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Abstract

As argued earlier elsewhere, what is the Geometric Straight Line, or
in short, the GSL, we shall never know, and instead, we can only deal
with various mathematical models of it. The so called standard model,
given by the usual linearly ordered field R of real numbers is essen-
tially based on the ancient Egyptian assumption of the Archimedean
Axiom which has no known reasons to be assumed in modern physics.
Setting aside this axiom, a variety of linearly ordered fields FU be-
comes available for the mathematical modelling of the GSL. These
fields, which are larger than R, have a rich self-similar structure due
to the presence of infinitely small and infinitely large numbers. One
of the consequences is the obvious relative and local nature of the
long ongoing local versus nonlocal dichotomy which still keeps having
foundational implications in quantum mechanics.

“History is written with the feet ...”

Ex-Chairman Mao, of the Long March fame ...
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Science is not done scientifically, since it is mostly
done by non-scientists ...

Anonymous

A “mathematical problem” ?
For sometime by now, American mathematicians
have decided to hide their date of birth
and not to mention it in their academic CV-s.
Why ?
Amusingly, Hollywood actors and actresses have their
birth date easily available on Wikipedia.
Can one, therefore, trust American
mathematicians ?
Why are they so blatantly against transparency ?
By the way, Hollywood movies have also for long
been hiding the date of their production ...

A bemused non-American mathematician

1. Quanta under the Heavy Shadow of the Local-Nonlocal
Dichotomy

The local-nonlocal dichotomy has had - and seemingly it still has - its
considerable and rather bewildering impact in quantum mechanics,
and it has done so at least since the celebrated 1935 EPR paper, and
Einstein’s negative remark about “spooky action at distance” ...
Not much later, Bohm’s deterministic version of quantum mechanics
kept being set aside due, among others, its nonlocal aspect ...

Then, with the emergence of quantum information theory during the
last two decades or so, it has been noted that the essentially nonlocal
phenomenon of entanglement is a fundamental resource, and as such,
it is in fact but a particular case of the yet more general nonlocal
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phenomenon of quantum correlations.

Added to the above, Smolin’s recent notable rethinking of quantum
mechanics, [4], comes with nothing short of an upfront acceptance of
nonlocality.

What is, therefore, possibly going on regarding this long ongoing and
foundational dichotomy of local-nonlocal ?

2. Does Archimedes Run the Quanta ?

Quantum physicist, and in fact, physicists at large, are well known
to love to indulge themselves minimally in mathematics. Engineers,
on the other hand, must sign on projects, and not only on research
papers, projects which are then turned soon into real objects or pro-
cesses, thus become subject to a most obvious public scrutiny as to
their effective practical validity. Consequently, although not much
more in love with mathematics than physicists, engineers know very
well that they must take mathematics seriously enough, and use from
it whatever may indeed be relevant in their specific projects ...
And to put that difference more in terms of everyday language, both
physicists and engineers feel about mathematics like going to the den-
tist, except that, unlike physicists, engineers do so more or less as
often as necessary, even if with equal reluctance ...

But then, amusingly, even mathematicians have on occasion funny
ways when dealing with mathematics ...
Namely, certain basic mathematical structures that have been in use
for a longer time tend to be seen as, so to say, THE structures God
Himself is using, and does so exclusively, that is, by disregarding all
other possible alternative mathematical structures ...

One of such long time used mathematical structures is what can be
called the Geometric Straight Line, or GSL, which ever since ancient
Egypt and the Euclidean Geometry, is supposed to satisfy among oth-
ers the Archimedean Axiom, [2,3].
In modern mathematical terms, this means that the GSL is identified
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with the usual field R of real numbers. And as far as mathematicians
are concerned, there is here indeed a strong built in uniqueness and
exclusiveness argument in favour of R, given by the fact that it is the
only field which is linearly ordered, complete, and also satisfies the
Archimedean Axiom.

