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Abstract

A novel ternary gauge field theory is explicitly constructed based on
a totally antisymmetric ternary-bracket structure associated with a 3-Lie
algebra. Invariant actions including scalar fields are displayed. We pro-
ceed with the formulation of a nonassociative Octonionic ternary gauge
field theory based on a ternary-bracket involving the octonion algebra
and defined earlier by Yamazaki. The octonionic ternary bracket can-
not be rewritten in terms of 2-brackets, [A, B, C] 6= 1

4
[[A, B], C]. Two

different methods to construct gauge invariant actions are studied. In
one of them it is found that gauge-invariant matter kinetic terms for
an octonionic-valued scalar field can be introduced in the action if one
recurs to an octonionic-valued rank-three antisymmetric field strength
Fµνρ = ∂ρAµν +[Aµν , Aρ,g]+ permutations, and which is defined in terms
of an antisymmetric tensor field of rank two Aµν = Aa

µνea and the vector
field Aµ = Aa

µea. Some preliminary steps towards the construction of
generalized ternary gauge field theories involving both 3-Lie algebras and
octonions are discussed in the conclusion.

1 Introduction

Exceptional, Jordan, Division, Clifford, noncommutative and nonassociative al-
gebras are deeply related and are essential tools in many aspects in Physics,
see [1], [2], [3], [4], [7], [8], for references, among many others. A thorough dis-
cussion of the relevance of ternary and nonassociative structures in Physics has
been provided in [5], [9], [10]. The earliest example of nonassociative structures
in Physics can be found in Einstein’s special theory of relativity. Only colin-
ear velocities are commutative and associative, but in general, the addition of
non-colinear velocities is non-associative and non-commutative.
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Recently, tremendous activity has been launched by the seminal works of
Bagger, Lambert and Gustavsson (BLG) [15], [16] who proposed a Chern-
Simons type Lagrangian describing the world-volume theory of multiple M2-
branes. The original BLG theory requires the algebraic structures of generalized
Lie 3-algebras and also of nonassociative algebras. Later developments by [17]
provided a 3D Chern-Simons matter theory with N = 6 supersymmetry and
with gauge groups U(N)× U(N), SU(N)× SU(N). The original construction
of [17] did not require generalized Lie 3-algebras, but it was later realized that it
could be understood as a special class of models based on Hermitian 3-algebras
[18], [19].

A Nonassociative Gauge theory based on the Moufang S7 loop product (not
a Lie algebra) has been constructed by [20]. Taking the algebra of octonions
with a unit norm as the Moufang S7-loop, one reproduces a nonassociative
octonionic gauge theory which is a generalization of the Maxwell and Yang-
Mills gauge theories based on Lie algebras. BPST -like instantons solutions
in D = 8 were also found. These solutions represented the physical degrees
of freedom of the transverse 8-dimensions of superstring solitons in D = 10
preserving one and two of the 16 spacetime supersymmetries. Nonassociative
deformations of Yang-Mills Gauge theories involving the left and right bimodules
of the octonionic algebra were presented by [21].

The novel (to our knowledge) nonassociative octonionic ternary gauge theory
developed in this work differs from the nonassociative gauge theories of [20]
in many respects, mainly that it is based on a ternary bracket involving the
octonion algebra that was proposed by Yamazaki [14]. It also differs from the
work by [15], [16] in that our octonionic-valued gauge fields Aa

µea; a = 0, 1, 2, ....7
are not, and cannot be represented, in terms of matrices Aµ = Aab

µ f cd
ab =

(Ãµ)cd, defined in terms of f cd
ab which are the structure constants of the 3-Lie

algebra [ta, tb, t
c] = f cd

ab td. This construction is not unlike writing the matrices
Aµ = Aa

µf bc
a = (Aµ)bc of ordinary Yang-Mills gauge theory in terms of the

adjoint representation of the gauge algebra : [ta, tb] = f c
ab tc. Furthermore,

our field strengths Fµν are explicitly defined in terms of a 3-bracket [Aµ, Aν ,g]
involving an auxiliary octonionic-valued scalar field g = gaea which plays the
role of a ”coupling” function. Whereas the definition of Fµν by [15], [16] was
based on the standard commutator of the matrices (Ãµ)a

c (Ãν)c
b − (Ãν)a

c (Ãµ)c
b.

The contents of this work are outlined as follows. In section 2 we develop a
ternary gauge field theory formulation associated to a 3-Lie algebra and whose
structure constants are totally antisymmetric in all their indices. An invariant
action involving the 3-Lie algebra valued gauge field and scalar field is pro-
vided. In section 3 the Nonassociative Octonionic ternary gauge field theory is
presented and it differs mainly from the prior formulation (besides nonassocia-
tivity) due to the fact that the structure constants are not totally antisymmetric
in all their indices. Generalized ternary gauge field theories involving both 3-Lie
algebras and octonions are briefly discussed in the conclusion.
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2 3-Lie-Algebra-valued Gauge Field Theories

In this section we will construct a gauge field theory based on a 3-Lie algebra-
valued gauge fields. As outlined by [15], one introduces a basis T a for the 3-Lie
algebra and one expands the gauge field Aµ = Aa

µTa, a = 1, ..., N, where N is
the dimension of the 3-Lie algebra. The structure constants are introduced as

[ Ta, Tb, Tc ] = f d
abc Td (2.1)

such that f d
abc = f d

[abc] . The trace-form provides a metric hab = Tr(T a, T b).
that we can use to raise indices: fabcd = hdefabc

e . On physical grounds one
assume that hab is positive definite.

