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Abstract

A ternary gauge field theory is explicitly constructed based on a totally
antisymmetric ternary-bracket structure associated with a 3-Lie algebra.
It is shown that the ternary infinitesimal gauge transformations do obey
the key closure relations [δ1, δ2] = δ3. Invariant actions for the 3-Lie
algebra-valued gauge fields and scalar fields are displayed. We analyze
and point out the difficulties in formulating a nonassociative Octonionic
ternary gauge field theory based on a ternary-bracket associated with the
octonion algebra and defined earlier by Yamazaki. It is shown that a
Yang-Mills-like quadratic action is invariant under global (rigid) trans-
formations involving the Yamazaki ternary octonionic bracket, and that
there is closure of these global (rigid) transformations based on constant
antisymmetric parameters Λab = −Λba. Promoting the latter parameters
to spacetime dependent ones Λab(xµ) allows to build an octonionic ternary
gauge field theory when one imposes gauge covariant constraints on the
latter gauge parameters leading to field-dependent gauge parameters and
nonlinear gauge transformations. In this fashion one does not spoil the
gauge invariance of the quadratic action under this restricted set of gauge
transformations and which are tantamount to spacetime-dependent scal-
ings (homothecy) of the gauge fields.

1 Introduction

Exceptional, Jordan, Division, Clifford, noncommutative and nonassociative al-
gebras are deeply related and are essential tools in many aspects in Physics,
see [1], [2], [3], [4], [7], [8], for references, among many others. A thorough dis-
cussion of the relevance of ternary and nonassociative structures in Physics has
been provided in [5], [9], [10]. The earliest example of nonassociative structures
in Physics can be found in Einstein’s special theory of relativity. Only colin-
ear velocities are commutative and associative, but in general, the addition of
non-colinear velocities is non-associative and non-commutative.
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Recently, tremendous activity has been launched by the seminal works of
Bagger, Lambert and Gustavsson (BLG) [15], [16] who proposed a Chern-
Simons type Lagrangian describing the world-volume theory of multiple M2-
branes. The original BLG theory requires the algebraic structures of generalized
Lie 3-algebras and also of nonassociative algebras. Later developments by [17]
provided a 3D Chern-Simons matter theory with N = 6 supersymmetry and
with gauge groups U(N)× U(N), SU(N)× SU(N). The original construction
of [17] did not require generalized Lie 3-algebras, but it was later realized that it
could be understood as a special class of models based on Hermitian 3-algebras
[18], [19].

A Nonassociative Gauge theory based on the Moufang S7 loop product (not
a Lie algebra) has been constructed by [20]. Taking the algebra of octonions
with a unit norm as the Moufang S7-loop, one reproduces a nonassociative
octonionic gauge theory which is a generalization of the Maxwell and Yang-
Mills gauge theories based on Lie algebras. BPST -like instantons solutions
in D = 8 were also found. These solutions represented the physical degrees
of freedom of the transverse 8-dimensions of superstring solitons in D = 10
preserving one and two of the 16 spacetime supersymmetries. Nonassociative
deformations of Yang-Mills Gauge theories involving the left and right bimodules
of the octonionic algebra were presented by [21].

In section 2 we develop a ternary gauge field theory formulation associated
to a 3-Lie algebra and whose structure constants are totally antisymmetric in
all their indices. An invariant action involving the 3-Lie algebra-valued gauge
field and scalar field is provided. It is shown that there is closure of the gauge
variations on the fields. In section 3 the Nonassociative Octonionic ternary
gauge field theory is presented and it differs mainly from the prior formulation
(besides nonassociativity) due to the fact that the structure constants are not
totally antisymmetric in all their indices. As a result one encounters difficulties
in formulating a gauge invariant quadratic action and having closure of the
gauge variations on the fields.

It is shown, nevertheless, that the Yang-Mills like action is invariant under
different global (rigid) transformations involving ternary octonionic brack-
ets and antisymmetric constant parameters Λab = −Λba, a, b = 1, 2, 3, ....7.
It is shown that a Yang-Mills-like quadratic action is invariant under global
(rigid) transformations involving the Yamazaki ternary octonionic bracket, and
that there is closure of these global (rigid) transformations based on constant
antisymmetric parameters Λab = −Λba. Promoting the latter parameters to
spacetime dependent ones Λab(xµ) allows to build an octonionic ternary gauge
field theory when one imposes gauge covariant constraints on the latter gauge
parameters leading to field-dependent gauge parameters and nonlinear gauge
transformations. In this fashion one does not spoil the gauge invariance of the
quadratic action under this restricted set of gauge transformations and which
are tantamount to spacetime-dependent scalings of the gauge fields.