Well, if mathematicians, and especially those of the more pure math-
ematical persuasion, do not ask themselves what may indeed be the
relevance of the Archimedean Axiom in realms of modern physics,
such as quanta or relativity, for instance, it is quite strange, and also
regrettable, that physicists, especially those involved with quanta or
relativity, among others, do not much bother about that question ...
Indeed, so far it seems that there is no reason whatsoever in modern
physics why one should still hold to the Archimedean Axiom, even if
in ancient times it proved to be particularly useful when remeasuring
land in Egypt each year after the blessings of the flood of the Nile ...

But to be somewhat more brief and to the point, and for the sake
of all those involved in using or building mathematical models, let us
mention three statements which may elicit strong - and quite likely
wrong - reactions, [3] :

(2.1) We do not - and can never ever - know what geometry is !

(2.2) We do not - and can never ever - know what numbers are !

(2.3) We do not - and can never ever - know what the geometric
straight line, or in short, the GSL is !

Indeed, it often happens among those who use mathematics that they
fail to recognize the fundamental difference between abstract ideas,
and on the other hand, one or another of their mathematical model
which happens to be chosen upon specific reasons, or rather, upon
mere historical circumstance.

However, as a kind of excuse for those not aware of the mentioned fun-
damental difference, it should be recalled that less than two centuries
ago, following a philosophy of the calibre of that of Kant, the abstract
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idea of geometry was seen as being reduced to, and perfectly identical
with, one single mathematical model, namely, that of Euclidean geom-
etry. And as if to aggravate the error in such a view, Kant considered
Euclidean geometry as an a priori concept.
As it happened nevertheless in the 1820s, non-Euclidean geometry
was introduced by Lobachevski and Bolyai, followed not much later
by Riemannian geometry, and more near to our times, by the more or
less explicit recognition of the immense difference between the abstract
idea of geometry, and on the other hand, any of its mathematical mod-
els.
And still, the errors in approaching the concept of geometry were to
continue for a while longer. The “Erlangen Program”, for instance,
published by Felix Klein in 1872, saw geometry as reduced to the
rather narrow framework of the study of properties invariant under
certain group transformations ...

In this regard, one may simply say that one does not - and in fact,
can never ever - know what geometry, or for that matter, numbers
are. And all one can know instead are merely various mathematical
models of geometry, or of numbers.
And needless to say, the very same of course goes for the GSL ...

Fortunately, since the emergence of special relativity, and even more
so of general relativity, there is an awareness among physicists that
geometry is, so to say, a collective noun, that is, there is no such a
thing like THE geometry ...
In fact, general relativity introduced the physical concept of back-
ground independent theory. And several of the presently ongoing at-
tempts at bringing the quanta together with general relativity consider
it important to set up the respective theories precisely in such a back-
ground independent manner.

And yet, holding to the Archimedean Axiom is a rather universal and
seemingly quite unshakable tendency ...
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3. What Changes If At Last We Retire Archimedes ?

What changes ?

Well, an immensely large variety of brave new worlds opens up for,
among others, the mathematical modelling the GSL ...

And what is even more important, many of the new mathematical
models lead to linearly ordered fields FU which are larger and far
more rich in structure than the usual field R of real numbers.

Furthermore, in such fields FU one can quite easily find out that the
dichotomy local-nonlocal which has for long troubled the foundations
of quantum mechanics is relegated to a mere relative, and in fact, local
status ...

For those who may, nevertheless, be quite concerned about having to
try to deal with yet another ... mathematical phantasy ... the follow-
ing should be somewhat easing the possible worries :

The mentioned fields FU have been known, dealt with, and used in
mathematics, as well as in physics, for more than four decades by
now. Indeed, they were first introduced in a rigorous manner back in
1966, by Abraham Robinson, in his Nonstandard Analysis.

What happened, however, was that due to Robinson’s insistence on
having the benefit of the so called Transfer Principle when dealing
with such fields FU , the mathematics involved was so technically com-
plicated that it did keep away even most of mathematicians.
And added to that disadvantage came the further one that, upon
a cost-return consideration over some decades, it turned out that
the benefits of having the Transfer Principle were not compensating
enough for the price which had to be paid in the technically compli-
cated mathematics.