A bilinear positive symmetric product written as < X,Y >=< Y,X >=
Tr(X, Y ) = Tr(Y,X) is required and such that that the ternary bracket/derivation
obeys what is called the metric compatibility condition

< [u, v, x], y > = − < [u, v, y], x > = − < x, [u, v, y] > ⇒

Du,v < x, y > = < [u, v, x], y > + < x, [u, v, y] > = 0 (2.2)

The symmetric product remains invariant under derivations. Since the ternay
bracket is totally antisymmetric one can rewrite < [u, v, x], y >=< [x, u, v], y >,
and from (2.2) one infers that the 3-Lie algebra admits a totally antisymmetric
ternary product which satisfies

Tr( [A, B, C ], D ) = − Tr( A, [ B, C, D ] ) (2.3)

The condition (2.3) on the trace-form implies that fabcd = −fdabc and this
further implies that the structure constants are totally antisymmetric in all
their indices fabcd = f [abcd], in analogy with the familiar result in Lie algebras.

If gauge symmetries act as a derivation

δ( [ X, Y, Z] ) = [ δX, Y, Z ] + [ X, δY, Z] + [ X, Y, δZ ] (2.4)

this leads to the fundamental identity

[ U, V, [X, Y, Z] ] = [ [U, V,X], Y, Z ] + [ X, [U, V, Y ], Z ] + [ X, Y, [U, V, Z] ]
(2.5)

which plays a role analogous to the Jacobi identity in ordinary Lie algebras.
Among the key properties we shall use are the fundamental identity (2.5) and
the fact that the structure constants f[abcd] are totally antisymmetric in all of
their indices.

The simplest nontrivial Lie 3-algebra is A4 . It has 4 generators Ta, a =
1, 2, 3, 4. The ternary bracket is defined by [Ta, Tb, Tc] = εabcdTd. The invariant
metric of A4 is δab. The 3-Lie algebra A4 [11] is a natural generalization of
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the Lie algebra su(2). It was conjectured in [12] and later proved in [13] that
the only finite dimensional Lie 3-algebras with a positive-definite metric are the
trivial algebra, A4, and their direct sums. On the other hand, it is possible to
define many infinite dimensional Lie 3-algebras with positive-definite metrics.
All the Nambu-Poisson algebras are of this kind [12].

We define the field strength in terms of the ternary bracket as

Fµν = ∂µAν − ∂νAµ + [ Aµ, Aν , g ] (2.6)

where g = gaTa is a 3-Lie-algebra valued ”coupling” function which is inert
under gauge transformations. Under the local gauge transformations the field
transforms as

δ(Ad
µ Td) = − (∂µΛd(x)) Td + [ Λa(x) Ta, Ab

µ Tb, gc Tc ] (2.7)

and the 3-Lie-algebra-valued coupling function is gauge invariant

δ(gd Td) = [Λa(x) Ta, g, g] = 0 (2.8)

since the ternary brackets [X, Y, Y ] = 0. After some straightforward algebra one
can verify that the ternary field strength Fµν defined in terms of the ternary-
brackets (2.6) transforms properly (homogeneously) under the ternary gauge
transformations because (∂µ∂ν − ∂ν∂µ)Λd = 0, and

(
(∂µΛa)Ab

νgc − (∂νΛa)Ab
µgc − (∂µΛa)Ab

νgc − (∂νΛb)Aa
µgc

)
f d

abc = 0 (2.9)

is identically zero. The second and fourth terms in (2.9) are symmetric under
the exchange of indices a ↔ b so they will cancel out due to the antisymmetry
fabcd = −fbacd. This simply can be seen by rewriting the fourth term as

− (∂νΛb) Aa
µ gc f d

abc = (∂νΛb) Aa
µ gc f d

bac = (∂νΛa) Ab
µ gc f d

abc (2.10)

and relabeling the a ↔ b indices in the last line of (2.10). Therefore Fµν trans-
forms homogeneously under the infinitesimal ternary gauge transformations as

δ(F d
µν Td) = [ Λa(x) Ta, F b

µν Tb, gc Tc ] = Λa(x) F b
µν gcf d

abc Td ⇒

δF d
µν = Λa(x) F b

µν gc f d
abc (2.11)

The result (2.11) is a direct consequence of the fundamental identity; i.e the
ternary bracket is a derivation with respect to the first two entries

[ Λ, g, [Aµ, Aν , g] ] =

[ [Λ, g, Aµ], Aν , g ] + [ Aµ, [Λ, g, Aν ], g ] + [ Aµ, Aν , [Λ, g, g] ] (2.12)

Because the ternary bracket is totally antisymmetric under the exchange of any
pair of indices, one may exchange the entries in (2.12) as follows
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[ Λ, g, [Aµ, Aν , g] ] = − [ Λ, [Aµ, Aν , g], g ]

[Λ, g, Aµ] = − [Λ, Aµ, g]; [Λ, g, Aν ] = − [Λ, Aν , g]; .... (2.13)

leading to the relation

[ [Λ, Aµ, g], Aν , g ] + [ Aµ, [Λ, Aν , g], g ] + [ Aµ, Aν , [Λ, g, g] ] =

[ Λ, [Aµ, Aν , g], g ] (2.14)

which is precisely the relation required in order to show that Fµν transforms
homogeneously under the infinitesimal ternary gauge transformations.