The ternary gauge theory developed in this work differs from the work by
[15], [16] in that our 3-Lie algebra-valued gauge field strengths Fµν are explic-
itly defined in terms of a 3-bracket [Aµ, Aν ,g] involving a 3-Lie algebra-valued
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coupling g = gata. Whereas the definition of Fµν by [15], [16] was based on
the standard commutator of the matrices (Ãµ)a

c (Ãν)c
b − (Ãν)a

c (Ãµ)c
b. These

matrices were defined as Aµ = Aab
µ f cd

ab = (Ãµ)cd and given in terms of the
structure constants f cd

ab of the 3-Lie algebra [ta, tb, t
c] = f cd

ab td.

2 3-Lie-Algebra-valued Gauge Field Theories

In this section we will construct a gauge field theory based on a 3-Lie algebra-
valued gauge fields. As outlined by [15], one introduces a basis T a for the 3-Lie
algebra and one expands the gauge field Aµ = Aa

µTa, a = 1, ..., N, where N is
the dimension of the 3-Lie algebra. The structure constants are introduced as

[ Ta, Tb, Tc ] = f d
abc Td (2.1)

such that f d
abc = f d

[abc] . The trace-form provides a metric hab = Tr(T a, T b).
that we can use to raise indices: fabcd = hdefabc

e . On physical grounds one
assume that hab is positive definite.

A bilinear positive symmetric product written as < X,Y >=< Y,X >=
Tr(X, Y ) = Tr(Y,X) is required and such that that the ternary bracket/derivation
obeys what is called the metric compatibility condition

< [u, v, x], y > = − < [u, v, y], x > = − < x, [u, v, y] > ⇒

Du,v < x, y > = < [u, v, x], y > + < x, [u, v, y] > = 0 (2.2)

The symmetric product remains invariant under derivations. Since the ternay
bracket is totally antisymmetric one can rewrite < [u, v, x], y >=< [x, u, v], y >,
and from (2.2) one infers that the 3-Lie algebra admits a totally antisymmetric
ternary product which satisfies

Tr( [A, B, C ], D ) = − Tr( A, [ B, C, D ] ) (2.3)

The condition (2.3) on the trace-form implies that fabcd = −fdabc and this
further implies that the structure constants are totally antisymmetric in all
their indices fabcd = f [abcd], in analogy with the familiar result in Lie algebras.

If gauge symmetries act as a derivation

δ( [ X, Y, Z] ) = [ δX, Y, Z ] + [ X, δY, Z] + [ X, Y, δZ ] (2.4)

this leads to the fundamental identity

[ U, V, [X, Y, Z] ] = [ [U, V,X], Y, Z ] + [ X, [U, V, Y ], Z ] + [ X, Y, [U, V, Z] ]
(2.5)
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which plays a role analogous to the Jacobi identity in ordinary Lie algebras.
Among the key properties we shall use are the fundamental identity (2.5) and
the fact that the structure constants f[abcd] are totally antisymmetric in all of
their indices.

The simplest nontrivial Lie 3-algebra is A4 . It has 4 generators Ta, a =
1, 2, 3, 4. The ternary bracket is defined by [Ta, Tb, Tc] = εabcdTd. The invariant
metric of A4 is δab. The 3-Lie algebra A4 [11] is a natural generalization of
the Lie algebra su(2). It was conjectured in [12] and later proved in [13] that
the only finite dimensional Lie 3-algebras with a positive-definite metric are the
trivial algebra, A4, and their direct sums. On the other hand, it is possible to
define many infinite dimensional Lie 3-algebras with positive-definite metrics.
All the Nambu-Poisson algebras are of this kind [12].

We define the field strength in terms of the ternary bracket as

Fµν = ∂µAν − ∂νAµ + [ Aµ, Aν , g ] (2.6)

where g = gaTa is a 3-Lie-algebra valued ”coupling” which is inert under gauge
transformations. Under the local gauge transformations the field transforms as

δ(Ad
µ Td) = − (∂µΛd(x)) Td + [ Λa(x) Ta, Ab

µ Tb, gc Tc ] (2.7)

and the 3-Lie-algebra-valued coupling is gauge invariant

δ(gd Td) = [Λa(x) Ta, g, g] = 0 (2.8)

since the ternary brackets [X, Y, Y ] = 0. After some straightforward algebra one
can verify that the ternary field strength Fµν defined in terms of the ternary-
brackets (2.6) transforms properly (homogeneously) under the ternary gauge
transformations because (∂µ∂ν − ∂ν∂µ)Λd = 0, and

(
(∂µΛa)Ab

νgc − (∂νΛa)Ab
µgc − (∂µΛa)Ab

νgc − (∂νΛb)Aa
µgc

)
f d

abc = 0 (2.9)

is identically zero. The second and fourth terms in (2.9) are symmetric under
the exchange of indices a ↔ b so they will cancel out due to the antisymmetry
fabcd = −fbacd. This simply can be seen by rewriting the fourth term as

− (∂νΛb) Aa
µ gc f d

abc = (∂νΛb) Aa
µ gc f d

bac = (∂νΛa) Ab
µ gc f d

abc (2.10)

and relabeling the a ↔ b indices in the last line of (2.10). Therefore Fµν trans-
forms homogeneously under the infinitesimal ternary gauge transformations as