And then, it was noted that, in fact, one can simply construct directly
such fields FU , and do so based on no more than “Algebra 101”. As
for the loss of the Transfer Principle, it is fully compensated by the
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comparative simplicity of mathematics needed for the necessary devel-
opments. Details in thins regard can be found in [2] and the references
cited there.

3. A Rich Self-Similar Structure of the GSL

The rich self-similar structure of the mentioned fields FU comes from
the presence in them of infinitesimal and infinitely large numbers, [2].
And it is precisely this presence which gives the fields FU their rich
self-similar structure.

The elements t ∈ FU are of three kind, namely, infinitesimal, finite,
and infinitely large, as defined by the following respective conditions

(3.1) ∀ r ∈ R, r > 0 : t ∈ (−r, r)

(3.2) ∃ r ∈ R, r > 0 : t ∈ (−r, r)

(3.3) ∀ r ∈ R, r > 0 : t /∈ (−r, r)

where for a, b ∈ FU , we denote as usual (a, b) = {s ∈ FU | a < s < b}.
Now, following Leibniz, one denotes

(3.4) monad(0) = { t ∈ FU | t is infinitesimal }

and calls it the monad of 0 ∈ FU , while one denotes

(3.5) Gal(0) = { t ∈ FU | t is finite }

and calls it the Galaxy of 0 ∈ FU .

It is easy to see that

(3.6) Gal(0) =
⋃
r∈Rmonad(r)

where for t ∈ FU , we denote
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(3.7) monad(t) = t+monad(0)

Finally

(3.8) FU \Gal(0)

is the set of infinitely large elements in the field FU .

In this way, all the elements of FU , be they infinitesimal, finite, or in-
finitely large, have been expressed respectively in (3.4) by the monad
of 0 ∈ FU , in (3.6) by the Galaxy of 0 ∈ FU , and in (3.8). And as one
notes, all these sets can in fact be expressed in terms of the monad of
0 ∈ FU alone.

Now in order to grasp more easily the rich self-similar structure of
the field FU let us start by first recalling the much simpler self-similar
structure of the usual field R of real numbers. In this regard, we have
the self-similarity property given by the following bijective, order re-
versing mapping

(3.9) R \ (−1, 1) 3 r 7−→ 1/r ∈ [−1, 1] \ {0}

thus the unbounded set

R \ (−1, 1) = (−∞,−1] ∪ [1,∞)

has through the mapping (3.9) the inverse linear order structure of
the bounded set

[−1, 1] \ {0} = [−1, 0) ∪ (0, 1]

Now by translation and scaling, we obtain the family of self-similarities
of the usual field R of real numbers, given by the bijective, order re-
versing mappings

(3.10) R \ (−a, a) 3 r 7−→ (1/r) + r0 ∈ [r0 − 1
a
, r0 + 1

a
] \ {r0}

where r0, a ∈ R, a > 0.
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Here we can note that none of the self-similarities (3.10) refers to the
structure of R itself at any given point r0 ∈ R, but only to the struc-
ture of the sets

(3.11) [r0 − a, r0 + a] \ {r0} = [r0 − a, r0) ∪ (r0, r0 + a], a > 0

around the point r0 ∈ R, sets which are whole neighbourhoods of r0

from which, however, the point r0 itself has been taken out. This is
obviously inevitable, since each point r0 ∈ R is at a finite strictly pos-
itive - thus not infinitesimal - distance from any other point in R.

In addition, we also have the self-similarities

(3.12) R f−→ (a, b)

where −∞ ≤ a < b ≤ ∞, while f can be any bijective order preserv-
ing, or for that matter, order reversing, continuous mapping.

On the other hand, the field FU has a far more rich self-similar struc-
tures due to the presence of the infinitesimal, and thus as well, of the
infinitely large elements. Indeed, this time, the self-similarities can
also refer to the whole monad of each point, except for the point itself.

