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Abstract: Combinatorics is a powerful tool for dealing with relations among

objectives mushroomed in the past century. However, an more important work

for mathematician is to apply combinatorics to other mathematics and other

sciences not merely to find combinatorial behavior for objectives. Recently,

such research works appeared on journals for mathematics and theoretical

physics on cosmos. The main purpose of this paper is to survey these thinking

and ideas for mathematics and cosmological physics, such as those of multi-

spaces, map geometries and combinatorial cosmoses, also the combinatorial

conjecture for mathematics proposed by myself in 2005. Some open problems

are included for the 21th mathematics by a combinatorial speculation.
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1. The role of classical combinatorics in mathematics

Modern science has so advanced that to find a universal genus in the society of
sciences is nearly impossible. Thereby a scientist can only give his or her contribution
in one or several fields. The same thing also happens for researchers in combinatorics.
Generally, combinatorics deals with twofold questions:

Question 1.1. determine or find structures or properties of configurations, such
as those structure results appeared in graph theory, combinatorial maps and design
theory,..., etc..

Question 1.2. enumerate configurations, such as those appeared in the enu-
meration of graphs, labelled graphs, rooted maps, unrooted maps and combinatorial
designs,...,etc..

Consider the contribution of a question to science. We can separate mathematical
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questions into three grades:

Grade 1 they contribute to all sciences.

Grade 2 they contribute to all or several branches of mathematics.

Grade 3 they contribute only to one branch of mathematics, for instance, just
to the graph theory or combinatorial theory.

Classical combinatorics is just a grade 3 mathematics by this view. This conclu-
sion is gloomy for researchers in combinatorics, also for me 4 years ago. Whether
can combinatorics be applied to other mathematics or other sciences? Whether can
it contribute to human’s lives, not just in games?

Although become a universal genus in science is nearly impossible, our world
is a combinatorial world. A combinatorician should stand on all mathematics and
all sciences, not just on classical combinatorics and then with a real combinatorial
notion, i.e., combining different fields into a unifying field ([25]-[28]), such as combine
different or even anti branches in mathematics or science into a unifying science for
its freedom of research ([24]). This combination also requires us answering three
questions for solving a combinatorial question before. What is this question working
for? What is its objective? What is its contribution to science or human’s society?
After these works be well done, modern combinatorics can be applied to all sciences
and all sciences are combinatorization.

2. The combinatorics metrization and mathematics combinatorization

There is a prerequisite for the application of combinatorics to other branch math-
ematics and other sciences, i.e, to introduce various metrics into combinatorics,
ignored by the classical combinatorics since they are the fundamental of scientific
realization for our world. This speculation is firstly appeared in the beginning of
Chapter 5 of my book [16]:

· · · our world is full of measures. For applying combinatorics to other branch
of mathematics, a good idea is pullback measures on combinatorial objects again,
ignored by the classical combinatorics and reconstructed or make combinatorial gen-
eralization for the classical mathematics, such as those of algebra, differential geome-
try, Riemann geometry, Smarandache geometries, · · · and the mechanics, theoretical
physics, · · ·.

The combinatorial conjecture for mathematics, abbreviated to CCM is stated in
the following.

Conjecture 2.1(CCM Conjecture) Mathematics can be reconstructed from or turned
into combinatorization.

Remark 2.1 We need some further clarifications for this conjecture.
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(i) This conjecture assumes that one can selects finite combinatorial rulers and
axioms to reconstruct or make generalization for classical mathematics.

(ii) Classical mathematics is a particular case in the combinatorization of math-
ematics, i.e., the later is a combinatorial generalization of the former.

(iii) We can make combinatorizations of different branches in mathematics into
one and find new theorems after then.

Therefore, a branch in mathematics can not be ended if it has not been com-
binatorization and all mathematics can not be ended if its combinatorization has
not completed. There is an assumption in one’s realization of our world, i.e., every
science can be turned into mathematization. Whence, we similarly get the combina-
torial conjecture for sciences.

Conjecture 2.2(CCS Conjecture) Sciences can be reconstructed from or turned
into combinatorization.