δ(F d
µν Td) = [ Λa(x) Ta, F b

µν Tb, gc Tc ] = Λa(x) F b
µν gcf d

abc Td ⇒

δF d
µν = Λa(x) F b

µν gc f d
abc (2.11)

The result (2.11) is a direct consequence of the fundamental identity; i.e the
ternary bracket is a derivation with respect to the first two entries

[ Λ, g, [Aµ, Aν , g] ] =

4



[ [Λ, g, Aµ], Aν , g ] + [ Aµ, [Λ, g, Aν ], g ] + [ Aµ, Aν , [Λ, g, g] ] (2.12)

Because the ternary bracket is totally antisymmetric under the exchange of any
pair of indices, one may exchange the entries in (2.12) as follows

[ Λ, g, [Aµ, Aν , g] ] = − [ Λ, [Aµ, Aν , g], g ]

[Λ, g, Aµ] = − [Λ, Aµ, g]; [Λ, g, Aν ] = − [Λ, Aν , g]; .... (2.13a)

leading to the relation

[ [Λ, Aµ, g], Aν , g ] + [ Aµ, [Λ, Aν , g], g ] + [ Aµ, Aν , [Λ, g, g] ] =

[ Λ, [Aµ, Aν , g], g ] (2.13b)

which is precisely the relation required in order to show that Fµν transforms
homogeneously under the infinitesimal ternary gauge transformations.

Furthermore, by writing Aµ = Aa
µTa; Λ1 = Λa

1Ta; Λ2 = Λb
2Tb, ..., after some

straightforward algebra, one can verify that the infinitesimal gauge transforma-
tions (2.7, 2.8) obey the closure conditions

(δΛ2 δΛ1 − δΛ1 δΛ2) Aµ = δ[Λ1,Λ2,g] Aµ =

− ∂µ( [Λ1, Λ2, g] ) + [ [Λ1, Λ2, g], Aµ, g ] =

δΛ3 Aµ = − (∂µΛ3) + [ Λ3, Aµ, g ]; Λ3 = [ Λ1, Λ2, g ] (2.14)

if, and only if, the 3-Lie algebra-valued coupling g = gaTa is constant. The
result in (2.14) is a consequence of the fundamental identity, in the particular
case that fabcd is totally antisymmetric in all of its indices, leading to a full
antisymmetry of the ternary bracket.

The finite ternary gauge transformations can be obtained by ”exponentia-
tion” as follows

F ′ = F + δF +
1
2!

δ(δF ) +
1
3!

(δ(δ(δF ))) + .... (2.15a)

where

δF = [ Λa Ta, F b
µν Tb, gc Tc ]; δ(δF ) = [ Λm Tm, [ Λa Ta, F b

µν Tb, gc Tc ], gn Tn ]; .......
(2.15b)

A gauge invariant action under ternary infinitesimal gauge transformations in
D-dim is given

S = − 1
4κ2

∫
dDx < Fµν Fµν > (2.16)

κ is a numerical parameter introduced to make the action dimensionless and it
can be set to unity for convenience.

Under infinitesimal ternary gauge transformations of the ordinary quadratic
action one has

δ S = − 1
4

∫
dDx < Fµν (δFµν) + (δFµν) Fµν > =
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− 1
4

∫
dDx < F c

µν Tc [ ΛaTa, Fµν b Tb, gn Tn] > +

− 1
4

∫
dDx < [Λa Ta, F b

µν Tb, gn Tn] Fµν c Tc > =

−1
4

∫
dDx Λa gn F b

µν Fµν c
(

< Tc f k
abn Tk > + < f k

abn Tk Tc >
)

=

− 1
2

∫
dDx Λa gn F b

µν Fµν c fabnc = 0 (2.17)

the last terms terms inside the integrand in eq-(2.17) vanish identically due
to the full antisymmetry of fabnc = −facnb, and the symmetry of F b

µν Fµν c

under the exchange of indices b ↔ c. Therefore, the action is invariant under
infinitesimal ternary gauge transformations δS = 0.

The physical interpretation of the 3-Lie algebra-valued coupling g = gaTa

deserves further investigation. As described by [15] one can augment the 3-
Lie algebra by including an element T 0 that associates with everything, or
more precisely, that satisfies f0ab

d = 0. If we assume that h0b = 0 if b 6=
0, one finds that fabc0 = 0. Since T0 decouples from the ternary brackets
[A,B, g0T0] = 0, the physical coupling g0 = constant can be incorporated into
the field strength in the same fashion as it occurs in ordinary Yang-Mills. One
may rewrite the physical coupling g0 as a prefactor in front of the 3-bracket as
Fµν = ∂µAν−∂νAµ+g0[Aµ, Aν ,g], and reabsorb g0 into the definition of the Aµ

field as Fµν = 1
g0

(
∂µ(g0Aν)− ∂ν(g0Aµ) + [g0Aµ, g0Aν ,g]