The finite ternary gauge transformations can be obtained by ”exponentia-
tion” as follows

F ′ = F + δF +
1
2!

δ(δF ) +
1
3!

(δ(δ(δF ))) + .... (2.15a)

where

δF = [ Λa Ta, F b
µν Tb, gc Tc ]; δ(δF ) = [ Λm Tm, [ Λa Ta, F b

µν Tb, gc Tc ], gn Tn ]; .......
(2.15b)

A gauge invariant action under ternary infinitesimal gauge transformations in
D-dim is given

S = − 1
4κ2

∫
dDx < Fµν Fµν > (2.16)

κ is a numerical parameter introduced to make the action dimensionless and it
can be set to unity for convenience.

Under infinitesimal ternary gauge transformations of the ordinary quadratic
action one has

δ S = − 1
4

∫
dDx < Fµν (δFµν) + (δFµν) Fµν > =

− 1
4

∫
dDx < F c

µν Tc [ ΛaTa, Fµν b Tb, gn Tn] > +

− 1
4

∫
dDx < [Λa Ta, F b

µν Tb, gn Tn] Fµν c Tc > =

−1
4

∫
dDx Λa gn F b

µν Fµν c
(

< Tc f k
abn Tk > + < f k

abn Tk Tc >
)

=

− 1
2

∫
dDx Λa gn F b

µν Fµν c fabnc = 0 (2.17)

the last terms terms inside the integrand in eq-(2.17) vanish identically due
to the full antisymmetry of fabnc = −facnb, and the symmetry of F b

µν Fµν c

under the exchange of indices b ↔ c. Therefore, the action is invariant under
infinitesimal ternary gauge transformations δS = 0.
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The physical interpretation of the 3-Lie algebra-valued coupling g = gaTa

deserves further investigation. As described by [15] one can augment the 3-
Lie algebra by including an element T 0 that associates with everything, or
more precisely, that satisfies f0ab

d = 0. If we assume that h0b = 0 if b 6=
0, one finds that fabc0 = 0. Since T0 decouples from the ternary brackets
[A,B, g0T0] = 0, the physical coupling g0 = constant can be incorporated into
the field strength in the same fashion as it occurs in ordinary Yang-Mills. One
may rewrite the physical coupling g0 as a prefactor in front of the 3-bracket as
Fµν = ∂µAν−∂νAµ+g0[Aµ, Aν ,g], and reabsorb g0 into the definition of the Aµ

field as Fµν = 1
g0

(
∂µ(g0Aν)− ∂ν(g0Aµ) + [g0Aµ, g0Aν ,g]

)
. Thus Fµν → 1

g0 Fµν

and the action is rescaled as S → 1
(g0)2 S as it is customary in the Yang-Mills

action.
Having formulated a gauge invariant action (2.16) the next step is to in-

troduce gauge invariant matter terms like (DµΦ)2 where Φ = ΦaTa is 3-Lie
algebra-valued scalar and DµΦ = ∂µΦ+[Aµ, Φ, g]. The derivative DµΦ trans-
forms homogeneously, when

δ(ΦdTd) = [ ΛaTa, Φb Tb, gc Tc ] ⇒ δ(DµΦ) = [ Λ, DµΦ, g ] (2.18)

The action

S =
∫

d4x < − 1
2 (g0)2

Fµν Fµν +
1
2

(DµΦ)2 > (2.19)

is invariant under the infinitesimal gauge transformations given by eqs-(2.11,2.18).
To show invariance under finite gauge transformations via the ”exponentiation”
procedure in eqs-(2.15) is much more cumbersome. In the next section we shall
analyze Nonassociative Octonionic Ternary Gauge Field Theories based on a
ternary octonionic product with the fundamental difference, besides the nonas-
sociativity, that the structure constants fabcd are no longer totally antisymmetric
in their indices.

