomes, in 2004 Grant et al. reported on the presence

of 112,000 singletons within 600,000 sequences [96]. This corresponds to 933 singletons per

genome. In 2005, Orengo and Thornton reported on the presence of about 150,000 singletons

in 150 sequenced genomes [72]. In 2006, within 203 sequenced genomes and 633,546 non-

identical sequences Marsden et al. identified 158,798 singletons [97]; thus the singletons

made 24% of all sequences and there were on average 782 singletons in each genome. In

2008, Yeats et al. [73] found around 600,000 singletons in 527 species - 50 eukaryotes, 437

eubacteria and 39 archaea - corresponding to 1,139 singletons per species. No information

about the number of singletons is available in the most recent summary of the data from over

1100 sequenced genomes encompassing nearly 10 million sequences [64]. In spite of the

missing recent data on singletons, the results of the above calculations are sufficient for an

unambiguous conclusion: each species possesses hundreds, or even thousands, of unique

genes - the genes that are not shared with any other species. This conclusion is in full

agreement with the power-law distribution of protein families discussed above.
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Singletons as species determinants

A mere idea about the existence of species-specific genes was considered heretic as recently

as in 2001 [126, 127]. However, with increasing number of fully sequenced genomes, the

recognition and description of species-specific genes has become more and more frequent

[113, 114, 128-132]. For example, Gollery et al. estimate that in the sequenced eukaryotic

genomes the proteins of obscure function represent about one quarter of all proteins;

delineating the origins and function of these species-specific proteins was deemed necessary

for understanding an underlying cause of species specificity [113, 114]. In another study,

based on the analysis of 1.28 million sequences from 198 genomes, the authors concluded

that the majority of sequences were either highly conserved or specific to the species or taxon

from which they derive [132].

Figure 3 shows how the number of unique genes (singletons), expressed as an average per

each sequenced genome, was changing with the total number of the genomes sequenced.

Evidently, the number of singletons tends to increase, from several hundreds to more than

one thousand. The presence of a large number of unique genes in each species represents a

new biological reality. Moreover, the singletons as a group appear to be the most distinctive

constituent of all individuals of one species, because that group of singletons is lacking in all

individuals of all other species. The conclusion that the singletons are the determinants of

biological phenomenon of species then follows logically. In System of Logic, John Stuart Mill

outlined his Second Canon or Method of Difference [133]: “If an instance in which the

phenomenon under investigation occurs, and an instance in which it does not occur, have

every circumstance in common save one, that one occurring only in the former; the

circumstance in which alone the two instances differ, is the effect, or the cause, or an

indispensible part of the cause, of the phenomenon.”

Until recently, most attention has been paid to the genes that are shared among species,

instead to those that are different. But when the unique genes are studied, they are found to be

the ones that are crucial for the very character of the species, or the whole taxon [134-136].

For example, in Cnidaria the proteins encoded by unique genes are essential for construction

of stinging cells, the cells that are among the most sophisticated and complex of all cell types

in the animal kingdom [134].
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Folding of proteins – domains are not basic units of evolution

Structural annotation of proteins from newly sequenced genomes is typically successful for

about 50% of all proteins [58, 64, 70, 128]. At first, this result seems surprising in view of the

statements about near completeness, or 100% completeness, of the inventory of protein folds

[27, 29, 137, 138]. In fact, that success rate is in accordance with the notion that many

proteins with unrelated sequences acquire essentially the same 3D structure, as discussed

above. The proteins of partially or largely disordered structure, as well as membrane proteins,

also contribute to this group of non-annotated proteins [96, 121, 128]. Evidently, structures of

just a fraction of novel proteins can be predicted by comparing their sequences against the

sequences of those proteins whose 3D structures have already been solved. On the other

hand, direct elucidation of 3D structures of new proteins by X-ray crystallography and NMR

spectrometry is expensive and slow; structural genomics initiatives are expected to generate

just 2,000 to 3,000 new structures in five years [20]. There is also a third way.

The amino acid sequence of a protein determines its structure, which in turn determines its

function. In a cell, the structure forms mostly spontaneously by an interplay of attractive and

repulsive forces among amino acid side chains, between them and the backbone and among

various parts of the backbone, with the participation of hydrophobic interactions, hydrogen

bonds, ionic bonds and van der Waals interactions [139-141]. Some proteins complete this

folding process and acquire a native conformation in less than a microsecond, while others

need seconds: the folding time thus varies over more than eight orders of magnitude [141].

Our understanding of this process has greatly increased during the past 20 years, but accurate

prediction of three-dimensional structures of proteins, given just their amino acid sequence,

remains a central challenge in computational biology and chemistry [142]. This problem is

difficult because a polypeptide chain has many degrees of freedom: many conformational

states are possible but the most stable is only a single one, being of the lowest free energy.