)
. Thus Fµν → 1

g0 Fµν

and the action is rescaled as S → 1
(g0)2 S as it is customary in the Yang-Mills

action.
Having formulated a gauge invariant action (2.16) the next step is to in-

troduce gauge invariant matter terms like (DµΦ)2 where Φ = ΦaTa is 3-Lie
algebra-valued scalar and DµΦ = ∂µΦ+[Aµ, Φ, g]. The derivative DµΦ trans-
forms homogeneously, when

δ(ΦdTd) = [ ΛaTa, Φb Tb, gc Tc ] ⇒ δ(DµΦ) = [ Λ, DµΦ, g ] (2.18)

The action

S =
∫

d4x < − 1
2 (g0)2

Fµν Fµν +
1
2

(DµΦ)2 > (2.19)

is invariant under the infinitesimal gauge transformations given by eqs-(2.11,2.18).
To show invariance under finite gauge transformations via the ”exponentiation”
procedure in eqs-(2.15) is much more cumbersome.

In the next section we shall analyze Nonassociative Octonionic Ternary
Gauge Field Theories based on a ternary octonionic product with the fundamen-
tal difference, besides the nonassociativity, that the structure constants fabcd are
no longer totally antisymmetric in their indices. Thus the bracket in the octo-
nion case [[A,B]] ≡ [A,B,g] is not effectively a Lie bracket (as it was in the
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3-Lie algebra case in this section) because the bracket [[A,B]] in the octonion
case does not obey the Jacobi identity because the structure constants fabcd are
no longer totally antisymmetric in their indices.

3 Nonassociative Octonionic Ternary Gauge Field
Theories

The nonassociative and noncommutative octonionic ternary gauge field theory
is based on a ternary-bracket structure involving the octonion algebra. The
ternary bracket obeys the fundamental identity (generalized Jacobi identity)
and was developed earlier by Yamazaki [14]. Given an octonion X it can be
expanded in a basis (eo, em) as

X = xo eo + xm em, m, n, p = 1, 2, 3, .....7. (3.1)

where eo is the identity element. The Noncommutative and Nonassociative
algebra of octonions is determined from the relations

e2
o = eo, eoei = eieo = ei, eiej = −δijeo + cijkek, i, j, k = 1, 2, 3, ....7. (3.2)

where the fully antisymmetric structure constants cijk are taken to be 1 for the
combinations (124), (235), (346), (457), (561), (672), (713). The octonion conju-
gate is defined by ēo = eo, ēm = −em

X̄ = xo eo − xm em. (3.3)

and the norm is

N(X) = | < X X > | 12 = | Real (X̄ X) | 12 = | (xo xo + xk xk) | 12 . (3.4)

The inverse

X−1 =
X̄

< X X >
, X−1X = XX−1 = 1. (3.5)

The non-vanishing associator is defined by

(X,Y,Z) = (XY)Z−X(YZ) (3.6)

In particular, the associator

(ei, ej , ek) = (eiej)ek − ei(ejek) = 2 dijkl el

dijkl =
1
3!

εijklmnp cmnp, i, j, k.... = 1, 2, 3, .....7 (3.7)

Yamazaki [14] defined the three-bracket as
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[ u, v, x ] ≡ Du,v x =
1
2

( u(vx)− v(ux) + (xv)u − (xu)v + u(xv) − (ux)v ) .

(3.8)
After a straightforward calculation when the indices span the imaginary ele-
ments a, b, c, d = 1, 2, 3, ......, 7, and using the relationship [22]

cabd cdcm = − dabcm + δac δbm − δbc δam (3.9a)

the ternary bracket becomes

[ ea, eb, ec ] = fabcd ed = [ dabcd + 2 δac δbd − 2 δbc δad ] ed (3.9b)

whereas e0 has a vanishing ternary bracket

[ ea, eb, e0 ] = [ ea, e0, eb ] = [ e0, ea, eb ] = 0 (3.9c)

It is important to note that fabcd 6= ± cabd cdcm otherwise one would have been
able to rewrite the ternary bracket in terms of ordinary 2-brackets as follows
[ea, eb, ec] ∼ 1

4 [ [ea, eb], ec ].
The ternary bracket (3.8) obeys the fundamental identity

[ [x, u, v], y, z ] + [ x, [y, u, v], z ] + [ x, y, [z, u, v] ] = [ [x, y, z], u, v ]
(3.10)

A bilinear positive symmetric product < u, v >=< v, u > is required such that
that the ternary bracket/derivation obeys what is called the metric compatibility
condition

< [u, v, x], y > = − < [u, v, y], x > = − < x, [u, v, y] > ⇒

Du,v < x, y > = 0 (3.11)

The symmetric product remains invariant under derivations. There is also the
additional symmetry condition required by [14]

< [u, v, x], y > = < [x, y, u], v > (3.12)

The ternary product provided by Yamazaki (3.8) obeys the key fundamental
identity (3.10) and leads to the structure constants fabcd that are pairwise
antisymmetric but are not totally antisymmetric in all of their indices : fabcd =
−fbacd = −fabdc = fcdab; however : fabcd 6= fcabd; and fabcd 6= − fdbca. The
associator ternary operation for octonions (x, y, z) = (xy)z − x(yz) does not
obey the fundamental identity (3.10) as emphasized by [14]. For this reason we
cannot use the associator to construct the 3-bracket.