3 Nonassociative Octonionic Ternary Gauge Field
Theories

The nonassociative and noncommutative octonionic ternary gauge field theory
is based on a ternary-bracket structure involving the octonion algebra. The
ternary bracket obeys the fundamental identity (generalized Jacobi identity)
and was developed earlier by Yamazaki [14]. Given an octonion X it can be
expanded in a basis (eo, em) as

X = xo eo + xm em, m, n, p = 1, 2, 3, .....7. (3.1)
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where eo is the identity element. The Noncommutative and Nonassociative
algebra of octonions is determined from the relations

e2
o = eo, eoei = eieo = ei, eiej = −δijeo + cijkek, i, j, k = 1, 2, 3, ....7. (3.2)

where the fully antisymmetric structure constants cijk are taken to be 1 for the
combinations (124), (235), (346), (457), (561), (672), (713). The octonion conju-
gate is defined by ēo = eo, ēm = −em

X̄ = xo eo − xm em. (3.3)

and the norm is

N(X) = | < X X > | 12 = | Real (X̄ X) | 12 = | (xo xo + xk xk) | 12 . (3.4)

The inverse

X−1 =
X̄

< X X >
, X−1X = XX−1 = 1. (3.5)

The non-vanishing associator is defined by

(X,Y,Z) = (XY)Z−X(YZ) (3.6)

In particular, the associator

(ei, ej , ek) = (eiej)ek − ei(ejek) = 2 dijkl el

dijkl =
1
3!

εijklmnp cmnp, i, j, k.... = 1, 2, 3, .....7 (3.7)

Yamazaki [14] defined the three-bracket as

[ u, v, x ] ≡ Du,v x =
1
2

( u(vx)− v(ux) + (xv)u − (xu)v + u(xv) − (ux)v ) .

(3.8)
After a straightforward calculation when the indices span the imaginary ele-
ments a, b, c, d = 1, 2, 3, ......, 7, and using the relationship [24]

cabd cdcm = − dabcm + δac δbm − δbc δam (3.9a)

the ternary bracket becomes

[ ea, eb, ec ] = fabcd ed = [ dabcd + 2 δac δbd − 2 δbc δad ] ed (3.9b)

whereas e0 has a vanishing ternary bracket

[ ea, eb, e0 ] = [ ea, e0, eb ] = [ e0, ea, eb ] = 0 (3.9c)
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It is important to note that fabcd 6= ± cabd cdcm otherwise one would have been
able to rewrite the ternary bracket in terms of ordinary 2-brackets as follows
[ea, eb, ec] ∼ 1

4 [ [ea, eb], ec ].
The ternary bracket (3.8) obeys the fundamental identity

[ [x, u, v], y, z ] + [ x, [y, u, v], z ] + [ x, y, [z, u, v] ] = [ [x, y, z], u, v ]
(3.10)

A bilinear positive symmetric product < u, v >=< v, u > is required such that
that the ternary bracket/derivation obeys what is called the metric compatibility
condition

< [u, v, x], y > = − < [u, v, y], x > = − < x, [u, v, y] > ⇒

Du,v < x, y > = 0 (3.11)

The symmetric product remains invariant under derivations. There is also the
additional symmetry condition required by [14]

< [u, v, x], y > = < [x, y, u], v > (3.12)

The ternary product provided by Yamazaki (3.8) obeys the key fundamental
identity (3.10) and leads to the structure constants fabcd that are pairwise
antisymmetric but are not totally antisymmetric in all of their indices : fabcd =
−fbacd = −fabdc = fcdab; however : fabcd 6= fcabd; and fabcd 6= − fdbca. The
associator ternary operation for octonions (x, y, z) = (xy)z − x(yz) does not
obey the fundamental identity (3.10) as emphasized by [14]. For this reason we
cannot use the associator to construct the 3-bracket.

We define the field strength in terms of the ternary bracket as before

Fµν = ∂µAν − ∂νAµ + [ Aµ, Aν , g ] (3.13)

where g = gaea is an octonionic-valued ”coupling” function. Under the in-
finitesimal ternary gauge transformations δ(F d

µν ed) = [Λa(x)ea, F b
µνeb, g

cec],
the ordinary quadratic action

S = − 1
4κ2

∫
dDx < Fµν Fµν > (3.14)

is not invariant under ternary infinitesimal gauge transformations as we shall
see next. The octonionic valued field strength is Fµν = F a

µν ea, and has real

valued components F 0
µν , F i

µν ; i = 1, 2, 3, ....., 7. The < > operation extracting
the e0 part is defined as < XY >= Real(X̄Y ) =< Y X >= Real(Ȳ X). Under
infinitesimal ternary gauge transformations of the ordinary quadratic action one
has

δ S = − 1
4

∫
dDx < Fµν (δFµν) + (δFµν) Fµν > =

− 1
4

∫
dDx < F c

µν ec [ Λaea, Fµν b eb, gnen] > +
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− 1
4

∫
dDx < [Λaea, F b

µν eb, gnen] Fµν c ec > =

− 1
4

∫
dDx Λa F c

µν Fµν b ( < ec fabnk ek > + < fabnk ek ec > ) =

−1
2

∫
dDx Λa gn F c

µν Fµν b fabnc =

−
∫

dDx
(

(Λaga) (F b
µνFµν

b ) − (ΛaFµν
a ) (gcF

c
µν)

)
6= 0 (3.15)

Hence, because

fabnc = ( dabnc + 2 δan δbc − 2 δbn δac ) (3.16)

is not antisymmetric under the exchange of indices b ↔ c : fabnc 6= −facnb,
eq-(3.15) is not zero like it was in section 2. Had fabnc been fully antisymmetric
then the variation δS would have been zero due to the fact that F c

µν Fµν b is
symmetric under b ↔ c. Concluding, δS 6= 0.