Let us start with a self-similarity of any field FU which does not exist
in the case of the usual real line R. Namely, it is easy to see that we
have the order reversing bijective mapping

(3.13) (FU \Gal(0)) 3 t 7−→ 1/t ∈ (monad(0) \ {0})

which means that the set of all infinitely large elements in FU has the
inverse order structure of the set of infinitesimal elements from which
one excludes 0.

This shows the important fact that the infinitesimally local structure,
and on the other hand, the global structure of FU do in fact mirror
one another, a property which has no correspondence in the case of
the usual field R of real numbers.
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Also, through translation and scaling, we have, for each t0, u ∈ FU , u >
0, the order reversing bijective mapping

(3.14) FU \ (−u, u) 3 t 7−→ (1/t) + t0 ∈ [t0 − 1
u
, t0 + 1

u
] \ {t0}

where FU \ (−u, u) will always contain infinitely large elements.

These again are self-similarities not present in the case of the usual
real line R.

Furthermore, in (3.14) we have a far more rich possibility for transla-
tions and scalings than in the usual case of the real line R. Indeed,
in addition to translations and scalings with non-zero finite elements
r0, a ∈ R, a > 0, as in (3.11), we can now also translate and scale with
all t0, u ∈ FU , u > 0, thus with all infinitely large elements, as well as
with all infinitesimal elements, except for scaling with 0 ∈ FU .

Let us consider the above in some detail by listing the different possi-
bilities for the sets

(3.15) [t0 − 1
u
, t0 + 1

u
] \ {t0}

in (3.14).

First of all, these sets are no longer mere subsets in R, but instead,
they are subsets in FU , and will always contain infinitesimals, since
they contain nonvoid intervals. Furthermore, as seen below, they may
also contain infinitely large elements.

Also, t0, u ∈ FU , u > 0 in (3.15) can independently be finite, infinites-
imal, or infinitely large, thus resulting in 9 possible combinations and
6 distinct outcomes regarding the set (3.15), which we list below. This
is in sharp contradistinction with the case in (3.11) which applies to
the real line R. Indeed :

1) Let us start the listing of these 9 different cases and 6 distinct
outcomes with both t0 and u being finite. Then obviously (3.15) is a
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subset of Gal(0), and it has the finite, non-infinitesimal length 2u.

2) When t0 is finite and u is infinitesimal, then the set (3.15) is in-
finitely large, and is no longer contained inGal(0), however, it contains
Gal(0) \ {t0}.

3) If t0 is finite, but u is infinitely large, then (3.15) is again a subset
of Gal(0), and in fact, it has the infinitesimal length 2u, which means
that it is a subset of monad(t0).

4) Let us now assume that t0 is infinitesimal and u finite. Then re-
garding the set (3.9), we are back to case 1) above.

5) If both t0 and u are infinitesimal then the set (3.15) is as in 2) above.

6) When t0 is infinitesimal and u is infinitely large, the set (3.15) is as
in 3) above.

7) Let us now take t0 infinitely large and u finite. Then the set (3.15)
is disjoint from Gal(0), and it has the finite, non-infinitesimal length
2u.

8) When t0 infinitely large and u infinitesimal, then the set (3.15) is
again not contained in Gal(0), and it has the infinitely large length
2u. Furthermore, depending on the relationship between |t0| and 1/u,
it may, or it may not intersect Gal(0).

9) Finally, when both t0 and u are infinitely large, then the set (3.15)
is disjoint from Gal(0), and it has the infinitesimal length 2u.

We conclude that he local structure of FU is given by

(3.16) Gal(0) =
⋃
r∈R (r +monad(0))

while the global structure of FU is given by

(3.17) FU = (
⋃
λ∈Λ Gal(−sλ) )

⋃
Gal(0)

⋃
(

⋃
λ∈Λ Gal(sλ) )
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where Λ is an uncountable set of indices, while sλ ∈ FU are positive
infinite, and such that sµ − sλ is infinite, for λ, µ ∈ Λ, λ 6= µ.