We define the field strength in terms of the ternary bracket as before

Fµν = ∂µAν − ∂νAµ + [ Aµ, Aν , g ] (3.13)
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where g = gaea is an octonionic-valued ”coupling” function. Under the infinites-
imal ternary gauge transformations δAµ = −∂µΛ + [Λ, Aµ,g] ⇒ δ(F d

µν ed) =
[Λa(x)ea, F b

µνeb, g
cec], the ordinary quadratic action

S = − 1
4κ2

∫
dDx < Fµν Fµν > (3.14)

is not invariant under ternary infinitesimal gauge transformations as we shall see
next. κ is a suitable dimensionful constant introduced to render the action di-
mensionless. The octonionic valued field strength is Fµν = F a

µν ea, and has real

valued components F 0
µν , F i

µν ; i = 1, 2, 3, ....., 7. The < > operation extracting
the e0 part is defined as < XY >= Real(X̄Y ) =< Y X >= Real(Ȳ X). Under
infinitesimal ternary gauge transformations of the ordinary quadratic action one
has

δ S = − 1
4κ2

∫
dDx < Fµν (δFµν) + (δFµν) Fµν > =

− 1
4κ2

∫
dDx < F c

µν ec [ Λaea, Fµν b eb, gnen] > +

− 1
4κ2

∫
dDx < [Λaea, F b

µν eb, gnen] Fµν c ec > =

− 1
4κ2

∫
dDx Λa F c

µν Fµν b ( < ec fabnk ek > + < fabnk ek ec > ) =

− 1
2κ2

∫
dDx Λa gn F c

µν Fµν b fabnc =

− 1
κ2

∫
dDx

(
(Λaga) (F b

µνFµν
b ) − (ΛaFµν

a ) (gcF
c
µν)

)
6= 0 (3.15)

Hence, because

fabnc = ( dabnc + 2 δan δbc − 2 δbn δac ) (3.16)

is not antisymmetric under the exchange of indices b ↔ c : fabnc 6= −facnb,
eq-(3.15) is not zero like it was in section 2. Had fabnc been fully antisymmetric
then the variation δS would have been zero due to the fact that F c

µν Fµν b is
symmetric under b ↔ c. Concluding, in the octonionic ternary algebra case, one
has that δS 6= 0.

Another problem due to the fact that fabcd is not totally antisymmetric
in all of its indices is that there is no closure of the infinitesimal octonionic
ternary gauge transformations δAµ = −∂µΛ + [Λ, Aµ,g] like it occurs in eq-
(2.14). Furthermore, as mentioned earlier, the bracket in the octonion case
[[A,B]] ≡ [A,B,g] is not effectively a Lie bracket (as it was in the 3-Lie algebra
case) because the bracket [[A,B]] in the octonion case does not obey the Jacobi
identity because the structure constants fabcd are no longer totally antisym-
metric in their indices. Because the associator ternary operation for octonions
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(x, y, z) = (xy)z−x(yz) does not obey the fundamental identity (3.10) one can-
not use the associator to construct the 3-bracket and this rules out the use of
the totally antisymmetric dabcd.

Nevertheless, the quadratic Yang-Mills-like action (3.14) is invariant under
the global (rigid) transformations defined by

δ(Ad
µ ed) = Λab[ ea, eb, Ac

µ ec ] (3.17a)

and
δ(gd ed) = Λab[ ea, eb, gc ec] (3.17b)

when one introduces the constant antisymmetric parameters Λab = −Λba. One
may note now that the coupling gcec is not inert under the transformations
(3.17b). Only the real part g0 is inert. After some straightforward algebra one
can verify that the ternary field strength Fµν defined in terms of the 3-brackets
transforms properly (homogeneously) under the global (rigid) transformations
(3.17)

δ(Fm
µν em) = Λab [ ea, eb, F c

µν ec ] = Λab F c
µν f m

abc em ⇒ δFm
µν = Λab F c

µν f m
abc

(3.18)
The result (3.18) is a direct consequence of the fundamental identity (3.10)
because the 3-bracket (3.8) is defined as a derivation

[ [ea, eb, Aµ], Aν , g ] + [ Aµ, [ea, eb, Aν ], g ] + [ Aµ, Aν , [ea, eb, g] ] =

[ ea, eb, [Aµ, Aν , g] ] (3.19)

The finite ternary global transformations can be obtained by ”exponentia-
tion” as follows

F ′ = F + δF +
1
2!

δ(δF ) +
1
3!