A typical example for the combinatorization of classical mathematics is the com-
binatorial map theory, i.e., a combinatorial theory for surfaces([14]-[15]). Combina-
torially, a surface is topological equivalent to a polygon with even number of edges
by identifying each pairs of edges along a given direction on it. If label each pair of
edges by a letter e, e ∈ E , a surface S is also identifying with a cyclic permutation
such that each edge e, e ∈ E just appears two times in S, one is e and another is
e−1. Let a, b, c, · · · denote the letters in E and A, B, C, · · · the sections of successive
letters in a linear order on a surface S (or a string of letters on S). Then, a surface
can be represented as follows:

S = (· · · , A, a, B, a−1, C, · · ·),

where, a ∈ E ,A, B, C denote a string of letters. Define three elementary transfor-
mations as follows:

(O1) (A, a, a−1, B) ⇔ (A, B);

(O2) (i) (A, a, b, B, b−1, a−1) ⇔ (A, c, B, c−1);
(ii) (A, a, b, B, a, b) ⇔ (A, c, B, c);

(O3) (i) (A, a, B, C, a−1, D) ⇔ (B, a, A, D, a−1, C);
(ii) (A, a, B, C, a, D) ⇔ (B, a, A, C−1, a, D−1).

If a surface S can be obtained from S0 by these elementary transformations O1-
O3, we say that S is elementary equivalent with S0, denoted by S ∼El S0. Then we
can get the classification theorem of compact surfaces as follows([29]):

Any compact surface is homeomorphic to one of the following standard surfaces:
(P0) the sphere: aa−1;
(Pn) the connected sum of n, n ≥ 1 tori:

a1b1a
−1
1 b−1

1 a2b2a
−1
2 b−1

2 · · ·anbna
−1
n b−1

n ;
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(Qn) the connected sum of n, n ≥ 1 projective planes:

a1a1a2a2 · · ·anan.

A map M is a connected topological graph cellularly embedded in a surface S.
In 1973, Tutte suggested an algebraic representation for an embedding graph on a
locally orientable surface ([16]):

A combinatorial map M = (Xα,β,P) is defined to be a basic permutation P,
i.e, for any x ∈ Xα,β, no integer k exists such that Pkx = αx, acting on Xα,β, the
disjoint union of quadricells Kx of x ∈ X (the base set), where K = {1, α, β, αβ} is
the Klein group satisfying the following two conditions:

(i) αP = P−1α;

(ii) the group ΨJ =< α, β,P > is transitive on Xα,β.

For a given map M = (Xα,β ,P), it can be shown that M∗ = (Xβ,α,Pαβ) is also
a map, call it the dual of the map M . The vertices of M are defined as the pairs
of conjugatcy orbits of P action on Xα,β by the condition (i) and edges the orbits
of K on Xα,β, for example, for ∀x ∈ Xα,β , {x, αx, βx, αβx} is an edge of the map
M . Define the faces of M to be the vertices in the dual map M∗. Then the Euler
characteristic χ(M) of the map M is

χ(M) = ν(M) − ε(M) + φ(M)

where, ν(M), ε(M), φ(M) are the number of vertices, edges and faces of the map
M , respectively. For each vertex of a map M , its valency is defined to be the length
of the orbits of P action on a quadricell incident with u.

For example, the graph K4 on the tours with one face length 4 and another 8
shown in Fig.2.1

Fig.2.1¸
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can be algebraically represented by (Xα,β,P) with Xα,β = {x, y, z, u, v, w, αx, αy, αz,
αu, αv, αw, βx, βy, βz, βu, βv, βw, αβx, αβy, αβz, αβu, αβv, αβw} and

P = (x, y, z)(αβx, u, w)(αβz, αβu, v)(αβy, αβv, αβw)

× (αx, αz, αy)(βx, αw, αu)(βz, αv, βu)(βy, βw, βv)

with 4 vertices, 6 edges and 2 faces on an orientable surface of genus 1.
By the view of combinatorial maps, these standard surfaces P0, Pn, Qn for n ≥ 1

is nothing but the bouquet Bn on a locally orientable surface with just one face.
Therefore, combinatorial maps are the combinatorization of surfaces.

Many open problems are motivated by the CCM Conjecture. For example, a
Gauss mapping among surfaces is defined as follows.