Here we can point to a self-similar aspect of the interrelation between
the local and global structure of FU which may remind us of a typical
feature of fractals. Indeed, similar with (3.16), the relation (3.17) can
also be expressed in terms monads, namely

(3.18) FU = (
⋃
r∈R, λ∈Λ (r − sλ +monad(0)) )

⋃
(

⋃
r∈R (r +monad(0)) )⋃
(

⋃
r∈R, λ∈Λ (r + sλ +monad(0)) )

In this way, in view of (3.13), we obtain the self-similar order revers-
ing bijection, which is now expressed solely in terms of mon(0), namely

(3.19) [ (
⋃
r∈R, λ∈Λ (r − sλ +monad(0)) )⋃

(
⋃
r∈R, λ∈Λ (r + sλ +monad(0)) ) ] 3 t 7−→

7−→ 1/t ∈ [ monad(0) \ {0} ]

and conversely

(3.20) [ monad(0) \ {0} ] 3 t 7−→

7−→ 1/t ∈ [ (
⋃
r∈R, λ∈Λ (r−sλ+monad(0)) )⋃
(

⋃
r∈R, λ∈Λ (r+sλ+monad(0)) ) ]

As we can note, the above bijections in (3.19), (3.20) are given by the
very simple algebraic, explicit, and order reversing mapping s 7−→ 1/s,
which involves what is essentially a field operation, namely, division.
And these two bijections take the place of the much simpler order re-
versing bijections in the case of the usual real line R, namely

(3.21) (R \ (−1, 1)) 3 r 7−→ 1/r ∈ ([−1, 1] \ {0})
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(3.22) ([−1, 1] \ {0}) 3 r 7−→ 1/r ∈ (R \ (−1, 1))

The considerable difference between (3.19), (3.20), and on the other
hand, (3.21), (3.22) is obvious. Indeed, in the former two, which de-
scribe the self-similar structure of FU , the order reversing bijections
represent the set

mon(0) \ {0}

through the set

[ (
⋃
r∈R, λ∈Λ (r − sλ +monad(0)) )⋃

(
⋃
r∈R, λ∈Λ (r + sλ +monad(0)) ) ]

which contains uncountably many translates of the set mon(0). And
it is precisely this manifestly rich self-similarity of the set mon(0) of
monads which is the novelty in the non-Archimedean structure of FU ,
when compared with the much simpler Archimedean structure of R.
This novelty is remarkable since it makes mon(0) have the very same
complexity with the whole of

FU \Gal(0) = [ (
⋃
r∈R, λ∈Λ (r − sλ +monad(0)) )⋃

(
⋃
r∈R, λ∈Λ (r + sλ +monad(0)) ) ]

In this way mon(0), which is but the set of infinitesimals, thus it can-
not be represented in terms of the usual field R of real numbers, turns
out to have the very same complexity as the set FU \ Gal(0) of all
infinitely large numbers, which again cannot be represented in terms
of the usual field R of real numbers.

4. One’s Chosen or Given Scale

When as customary, one uses for the GSL the mathematical model
given by the usual field R of real numbers, one can choose, or be
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given, a scale by specifying as an arbitrary unit any finite number
u ∈ R, u > 0.

Thus in such a situation, any finite interval (a, b) ⊆ R has a length b−a
which, when compared to u, is of similar size, considerably smaller, or
significantly larger. However, in each of these situations both of the
numbers

(4.1) (b− a)/u, u/(b− a)

will be finite.

It follows that with the above mathematical modelling of the GSL, any
possible difference between local and nonlocal is limited exclusively to
finite proportions.

On the other hand, when the GSL is modelled by any of the fields FU ,
the scale can again be defined by specifying any unit U ∈ FU , U > 0,
even if in this case U can not only be finite, but can also be infinitely
small, or infinitely large.