That native state may be found using computational methods, of which Rosetta is the method

most widely used. Rosetta@home operates with 150,000 computers, half of which run at any

given time [142]. In general, 3D structure of a protein with up to about 120 amino acids can

be solved, requiring sometimes only a few thousand runs. However, even hundreds of

millions of computer runs would be insufficient for finding the native folded state of some

proteins [142].
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As a solution to the problem of limited CPU power for predicting the structure of a protein

from its sequence, researchers have developed a scientific discovery game, Foldit. The game

integrates human visual problem-solving capacity with computational algorithms. Recently

Foldit demonstrated its value with some exciting examples of success, thanks to the efforts of

>57,000 volunteers [143, 144]. The combination of human intelligence and computing power

drives also the field of computational protein design. The achievements here indicate that

scientists are beginning to master practical aspects of protein design [145-150].

The idea that protein domains represent conserved units of evolution [72, 108, 151-155]

hinges upon the presumed capability of evolutionary processes - consisting of random

mutations, recombination, genetic drift and natural selection [156] - to maintain the 3D

structure of a protein while changing its amino acid sequence. These blind processes - which

do not know what kind of protein 3D structure they start with, how they change it and in

which direction in the structure space they go - thus supposedly possess certain capabilities

that are by far superior to those of tens of thousands of computers, or superior to those of tens

of thousands people using the computers.

That hypothesis - that evolution strives to preserve a protein domain once it stumbles upon it

- contradicts the power-law distribution of domains. The distribution graphs clearly show that

unique domains are the most abundant of all domain groups [21, 66, 67, 70, 72, 79, 82, 86,

94, 95], contrary to their expected rarity. Here I predict that the idea of protein domains as the

basic units of evolution will be refuted directly by finding in the genome of one species two

singletons having identical domain structure. Such a finding will represent the unambiguous

and definitive refutation. That finding requires structural characterization of numerous

singletons, and it depends on an objective, mathematical rather than a curator’s, delineation

of the protein structural elements and 3D identity.

Conclusions

The huge amount of DNA sequence data accumulated over the past decade has provided key

insights about uniqueness of living organisms. The most important insight is that the genome

of each species contains hundreds, or even thousands, of unique genes - the genes that are not
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shared with any other species. The origin of species is thus intrinsically related to these

unique genes.

Each unique gene, and accordingly each novel functional protein encoded by that gene,

however, represents a major problem for evolutionary theory because unique proteins are as

unrelated as the proteins of random sequences - and among random sequences functional

proteins are exceedingly rare. Experimental data reviewed here suggest that at most one

functional protein can be found among 1020 proteins of random sequences. Hence every

discovery of a novel functional protein (singleton) represents a testimony for successful

overcoming of the probability barrier of one against at least 1020, the probability defined here

as a “macromolecular miracle”. More than one million of such “macromolecular miracles”

are present in the genomes of about two thousand species sequenced thus far. Assuming that

this correlation will hold with the rest of about 10 million different species that live on Earth

[157], the total number of “macromolecular miracles” in all genomes could reach 10 billion.

These 1010 unique proteins would still represent a tiny fraction of the 10470 possible proteins

of the median eukaryotic size.

If just 200 unique proteins are present in each species, the probability of their simultaneous

appearance is one against at least 104,000. Probabilistic resources of our universe are much,

much smaller; they allow for a maximum of 10149 events [158] and thus could account for a

one-time simultaneous appearance of at most 7 unique proteins. The alternative, a sequential

appearance of singletons, would require that the descendants of one family live through

hundreds of “macromolecular miracles” to become a new species - again a scenario of

exceedingly low probability. Therefore, now one can say that each species is a result of a

Biological Big Bang; to reserve that term just for the first living organism [21] is not justified

anymore. This view about species differs sharply from the predominant one according to

which speciation is caused by reproductive isolation of two populations [159, 160] mediated

by difficult to find speciation genes [161-163].

Evolutionary biologists of earlier generations have not anticipated [164, 165] the challenge

that singletons pose to contemporary biologists. By discovering millions of unique genes

biologists have run into brick walls similar to those hit by physicists with the discovery of

quantum phenomena. The predominant viewpoint in biology has become untenable: we are

witnessing a scientific revolution of unprecedented proportions.
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Figure 1.

A pair of proteins of similar sequences but different structures (A-B); and another pair of

different sequences but similar structure (C-D). A-TonB protein PDB-ID 1IHR; B-TonB

protein PDB-ID 1U07 - sequence similarity is 83%. C–1cs1_Ah, Cystathione gamma-

synthetase, CGS; D-1q8i_Ac, exonuclease domain of family B DNA polymerases – sequence

similarity is 7%. Source of the second pair: http://prodata.swmed.edu/malisam; ref. 30.
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Figure 2.

Power-law distribution graphs of various phenomena. A - Distribution of citations of

scientific papers, redrawn from ref. 77. B – Distribution of earthquake strengths, redrawn

from ref. 79. C – Distribution of actors’ collaboration, redrawn from ref. 78. D – Distribution

of protein families, redrawn from ref. 71.
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Figure 3.

The average number of singletons present in the genome of one species. The values were

obtained by dividing the number of singletons with the number of the sequenced genomes as

reported at various time points.