If eq-(3.15) is set to zero it will impose a field-dependent condition on the
gauge parameter Λa(x) in terms of the field strength F a

µνea and the coupling
function gcec given symbolically in the internal 7D space by (~Λ.~g)(~F . ~F ) =
(~Λ. ~F )(~g. ~F ), after the spacetime indices are contracted. In an internal 3D space,
the vector equation equivalent to the latter geometric condition would have
been (~Λ × ~F ).(~g × ~F ) = 0. In 7D there is an analog of the vector product
and similar relations but with some crucial modifications due to the nonasso-
ciativity [25] of octonions. Therefore, the action would only be invariant under
those restricted transformations where Λa becomes a field-dependent parameter
leading to highly nonlinear gauge transformations.

To solve this problem we could try another octonion ternary product, like
the totally antisymmetric Okubo, de Wit-Nicolai, Gurzey-Tze triple product but
unfortunately it does not satisfy the fundamental identity, like it also happens
to the associator. Instead we can modify the gauge transformations as follows

δ(Ad
µ ed) = − (∂µΛd(x)) ed + Λab(x)[ ea, eb, Ac

µ ec ] (3.17)

δ(gd ed) = Λab(x)[ ea, eb, gc ec] (3.18)

where one has introduced the additional gauge parameter Λab(x) = −Λba(x) and
now the coupling gcec is not inert under the transformations (3.18). Only the
real part g0 is inert. After some straightforward algebra one can verify that the
ternary field strength Fµν defined in terms of the 3-brackets transforms properly
(homogeneously) under the new ternary gauge transformations (3.17, 3.18) if,
and only if, the gauge parameters (functions) Λd(x); Λab(x) are field-dependent
and obey the following relationship in terms of gc and the gauge fields

[ (∂[µΛab) Ac
ν] − (∂[µΛa) Ab

ν] gc ] fabcd = 0; d = 1, 2, 3, ...., 7 (3.19a)
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The antisymmetrization of indices [µν] is performed with unit weight. Since the
first term in (3.19a) is antisymmetric in the internal a, b indices, one can have
also an antisymmetric expression in these latter indices for the second term, by
choosing properly ∂µΛa = Aa

µ ⇒ Λa =
∫

Aa
µ dxµ. Inserting this solution for Λa

back into (16a) leads to the field-dependent relationship for Λab(x)

[ (∂[µΛab) Ac
ν] − Aa

[µ Ab
ν] gc ] fabcd = 0; d = 1, 2, 3, ....., 7 (3.19b)

One may notice that D = 3 dimensions is very special because the number of
independent components of Λab is 21 which matches the number of equations
in (3.19b) given by 7 × 3 = 21. The factor of 3 stems from the number of
different [µν] pairs in D = 3. Three dimensions corresponds to the world-
volume dimension of the membrane. Therefore, due to the field-dependence
of the gauge parameters, the gauge transformations themselves are now highly
non-linear. This is one of the key differences to ordinary Yang-Mills theories.
To sum up, if eq-(3.19a) is obeyed in general, Fµν transforms homogeneously
under the infinitesimal ternary gauge transformations as

δ(Fm
µν em) = Λab [ ea, eb, F c

µν ec ] = Λab F c
µν f m

abc em ⇒ δFm
µν = Λab F c

µν f m
abc

(3.20)
The result (3.20) is a direct consequence of the fundamental identity (3.10)
because the 3-bracket (3.8) is defined as a derivation

[ [ea, eb, Aµ], Aν , g ] + [ Aµ, [ea, eb, Aν ], g ] + [ Aµ, Aν , [ea, eb, g] ] =

[ ea, eb, [Aµ, Aν , g] ] (3.21)

The parameter (function) Λ0(x) involved in the transformation δA0
µ = ∂µΛ0(x),

corresponding to the real (identity) element e0 of the octonion algebra leads to
δF 0

µν = 0, where the field strength component is Abelian-Maxwell-like F 0
µν =

∂µA0
ν−∂νA0

µ. The finite ternary transformations can be obtained by ”exponen-
tiation” as follows

F ′ = F + δF +
1
2!

δ(δF ) +
1
3!

(δ(δ(δF ))) + .... (3.22)

where δ(Fm
µν em) = Λab[ea, eb, F

c
µνec]; δ(δF ) = Λmn[ em, en,Λab[ea, eb, F

c
µνec] ];

...... Given the octonionic valued field strength Fµν = F a
µν ea , with real valued

components F 0
µν , F i

µν ; i = 1, 2, 3, ....., 7, a gauge invariant action under ternary
infinitesimal gauge transformations in D-dim is

S = − 1
4κ2

∫
dDx < Fµν Fµν > (3.23)

κ is a numerical parameter introduced to make the action dimensionless and it
can be set to unity for convenience. The < > operation extracting the e0 part
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is defined as < XY >= Real(X̄Y ) =< Y X >= Real(Ȳ X). Under infinitesimal
ternary gauge transformations of the action one has

δ S = − 1
4

∫
dDx < Fµν (δFµν) + (δFµν) Fµν > =

− 1
4

∫
dDx < F c

µν ec Λab [ea, eb, Fµν n en] > +

− 1
4

∫
dDx < Λab [ea, eb, F c

µν ec] Fµν n en > =

−1
4

∫
dDx Λab F c

µν Fµν n ( < ec fabnk ek > + < fabck ek en > ) = 0.