And then, the difference between local and nonlocal acquires two new
possibilities. Namely, given an interval (A,B) ⊆ FU , its length B −A
compared to the unit U can be not only finite, but it can also be in-
finitely large, or on the contrary, infinitely small. More precisely, the
number

(4.2) (B − A)/U

can be finite, infinitely small, or infinitely large. And the same can
happen with the number

(4.3) U/(B − A)

The consequent novelty compared to (4.1) is that one can have the
simultaneous situation when

(4.4) (B−A)/U is infinitely small, and U/(B−A) is infinitely large
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or the other way round, when

(4.5) (B−A)/U is infinitely large, and U/(B−A) is infinitely small

In this way, the dichotomy local versus nonlocal acquires two new
meanings, namely

(4.6) A and B are infinitely local with respect to one another

when (4.4) holds, or alternatively

(4.7) A and B are infinitely nonlocal with respect to one another

in the case of (4.5).

5. The Local-Nonlocal Dichotomy Is Merely Relative
and Local ...

Let us look at the above when comparing two intervals in the GSL.

In the case of the usual field R of real numbers we have the following
obvious property. Given any −∞ < a < b < ∞ and −∞ < c < d <
∞, we have the strictly increasing bijection f : R −→ R given by the
linear mapping

(5.1) f(x) = ((d− c)x+ bc− ad)/(b− a), x ∈ R

such that

(5.2) f(a) = c, f(b) = d

with the induced strictly increasing linear bijection between the two
intervals

(5.3) f : (a, b) −→ (c, d)
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Now, since each FU is a linearly ordered field, the operations in (5.1)
can again be performed. Thus for every

(5.4) A,B,C,D ∈ FU , A < B, C < D

we have the strictly increasing bijection

(5.5) F : FU −→ FU

given by the linear mapping

(5.6) F (t) = ((D − C)t+BC − AD)/(B − A), t ∈ FU

for which we have

(5.7) F (A) = C, F (B) = D

with the induced strictly increasing linear bijection between the two
intervals

(5.8) F : (A,B) −→ (C,D)

Clearly, such a mapping F in (5.4) - (5.8) is nothing else but a trans-
lation followed by a scaling, for instance, A is translated to C, and the
interval (A,B) is scaled to the interval (C,D).

And here the remarkable and nontrivial fact - one that is not possible
within the usual field R of real numbers - is that any of the num-
bers A,B,C,D in (5.4) - (5.8) can be infinitesimal, finite, or infinitely
large.
Consequently, any of the intervals (A,B) or (C,D) in (5.8) can be
infinitesimal, finite, or infinitely large.

This is, therefore, precisely the way the relative and local nature of
the local-nonlocal dichotomy becomes further apparent in the sense
mentioned at (4.6), (4.7).

Indeed, let, for instance, have two finite intervals (A,B) and (C,D)
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such that the second is large enough compared with the first one, in
order for C and D to be considered nonlocal relative to one another,
while A and B are considered local with respect to one another.

If we now take two infinitesimal numbers γ, δ ∈ FU , γ < δ, and take
the corresponding interval (γ, δ) as our local reference, then the map-
ping (5.5) corresponding to γ, δ, A,B will make both intervals (A,B)
and (C,D) be relatively infinitely large, thus certainly nonlocal.
And obviously the same happens with the mapping (5.5) correspond-
ing to γ, δ, C,D.

On the other hand, if we take two infinitely large numbers Γ,∆ ∈
FU , Γ < ∆, with ∆− Γ being also infinitely large, then the mapping
(5.5) corresponding to Γ,∆, A,B will make both intervals (A,B) and
(C,D) be relatively infinitely small, thus certainly local.
And obviously the same happens with the mapping (5.5) correspond-
ing to Γ,∆, C,D.

What makes the above of special concern is the following.

In case the GSL is modelled by the usual field R of real numbers,
the choice of the unit is arbitrary in the sense tat every number
u ∈ R, u > 0 can be chosen as a unit, and we have the corresponding
strictly increasing linear bijection

(5.9) R 3 x 7−→ ux ∈ R

which changes the unit given by 1 into that given by u. The converse
change is, of course, by the strictly increasing linear bijection

(5.10) R 3 x 7−→ x/u ∈ R

Here also, a certain choice of u ∈ R, u > 0 may turn two finite inter-
vals (a, b) and (c, d) in two relatively local ones, or relatively nonlocal
ones, depending on the size of u.