(δ(δ(δF ))) + .... (3.20)

where δ(Fm
µν em) = Λab[ea, eb, F

c
µνec]; δ(δF ) = Λmn[ em, en,Λab[ea, eb, F

c
µνec] ];

...... Given the octonionic valued field strength Fµν = F a
µν ea , with real valued

components F 0
µν , F i

µν ; i = 1, 2, 3, ....., 7, one can verify that the quadratic ac-
tion (3.14) is indeed invariant under the ternary infinitesimal global (rigid)
transformations (3.17)

δ S = − 1
4κ2

∫
dDx < Fµν (δFµν) + (δFµν) Fµν > =

− 1
4κ2

∫
dDx < F c

µν ec Λab [ea, eb, Fµν n en] > +

− 1
4κ2

∫
dDx < Λab [ea, eb, F c

µν ec] Fµν n en > =

− 1
4κ2

∫
dDx Λab F c

µν Fµν n ( < ec fabnk ek > + < fabck ek en > ) = 0.

(3.21)
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as a result of

< ec fabnk ek > + < fabck ek en > = fabnk δck + fabck δkn = fabnc + fabcn =

[ dabnc +2 δan δbc −2 δbn δac ] + [ dabcn +2 δac δbn −2 δbc δan ] = 0 (3.22)

because dabnc+dabcn = 0; dnabc+dcabn = 0, due to the total antisymmetry of the
associator structure constant dnabc under the exchange of any pair of indices. In-
variance δS = 0, only occurs if, and only if, δF = Λab[ea, eb, F

cec] 6= Λab[F cec, ea, eb].
The ordering inside the 3-bracket is crucial. One can check that if one sets
δF = Λab[F cec, ea, eb], the variation δS leads to a term in the integral which is
not zero. However, under δF = Λab[ea, eb, F

cec], the variation δS is indeed zero
as shown. This is a consequence of the fact that [ea, eb, ec] 6= [ec, ea, eb] when
the 3-bracket is given by eq-(3.8, 3.9b).

To show closure of the global transformations (3.17) one needs to recast
them in terms of derivations as

δ1Aµ = δ1(Ak
µ ek) = Λab

1 [ ea, eb, Ac
µ ec ] = Λab

1 Dea,eb
Aµ (3.23)

δ2Aµ = δ2(Ak
µ ek) = Λcd

2 [ ec, ed, Al
µ el ] = Λcd

2 Dec,ed
Aµ (3.24)

so that, by recurring to the fundamental identity (3.10) in order to evaluate the
commutator of two derivations and after relabeling indices, one arrives at

[δ1, δ2] Aµ = Λcd
2 Λab

1 [ Dec,ed
, Dea,eb

] Aµ = Λcd
2 Λab

1

(
D[ec,ed,ea],eb

+ Dea,[ec,ed,eb]

)
Aµ =

Λcd
2 Λab

1 ( [ [ec, ed, ea], eb, Aµ ] + [ ea, [ec, ed, eb], Aµ ] ) =

Λcd
2 Λab

1 fcdak [ ek, eb, Aµ ] + Λcd
2 Λab

1 fcdbk [ ea, ek, Aµ ] =

− ( Λcd
2 Λak

1 f b
cda − Λcd

2 Λab
1 f k

cda ) [ ek, eb, Aµ ] = Λkb
3 [ ek, eb, Aµ ] = δ3Aµ

(3.25)
Therefore the (constant) antisymmetric parameter resulting from the closure of
two global transformations is given by

Λkb
3 = − ( Λcd

2 Λak
1 f b

cda − Λcd
2 Λab

1 f k
cda ) (3.26)

To show that the action is invariant under finite ternary global transforma-
tions requires to follow a few steps. Firstly, one defines

< x y > ≡ Real [ x̄ y ] =
1
2

( x̄ y + ȳ x ) ⇒ < x y > = < y x > (3.27)

Despite nonassociativity, the very special conditions

x(x̄u) = (xx̄)u; x(ux̄) = (xu)x̄; x(xu) = (xx)u; x(ux) = (xu)x (3.28)

are obeyed for octonions resulting from the Moufang identities. Despite that
(xy)z 6= x(yz) one has that their real parts obey

Real [ (x y) z ] = Real [x (y z) ] (3.29)
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Due to the nonassociativity of the algebra, in general one has that (UF )U−1 6=
U(FU−1). However, if and only if U−1 = Ū ⇒ ŪU = UŪ = 1, as a result of the
the very special conditions (3.28) one has that F ′ = (UF )U−1 = U(FU−1) =
UFU−1 = UFŪ is unambiguously defined. One can equate the result of the
exponentiation procedure in eq-(3.20) to the expression

F ′ = UFU−1 = UFŪ = eΣk(Λab)ek (F c tc) e−Σk(Λab)ek ; k = 1, 2, 3, ...., 7.
(3.30)

where Σk(Λab)ek is a complicated function of Λab. It yields the finite global
transformations which agree with the infinitesimal ternary ones when Λab are
infinitesimals. For instance, to lowest order in Λab, one has that Σk satisfies
2Σkckcd = Λabfabcd and which follows by comparing the transformations in
(3.17) to those in (3.20), to lowest order.