(3.24)
since

< ec fabnk ek > + < fabck ek en > = fabnk δck + fabck δkn = fabnc + fabcn =

[ dabnc +2 δan δbc −2 δbn δac ] + [ dabcn +2 δac δbn −2 δbc δan ] = 0 (3.25)

because dabnc+dabcn = 0; dnabc+dcabn = 0, due to the total antisymmetry of the
associator structure constant dnabc under the exchange of any pair of indices. In-
variance δS = 0, only occurs if, and only if, δF = Λab[ea, eb, F

cec] 6= Λab[F cec, ea, eb].
The ordering inside the 3-bracket is crucial. One can check that if one sets
δF = Λab[F cec, ea, eb], the variation δS leads to a term in the integral which is
not zero. However, under δF = Λab[ea, eb, F

cec], the variation δS is indeed zero
as shown. This is a consequence of the fact that [ea, eb, ec] 6= [ec, ea, eb] when
the 3-bracket is given by eq-(3.8).

To show that the action is invariant under finite ternary gauge transforma-
tions requires to follow a few steps. Firstly, one defines

< x y > ≡ Real [ x̄ y ] =
1
2

( x̄ y + ȳ x ) ⇒ < x y > = < y x > (3.26)

Despite nonassociativity, the very special conditions

x(x̄u) = (xx̄)u; x(ux̄) = (xu)x̄; x(xu) = (xx)u; x(ux) = (xu)x (3.27)

are obeyed for octonions resulting from the Moufang identities. Despite that
(xy)z 6= x(yz) one has that their real parts obey

Real [ (x y) z ] = Real [x (y z) ] (3.28)

Due to the nonassociativity of the algebra, in general one has that (UF )U−1 6=
U(FU−1). However, if and only if U−1 = Ū ⇒ ŪU = UŪ = 1, as a result
of the the very special conditions (3.27, 3.28) one has that F ′ = (UF )U−1 =
U(FU−1) = UFU−1 = UFŪ is unambiguously defined. One can equate the
result of the exponentiation procedure in eq-(3.22) to the expression
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F ′ = UFU−1 = UFŪ = eΣk(Λa)ek (F c tc) e−Σk(Λa)ek ; k = 1, 2, 3, ...., 7.
(3.29)

where Σk(Λa)ek is a complicated function of Λab. It yields the finite gauge
transformations which agree with the infinitesimal ternary ones when Λab(x) are
infinitesimals. For instance, to lowest order in Λab, one has that Σk satisfies
2Σkckcd = Λabfabcd and which follows by comparing the transformations in
(3.22) to those in (3.29), to lowest order.

In ordinary associative Yang-Mills involving 2-brackets, it is well known that
the finite gauge transformations are

(Fn
µν)′ Tn = eiΛmTm Fn

µνTn e−iΛmTm . (3.30)

where Tm are the Hermitian Lie-algebra generators obeying the commutation
relations [Tm, Tn] = ifmnpTp. It is a challenging work to derive the explicit
functional dependence Σk(Λab)ek in eq-(3.29) that matches the transformation
in eq-(3.22), to all orders in Λab, for the ternary-brackets case.

Dropping the spacetime indices for convenience in the expressions for Fµν , Fµν ,
and by repeated use of eqs-(25,26), when U−1 = Ū , the action density is also
invariant under (unambiguously defined) gauge transformations of the form
F ′ = UFU−1 = UFŪ ,

< F ′ F ′ > = Re [F̄ ′ F ′] = Re [(UF̄U−1) (UFU−1)] = Re [(UF̄ ) ( U−1 (UF U−1) )] =

Re [(U F̄ ) (U−1 U) (FU−1)] = Re [(UF̄ ) (FU−1)] = Re [(FU−1) (UF̄ )] =

Re [F ( U−1 (U F̄ ) )] = Re [F (U−1U) F̄ ] = Re [F F̄ ] = Re [F̄ F ] = < F F > .
(3.31)

If the action (3.23) is invariant under finite ternary gauge transformations
one can impose the condition S[Aa

µ; ga] = S[(Aa
µ)′; (ga)′ = Ca], where C = Caea

is a constant octonionic-valued coupling which can be obtained from gauging
the octonionic-valued coupling function g(x) to a constant C. The physical
interpretation of the octonionic-valued coupling g = gaea deserves further in-
vestigation. The real part of the coupling g0 can be set to a constant, since
g0 is inert under gauge transformations, and it decouples from the definition of
the field strength Fµν because e0 has a vanishing 3-bracket with other elements
of the octonion algebra. The coupling g0 = constant can be incorporated into
the field strength in the same fashion as it occurs in ordinary Yang-Mills. One
may rewrite the physical coupling g0 as a prefactor in front of the 3-bracket as
Fµν = ∂µAν−∂νAµ+g0[Aµ, Aν ,g], and reabsorb g0 into the definition of the Aµ

field as Fµν = 1
g0

(
∂µ(g0Aν)− ∂ν(g0Aµ) + [g0Aµ, g0Aν ,g]