Let S ⊂ R3 be a surface with an orientation N. The mapping N :S → R3 takes
its value in the unit sphere

S2 = {(x, y, z) ∈ R3|x2 + y2 + z2 = 1}

along the orientation N. The map N :S → S2, thus defined, is called the Gauss
mapping.

we know that for a point P ∈ S such that the Gaussian curvature K(P ) 6= 0
and V a connected neighborhood of P with K does not change sign,

K(P ) = lim
A→0

N(A)

A
,

where A is the area of a region B ⊂ V and N(A) is the area of the image of B by
the Gauss mapping N : S → S2([2],[4]). Questions for the Gauss mapping are

(i) what is its combinatorial meaning of the Gauss mapping? How to realizes it
by combinatorial maps?

(ii) how can we define various curvatures for maps and rebuilt the results in the
classical differential geometry?

Let S be a compact orientable surface. Then the Gauss-Bonnet theorem asserts
that

∫ ∫

S
Kdσ = 2πχ(S),

where K is the Gaussian curvature of S.
By the CCM Conjecture, the following questions should be considered.

(i) How can we define various metrics for combinatorial maps, such as those of
length, distance, angle, area, curvature,· · ·?

(ii) Can we rebuilt the Gauss-Bonnet theorem by maps for dimensional 2 or
higher dimensional compact manifolds without boundary?

5



One can see the references [15] and [16] for more open problems for the classical
mathematics motivated by this CCM Conjecture, also raise new open problems for
his or her research works.

3. The contribution of combinatorial speculation to mathematics

3.1. The combinatorization of algebra

By the view of combinatorics, algebra can be also seen as a combinatorial mathe-
matics. The combinatorial speculation can generalize it by means of the combinator-
ization. For this objective, these Smarandache multi-algebraic systems are needed,
defined in the following.

Definition 3.1([17],[18]) For any integers n, n ≥ 1 and i, 1 ≤ i ≤ n, let Ai be a set
with an operation set O(Ai) such that (Ai, O(Ai)) is a complete algebraic system.
Then the union

n⋃

i=1

(Ai, O(Ai))

is called an n multi-algebra system.

An example of multi-algebra systems can be constructed by a finite additive
group. Let n be an integer, Z1 = ({0, 1, 2, · · · , n − 1}, +) an additive group (modn)
and P = (0, 1, 2, · · · , n − 1) a permutation. For any integer i, 0 ≤ i ≤ n − 1, define

Zi+1 = P i(Z1)

such that P i(k) +i P i(l) = P i(m) in Zi+1 if k + l = m in Z1, where +i denotes the
binary operation +i : (P i(k), P i(l)) → P i(m). Then we know that

n⋃

i=1

Zi

is an n multi-algebra system .
The conception of multi-algebra systems can be extensively applied for gener-

alizing conceptions and results in the algebraic structure, such as those of groups,
rings, bodies, fields and vector spaces, · · ·, etc.. Some of them are explained in the
following.

Definition 3.2 Let G̃ =
n⋃

i=1
Gi be a complete multi-algebra system with a binary

operation set O(G̃) = {×i, 1 ≤ i ≤ n}. If for any integer i, 1 ≤ i ≤ n, (Gi;×i) is
a group and for ∀x, y, z ∈ G̃ and any two binary operations × and ◦, × 6= ◦, there
is one operation, for example the operation × satisfying the distribution law to the
operation ◦ provided their operation results exist , i.e.,
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x × (y ◦ z) = (x × y) ◦ (x × z),

(y ◦ z) × x = (y × x) ◦ (z × x),

then G̃ is called a multi-group.

For a multi-group (G̃, O(G̃)), G̃1 ⊂ G̃ and O(G̃1) ⊂ O(G̃), call (G̃1, O(G̃1)) a
sub-multi-group of (G̃, O(G̃)) if G̃1 is also a multi-group under the operations in
O(G̃1), denoted by G̃1 � G̃. For two sets A and B, denote the union A

⋃
B by

A
⊕

B if A
⋂

B = ∅. Then we get a generalization of the Lagrange theorem of finite
groups.

Theorem 3.1([18]) For any sub-multi-group H̃ of a finite multi-group G̃, there is
a representation set T , T ⊂ G̃, such that

G̃ =
⊕

x∈T

xH̃.

For a sub-multi-group H̃ of G̃, × ∈ O(H̃) and ∀g ∈ G̃(×), if for ∀h ∈ H̃ ,

g × h × g−1 ∈ H̃,

then H̃ is called a normal sub-multi-group of G̃. We call an arrangement of all
operations in O(G̃) in order an oriented operation sequence, denote it by

−→
O (G̃). Then

a generalization of the Jordan-Hölder theorem for finite multi-groups is described in
the next result.