In ordinary associative Yang-Mills involving 2-brackets, it is well known that
the finite gauge transformations are

(Fn
µν)′ Tn = eiΛmTm Fn

µνTn e−iΛmTm . (3.31)

where Tm are the Hermitian Lie-algebra generators obeying the commutation
relations [Tm, Tn] = ifmnpTp. It is a challenging work to derive the explicit
functional dependence Σk(Λab)ek in eq-(3.30) that matches the transformation
in eq-(3.20), to all orders in Λab, for the ternary-brackets case.

Dropping the spacetime indices for convenience in the expressions for Fµν , Fµν ,
and by repeated use of eqs-(3.28, 3.29), when U−1 = Ū , the action density
is also invariant under (unambiguously defined) transformations of the form
F ′ = UFU−1 = UFŪ ,

< F ′ F ′ > = Re [F̄ ′ F ′] = Re [(UF̄U−1) (UFU−1)] = Re [(UF̄ ) ( U−1 (UF U−1) )] =

Re [(U F̄ ) (U−1 U) (FU−1)] = Re [(UF̄ ) (FU−1)] = Re [(FU−1) (UF̄ )] =

Re [F ( U−1 (U F̄ ) )] = Re [F (U−1U) F̄ ] = Re [F F̄ ] = Re [F̄ F ] = < F F > .
(3.32)

The real part of the coupling g0 is inert under global transformations (3.17b)
and it decouples from the definition of the field strength Fµν because e0 has
a vanishing 3-bracket with other elements of the octonion algebra. The cou-
pling g0 = constant can be incorporated into the field strength in the same
fashion as it occurs in ordinary Yang-Mills. One may rewrite the physical cou-
pling g0 as a prefactor in front of the 3-bracket as Fµν = ∂µAν − ∂νAµ +
g0[Aµ, Aν ,g], and reabsorb g0 into the definition of the Aµ field as Fµν =
1
g0

(
∂µ(g0Aν)− ∂ν(g0Aµ) + [g0Aµ, g0Aν ,g]

)
. Thus Fµν → 1

g0 Fµν and the ac-
tion is rescaled as S → 1

(g0)2 S as it is customary in the Yang-Mills action.
The motivation in constructing an octonionic-valued field strength in terms

of ternary brackets is because the ordinary 2-bracket does not obey the Jacobi
identity

12



[ ei, [ ej , ek ] ] + [ ej , [ ek, ei ] ] + [ ek, [ ei, ej ] ] = 3 dijkl el 6= 0 (3.33)

If one has the ordinary Yang-Mills expression for the field strength

Fµν = ∂µAν − ∂νAµ + [ Aµ, Aν ] (3.34)

because the 2-bracket does not obey the Jacobi identity, one has an extra (spu-
rious) term in the expression for

[ Dµ, Dν ] Φ = [ Fµν , Φ ] + ( Aµ, Aν , Φ ) (3.35)

given by the crucial contribution of the non-vanishing associator (Aµ, Aν ,Φ) =
(AµAν)Φ − Aµ(AνΦ) 6= 0. For this reason, due to the non-vanishing condition
(3.33), the ordinary Yang-Mills field strength does not transform homogeneously
under ordinary gauge transformations involving the parameters Λ = Λaea

δAµ = ∂µΛ + [Aµ,Λ] (3.36)

and it yields an extra contribution of the form

δFµν = [Fµν ,Λ] + ( Λ, Aµ, Aν) (3.37)

As a result of the additional contribution (Λ, Aµ, Aν) in eq-(3.38 ), the ordinary
Yang-Mills action S =

∫
< FµνFµν > will no longer be gauge invariant. Under

infinitesimal variations eqs-(3.37), the variation of the action is no longer zero
but receives spurious contributions of the form δS = −4F l

µνΛiAµjAνkdijkl 6= 0
due to the non-associativity of the octonion algebra.

On the other hand, by promoting the constant antisymmetric parameters Λab

in the transformations (3.17) to xµ-dependent ones Λab(xµ) leads to inhomogeneous
terms (∂[µΛab(x))Ac

ν]fabcded in the transformations laws for the field strength
F d

µνed and which will spoil the gauge invariance of the quadratic action (3.14).
One may impose the gauge covariant constraints

(∂[µΛab(x)) Ac
ν] fabcd = 0, a, b, c, d = 1, 2, 3, ....., 7 (3.39)

which lead to field-dependent gauge parameters Λab(Aµ) and nonlinear gauge
transformations. Performing a second gauge variation on the gauge covariant
constraints, by varying only the gauge fields and not the parameters in eq-(3.39),
yields