)
. Thus Fµν → 1

g0 Fµν

and the action is rescaled as S → 1
(g0)2 S as it is customary in the Yang-Mills

action.
Having formulated a gauge invariant action (3.23) the next step is to intro-

duce gauge invariant matter terms like (DµΦ)2 where Φ = Φaea is an octonionic-
valued scalar and DµΦ = ∂µΦ+[Aµ,Φ,g]. However, there is a caveat. If deriva-
tive DµΦ transforms homogeneously, when δΦ = Λab[ea, eb,Φ], one arrives to
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the conditions (∂µΛab)Φc − (∂µΛa)Φbgc = 0 which would impose additional
constraints on the scalar field Φ. For this reason, gauge invariant matter terms
in the action can be introduced if one starts instead with an octonionic-valued
rank-three antisymmetric field strength

Fµνρ = ∂ρAµν + ∂µAνρ + ∂νAρµ +

[Aµν , Aρ, g] + [Aνρ, Aµ, g] + [Aρµ, Aν , g] (3.32)

defined in terms of the antisymmetric tensor field of rank two Aµν = Aa
µνea, the

field Aµ = Aa
µea, and the auxiliary coupling function g = gaea. Under the local

gauge transformations

δ(Ad
µνed) = ∂[µΛd

ν](x) ed + Λab(x) [ea, eb, Ac
µνec] (3.33a)

δ(Ad
µed) = − (∂µΛd(x)) ed + Λab(x) [ea, eb, Ac

µec]; δ(gded) = Λab(x) [ea, eb, g
cec];

(3.33b)
the antisymmetric field strength Fµνρ will transform homogeneously

δ(F d
µνρed) = Λab [ea, eb, F c

µνρec] (3.33c)

if, and only if, the following conditions are met

[ ∂[µΛa
ν] Ab

ρ gc − Aa
µν (∂ρΛb) gc + (∂ρΛab) Ac

µν ] fabcd = 0; d = 1, 2, 3, ......, 7
(3.34)

in conjunction with similar equations obtained by a permutation of the space-
time indices. A particular solution to the field-dependent conditions on the
gauge parameters (3.34) is

∂ρΛb = Ab
ρ ⇒ Λb(x) =

∫ x

0

Ab
ρ(x

′) dx′ρ (3.35a)

∂[µΛa
ν](x) = Aa

µν(x); Λab = constant (3.35b)

Therefore, eqs-(3.35) determine the field-dependent behavior of Λa(x),Λa
ν(x) in

terms of the gauge fields Aρ, Aµν . One must emphasize that despite that Λab =
constant in (3.35b) this does not mean that one has rigid global transformations
for the gauge fields Aµ, Aµν in eqs-(3.33a, 3.33b), due to the fact that the gauge
parameters Λa(x),Λa

ν(x) are explicitly x-dependent !. Therefore, one has truly
local gauge transformations for the gauge fields. It is true, however, that the
homogeneous transformation for the field strength δ(F d

µνρed) given by eq-(3.33c)
does exhibit a rigid global behavior when Λab = constant. There are other
solutions to eq-(3.34) besides those in eqs-(3.35) that do not involve setting
Λab = constant. In this case there is also a field dependence on the coupling
function gc(x). For simplicity, we shall focus only in the solutions in eqs-(3.35).

Omitting internal indices, now one can introduce gauge invariant scalar mat-
ter by defining the covariant derivative in an explicit nonlinear manner as

DµΦ = ∂µΦ + l2 [Aµν , Aν , Φ, ] (3.36)
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the above nonlinear covariant derivative is defined both in terms of Aµ and Aµν .
l is a parameter of length dimensions that must be introduced because Aµν has
dimensions of length−2. One may verify that DµΦ transforms homogeneously
when δΦ = Λab[ea, eb,Φ] if, and only if, the same field-dependent conditions on
the gauge parameters given by eqs-(3.35a,3.35b) are provided. In this case no
additional constraints on the fields are introduced. Furthermore, an action

S =
∫

dDx < − 1
2

1
(3!κ2)

Fµνρ Fµνρ +
1
2

(DµΦ)2 > (3.37)

is invariant under the gauge transformations given by eqs-(3.33); κ is a parame-
ter of suitable dimensions introduced in order to render the action dimensionless.

Due to the conditions ∂[µΛa
ν](x) = Aa

µν(x), for all µ, ν = 1, 2, ..., D indices in
eq-(3.35b), the three terms in the first line of the right hand side of (3.32) vanish
and Fµνρ reduces to [Aµν , Aρ,g]+ permutations; i.e. there is no dynamics for the
Aµν field in the action (3.37); while the scalar Φ has dynamics. Note that if eqs-
(3.19) and eqs-(3.35) are used simultaneously, after setting Aa

µ = ∂µΛa, it would
constrain Aa

µ to zero which is not acceptable. Instead, one may use eqs-(3.19)
and eq-(3.34) without imposing the condition ∂µΛab = 0, so that Λab 6= constant
and the gauge transformations of the field strength are no longer rigid (global).
In this case, eqs-(3.19) and eq-(3.34) determine the field-dependence of Λab(x)
and Λa