Theorem 3.2([18]) For a finite multi-group G̃ =
n⋃

i=1
Gi and an oriented opera-

tion sequence
−→
O (G̃), the length of maximal series of normal sub-multi-groups is a

constant, only dependent on G̃ itself.

In Definition 2.2, choose n = 2, G1 = G2 = G̃. Then G̃ is a body. If (G1;×1) and
(G2;×2) both are commutative groups, then G̃ is a field. For multi-algebra systems
with two or more operations on one set, we introduce the conception of multi-rings
and multi-vector spaces in the following.

Definition 3.3 Let R̃ =
m⋃

i=1
Ri be a complete multi-algebra system with a double

binary operation set O(R̃) = {(+i,×i), 1 ≤ i ≤ m}. If for any integers i, j, i 6=
j, 1 ≤ i, j ≤ m, (Ri; +i,×i) is a ring and for ∀x, y, z ∈ R̃,

(x +i y) +j z = x +i (y +j z), (x ×i y) ×j z = x ×i (y ×j z)

and
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x ×i (y +j z) = x ×i y +j x ×i z, (y +j z) ×i x = y ×i x +j z ×i x

provided all thpse operation results exist, then R̃ is called a multi-ring. If for any
integer 1 ≤ i ≤ m, (R; +i,×i) is a filed, then R̃ is called a multi-filed.

Definition 3.4 Let Ṽ =
k⋃

i=1
Vi be a complete multi-algebra system with a binary

operation set O(Ṽ ) = {(+̇i, ·i) | 1 ≤ i ≤ m} and F̃ =
k⋃

i=1
Fi a multi-filed with a

double binary operation set O(F̃ ) = {(+i,×i) | 1 ≤ i ≤ k}. If for any integers
i, j, 1 ≤ i, j ≤ k and ∀a,b, c ∈ Ṽ , k1, k2 ∈ F̃ ,

(i) (Vi; +̇i, ·i) is a vector space on Fi with vector additive +̇i and scalar multipli-
cation ·i;

(ii) (a+̇ib)+̇jc = a+̇i(b+̇jc);
(iii) (k1 +i k2) ·j a = k1 +i (k2 ·j a);

provided all those operation results exist, then Ṽ is called a multi-vector space on
the multi-filed F̃ with a binary operation set O(Ṽ ), denoted by (Ṽ ; F̃ ).

Similar to multi-groups, results can be also obtained for multi-rings or multi-
vector spaces by generalizing classical results in rings or linear spaces. Notice that
in the references [17] and [18], some such results have been gotten.

3.2. The combinatorization of geometries

First, we generalize classical metric spaces by the combinatorial speculation.

Definition 3.5 A multi-metric space is a union M̃ =
m⋃

i=1
Mi such that each Mi is a

space with metric ρi for ∀i, 1 ≤ i ≤ m.

Two well-known results in metric spaces are generalized.

Theorem 3.3([19]) Let M̃ =
m⋃

i=1
Mi be a completed multi-metric space. For an ǫ-

disk sequence {B(ǫn, xn)}, where ǫn > 0 for n = 1, 2, 3, · · ·, the following conditions
hold:

(i) B(ǫ1, x1) ⊃ B(ǫ2, x2) ⊃ B(ǫ3, x3) ⊃ · · · ⊃ B(ǫn, xn) ⊃ · · ·;
(ii) lim

n→+∞
ǫn = 0.

Then
+∞⋂
n=1

B(ǫn, xn) only has one point.

Theorem 3.4([19]) Let M̃ =
m⋃

i=1
Mi be a completed multi-metric space and T a

contraction on M̃ . Then

1 ≤# Φ(T ) ≤ m,
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where #Φ(T ) denotes the number of fixed points of T .

Particularly, let m = 1. We get the Banach fixed-point theorem again.

Corollary 3.1(Banach) Let M be a metric space and T a contraction on M . Then
T has just one fixed point.