(∂[µΛab(x)) δAc
ν] fabcd = (∂[µΛab(x)) (Λij(x) Ak

ν] f c
ijk ) fabcd = 0 (3.40)

eqs-(3.40) are compatible with eqs-(3.39) when

δAc
ν = Λij(x) Ak

ν f c
ijk = Λ(x) Ac

ν ⇒

13



Ac′

ν − Ac
ν = Λ(x) Ac

ν ⇒ Ac′

ν = (1 + Λ(x)) Ac
ν ; c = 1, 2, 3, ...., 7 (3.41)

where Λ(x) is another spacetime-dependent parameter. Thus, the conditions
(3.41) yield a homothecy (spacetime dependent ) scaling of the gauge fields. Eqs-
(3.39, 3.41) determine the functional dependence of the parameters Λab(x),Λ(x)
in terms of the gauge fields Aµ. One still maintains closure of two gauge
transformations (3.17), by varying only the gauge fields and not the param-
eters, given by eqs-(3.25, 3.26), when the gauge parameters Λab

1 (x),Λcd
2 (x) are

spacetime-dependent. The scaling transformations can be exponentiated fur-
nishing Ac′

ν = eΛ(x)Ac
ν . The field-dependent parameters can be turned into

infinitesimal ones by multiplying them by an infinitesimal ε as Λab[Aµ] →
εΛab[Aµ]; Λ[Aµ] → εΛ[Aµ].

To sum up, one can promote the constant antisymmetric parameters Λab in
the transformations (3.17) to xµ-dependent ones Λab(xµ) such that the inhomogeneous
terms (∂[µΛab(x))Ac

ν]fabcded in the transformations laws for the field strength
F d

µνed can be set to zero if, and only if, one imposes the gauge covariant con-
straints (3.39) that lead to field-dependent gauge parameters Λab(Aµ); i.e. one
has nonlinear gauge transformations. In this fashion one does not spoil the gauge
invariance of the quadratic action (3.14) under the restricted set of gauge trans-
formations resulting in the homothecy/scaling of the fields (3.41). One should
note that the scaling parameter Λ(x) is not arbitrary but field-dependent due to
the gauge covariant constraints (3.39) and that δF d

µν = ΛabF c
µνf d

abc 6= Λ(x)F d
µν

despite that δAd
µ = Λ(x) Ad

µ.
To finalize we discuss further constructions, like having an octonionic-valued

and SU(N)-valued gauge field Aµ = Aam
µ (ea ⊗ Tm) involving the SU(N) alge-

bra generators Tm,m = 1, 2, 3, ...., N2 − 1 and the octonion algebra generators
ea, a = 0, 1, 2, 3, ...., 7; i.e. one has octonionic-valued components for the SU(N)
gauge fields. The commutator is

[ Aµ, Aν ] = [ Aam
µ (ea ⊗ Tm), Abn

ν (eb ⊗ Tn) ] =

1
2

Aam
µ Abn

ν {ea, eb} ⊗ [Tm, Tn] +
1
2

Aam
µ Abn

ν [ea, eb]⊗ {Tm, Tn} (3.42)

where
{ea, eb} = − 2 δab eo, [ea, eb] = 2 cabc ec (3.43)

and for the SU(N) Hermitian generators one has

{Tm, Tn} =
1
N

δmn + dmnp Tp, [Tm, Tn] = i fmnp Tp (3.44)

One may note that the r.h.s of (3.42) involves both commutators and anti-
commutators as it occurs in Supersymmetry. Due to the fact that the octonion
algebra does not obey the Jacobi identities this will spoil the gauge invariance
of typical Yang-Mills actions as described above. Let us have instead a ternary
Lie algebra (3-Lie algebra) obeying the ternary commutation relations

[ Tm, Tn, Tp ] = fmnpq Tq (3.45)
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and such that the ternary-bracket structure-constants fmnpq obey the fun-
damental identity. A 3-Lie-algebra and octonionic-valued field is defined by
Aµ ≡ Ama

µ (Tm ⊗ ea). However, the triple commutator

[ Aµ, Aν , Aρ ] = [ Ami
µ (Tm ⊗ ei), Anj

ν (Tn ⊗ ej), Apk
ρ (Tp ⊗ ek) ] (3.46)

would furnish a very complicated expression for the r.h.s of eq-(3.46). To sim-
plify matters one could define the ternary bracket as

[ Aµ, Aν , Aρ ] ≡ Ami
µ Anj

ν Apk
ρ [Tm, Tn, Tp]⊗ [ei, ej , ek] =

Ami
µ Anj

ν Apk
ρ fmnpq fijkl (Tq ⊗ el) (3.47)

so that one has closure in the r.h.s of eq-(3.47).
To conclude, if one were able to find an octonionic ternary bracket that is

totally antisymmetric in all of its indices, and which satisfies the fundamental
identity, one would be able to construct a nonassociative octonionic ternary
gauge field theory and build an invariant quadratic action. However in this case
one would effectively recover a Lie bracket structure [[A,B]] ≡ [A,B,g], obeying
the Jacobi identity when the structure constants fabcd are totally antisymmetric
in their indices. The ternary bracket [4] is totally antisymmetric but it does
not obey the fundamental identity. It is warranted to explore further these
generalized ternary gauge field theories involving 3-Lie algebras and octonions
in M-theory.
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