However, it is not possible to turn both of such intervals into relatively
infinitesimally small, or into relatively infinitely large ones.
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Returning to the fields FU , their rich self-similar structure makes it a
far more relevant fact that the unit U ∈ FU , U > 0, which one chooses
is indeed arbitrary. Namely, as seen above, relative to the choice of
such a unit, any two finite intervals relative to some earlier given alter-
native unit may now turn into the irrelevance of both having a mere
infinitesimal size, or on the contrary, of becoming all but inaccessible
in their far removed immensity.

So much for the still ongoing ... quantum battles ... related to the
assumed foundational dichotomy between local versus nonlocal prop-
erties ...

6. What Is There To Underlie the Dichotomy
Local-Nonlocal ?

Certainly, from the point of view of our thought processes related
to the dichotomy local versus nonlocal, or for that matter, from the
point of view of the world at large, the world in which we happen to
be while concerning ourselves with that dichotomy, there is a most
obvious underlying unifying realm, a realm from where the two sides
of this dichotomy do happen to arise, a realm where no matter how
far from each other these two sides may turn out to be conceived as
being, they nevertheless are and must be most close to one another,
and thus quite local as well. Indeed, this unifying realm is simply that
of our respective thought processes ...

As it happens, however, in present day science, such thought processes
are not supposed to be included into the scientific enquiry, and instead,
they are only there to implement such an enquiry. In other words, it
is much like when one drives across a field in a car, but has no concern
about the ways of the inner workings of that car, let alone of the in-
teractions between the terrain and the car, and instead, simply takes
for granted the car and its proper functioning ...

And yet, strange things happen which such an approach cannot clarify
satisfactorily ...
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For instance, [1], we can easily think simultaneously about two stars
which are many light years apart from one another, and from us as
well. And then clearly, such a thinking - which in some ways hap-
pens to relate those two stars to one another, and also us with them -
cannot take place as a usual physical phenomenon, and certainly not,
as long as we accept the limitation on the speed of propagation of all
physical phenomena imposed by special and general relativity ...

So then, where and how does such a thinking happen ?

Do we really have to try to go back to some version of that much mis-
understood and derided Cartesian distinction between “res extensa”,
where the limitation imposed by relativity rules, and on the other
hand, “‘res cogitans”, where quite likely no such limitation exists ?

By the way, the standard accusation and consequent dismissal of the
above Cartesian differentiation between those two realms is that it is
but a mere dualism. And the essential fact is missed that Descartes,
like all major Western thinkers of his time, was a genuinely religious
Christian man who firmly believed in God. And any such person can
simply be definition not be a dualist, since he or she sees the world as
nothing else but the miraculous unity of the Creation of God ...
Furthermore, even is someone may honestly believe to be a dualist,
this is simply not really possible. Indeed, the very thought of dualism
is but inevitably one thought, one single, one unique, one coherent
thought, a thought which by definition underlies that assumed dual-
ity. And precisely to the extent that it underlies it, it severely limits
its validity and realms of existence ...

But let us keep here to the present day limitations imposed upon what
is supposed to be a valid scientific enquiry ...

And then, within such terms, is there some deeper unity which may
underlie the duality local versus nonlocal ?

Well, it is easy to note that, indeed, there is ...
And in fact, we can suggest at least two such candidates ...
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The first one can be given by the GSL, more precisely, by the fact that
we shall never know what the GSL is, and instead, we can only know
its various mathematical models.
Indeed, in this sense the dichotomy local versus nonlocal simply does
not arise on the level of the GSL, but only on that of its various math-
ematical models.

Second, the mathematical models of the GSL given, for instance, by
various fields FU show, as seen in sections 4 and 5, the relativity and
locality of the dichotomy local versus nonlocal.
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