ν(x). We may then incorporate Fµν simultaneously with Fµνρ in the
action if one does not include the scalar matter terms. In this latter case there
is dynamics for the Aa

µν field because ∂[µΛa
ν] is no longer constrained to be equal

to Aa
µν ; but Aa

µ has no dynamics because ∂µΛa = Aa
µ ⇒ ∂[µAa

ν] = 0.
To summarize, one may build invariant actions if the gauge parameters are

field dependent; i.e. actions which are invariant under restricted (non-linear)
gauge transformations. Out of all the possibilities studied here, it is preferable
to choose the geometric constraint described in the paragraph after eq-(3.16) :
(~Λ.~g)(~F . ~F ) = (~Λ. ~F )(~g. ~F ), in order to determine the field-dependent condition
on Λa(x), because : (i) there is only one single constraint to satisfy encompassing
all of the components of Λa, gc and F a

µν ; (ii) it does not involve differential
equations.

The motivation in constructing an octonionic-valued field strength in terms
of ternary brackets is because the ordinary 2-bracket does not obey the Jacobi
identity

[ ei, [ ej , ek ] ] + [ ej , [ ek, ei ] ] + [ ek, [ ei, ej ] ] = 3 dijkl el 6= 0 (3.38)

If one has the ordinary Yang-Mills expression for the field strength

Fµν = ∂µAν − ∂νAµ + [ Aµ, Aν ] (3.39)

because the 2-bracket does not obey the Jacobi identity, one has an extra (spu-
rious) term in the expression for
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[ Dµ, Dν ] Φ = [ Fµν , Φ ] + ( Aµ, Aν , Φ ) (3.40)

given by the crucial contribution of the non-vanishing associator (Aµ, Aν ,Φ) =
(AµAν)Φ − Aµ(AνΦ) 6= 0. For this reason, due to the non-vanishing condition
(3.38), the ordinary Yang-Mills field strength does not transform homogeneously
under ordinary gauge transformations involving the parameters Λ = Λaea

δAµ = ∂µΛ + [Aµ,Λ] (3.41)

and it yields an extra contribution of the form

δFµν = [Fµν ,Λ] + ( Λ, Aµ, Aν) (3.42)

As a result of the additional contribution (Λ, Aµ, Aν) in eq-(3.42), the ordinary
Yang-Mills action S =

∫
< FµνFµν > will no longer be gauge invariant. Under

infinitesimal variations eqs-(3.41), the variation of the action is no longer zero
but receives spurious contributions of the form δS = −4F l

µνΛiAµjAνkdijkl 6= 0
due to the non-associativity of the octonion algebra.

To finalize we discuss further constructions, like having an octonionic-valued
and SU(N)-valued gauge field Aµ = Aam

µ (ea ⊗ Tm) involving the SU(N) alge-
bra generators Tm,m = 1, 2, 3, ...., N2 − 1 and the octonion algebra generators
ea, a = 0, 1, 2, 3, ...., 7; i.e. one has octonionic-valued components for the SU(N)
gauge fields. The commutator is

[ Aµ, Aν ] = [ Aam
µ (ea ⊗ Tm), Abn

ν (eb ⊗ Tn) ] =

1
2

Aam
µ Abn

ν {ea, eb} ⊗ [Tm, Tn] +
1
2

Aam
µ Abn

ν [ea, eb]⊗ {Tm, Tn} (3.43)

where
{ea, eb} = − 2 δab eo, [ea, eb] = 2 cabc ec (3.44)

and for the SU(N) Hermitian generators one has

{Tm, Tn} =
1
N

δmn + dmnp Tp, [Tm, Tn] = i fmnp Tp (3.45)

One may note that the r.h.s of (3.43) involves both commutators and anti-
commutators. Due to the fact that the octonion algebra does not obey the
Jacobi identities this will spoil the gauge invariance of typical Yang-Mills actions
as described before. Let us have instead a ternary Lie algebra (3-Lie algebra)
obeying the ternary commutation relations

[ Tm, Tn, Tp ] = fmnpq Tq (3.46)

and such that the ternary-bracket structure-constants fmnpq obey the fun-
damental identity. A 3-Lie-algebra and octonionic-valued field is defined by
Aµ ≡ Ama

µ (Tm ⊗ ea). However, the triple commutator
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[ Aµ, Aν , Aρ ] = [ Ami
µ (Tm ⊗ ei), Anj

ν (Tn ⊗ ej), Apk
ρ (Tp ⊗ ek) ] (3.47)

would furnish a very complicated expression for the r.h.s of eq-(3.47). To sim-
plify matters one could define the ternary bracket as

[ Aµ, Aν , Aρ ] ≡ Ami
µ Anj

ν Apk
ρ [Tm, Tn, Tp]⊗ [ei, ej , ek] =

Ami
µ Anj

ν Apk
ρ fmnpq fijkl (Tq ⊗ el) (3.48)

so that one has closure in the r.h.s of eq-(3.48). It is warranted to explore
further these generalized ternary gauge field theories involving 3-Lie algebras
and octonions in M-theory.
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