Smarandache geometries were proposed by Smarandache in [25] which are gen-
eralization of classical geometries, i.e., these Euclid, Lobachevshy-Bolyai-Gauss and
Riemann geometries may be united altogether in a same space, by some Smaran-
dache geometries under the combinatorial speculation. These geometries can be
either partially Euclidean and partially Non-Euclidean, or Non-Euclidean. In gen-
eral, Smarandache geometries are defined by the next definition.

Definition 3.6 An axiom is said to be Smarandachely denied if the axiom behaves
in at least two different ways within the same space, i.e., validated and invalided, or
only invalided but in multiple distinct ways.

A Smarandache geometry is a geometry which has at least one Smarandachely
denied axiom(1969).

For example, let us consider an euclidean plane R2 and three non-collinear points
A, B and C. Define s-points as all usual euclidean points on R2 and s-lines as any
euclidean line that passes through one and only one of points A, B and C. Then
this geometry is a Smarandache geometry because two axioms are Smarandachely
denied comparing with an Euclid geometry:

(i) The axiom (A5) that through a point exterior to a given line there is only
one parallel passing through it is now replaced by two statements: one parallel and
no parallel. Let L be an s-line passing through C and is parallel in the euclidean
sense to AB. Notice that through any s-point not lying on AB there is one s-line
parallel to L and through any other s-point lying on AB there are no s-lines parallel
to L such as those shown in Fig.3.1(a).

Fig.3.1¸

(ii) The axiom that through any two distinct points there exists one line passing
through them is now replaced by; one s-line and no s-line. Notice that through any
two distinct s-points D, E collinear with one of A, B and C, there is one s-line
passing through them and through any two distinct s-points F, G lying on AB or
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non-collinear with one of A, B and C, there is no s-line passing through them such
as those shown in Fig.3.1(b).

A Smarandache n-manifold is an n-dimensional manifold that support a Smaran-
dache geometry. Now there are many approaches for constructing Smarandache
manifolds in the case of n = 2. A general way is by the so called map geometries
without or with boundary underlying orientable or non-orientable maps proposed
in references [14] and [15] firstly.

Definition 3.7 For a combinatorial map M with each vertex valency≥ 3, endow
each vertex u, u ∈ V (M) a real number µ(u), 0 < µ(u) < 4π

ρM (u)
. Call (M, µ) a

map geometry without boundary, µ : V (M) → R an angle function on M .

Definition 3.8 For a map geometry (M, µ) without boundary and faces f1, f2, · · · , fl

∈ F (M), 1 ≤ l ≤ φ(M) − 1, if S(M) \ {f1, f2, · · · , fl} is connected, then call
(M, µ)−l = (S(M) \ {f1, f2, · · · , fl}, µ) a map geometry with boundary f1, f2, · · · , fl,
where S(M) denotes the locally orientable surface underlying M .

A realization for vertices u, v, w ∈ V (M) in a space R3 is shown in Fig.3.2, where
ρM(u)µ(u) < 2π, ρM(v)µ(v) = 2π and ρM(w)µ(w) > 2π, are called to be elliptic,
euclidean or hyperbolic, respectively.

ρM(u)µ(u) < 2π ρM(u)µ(u) = 2π ρM(u)µ(u) > 2π¸

Fig.3.2¸

On an Euclid plane R2, a straight line passing through an elliptic or a hyperbolic
point is shown in Fig.3.3.

Fig.3.3¸

Theorem 3.5([17]) There are Smarandache geometries, including paradoxist ge-
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ometries, non-geometries and anti-geometries in map geometries without or with
boundary.

Generally, we can generalize the ideas in Definitions 3.7 and 3.8 to metric spaces
further and find new geometries.

Definition 3.9 Let U and W be two metric spaces with metric ρ, W ⊆ U . For
∀u ∈ U , if there is a continuous mapping ω : u → ω(u), where ω(u) ∈ Rn for an
integer n, n ≥ 1 such that for any number ǫ > 0, there exist a number δ > 0 and a
point v ∈ W , ρ(u − v) < δ such that ρ(ω(u) − ω(v)) < ǫ, then U is called a metric
pseudo-space if U = W or a bounded metric pseudo-space if there is a number N > 0
such that ∀w ∈ W , ρ(w) ≤ N , denoted by (U, ω) or (U−, ω), respectively.

For the case n = 1, we can also explain ω(u) being an angle function with
0 < ω(u) ≤ 4π as the case in map geometries without or with boundary, i.e.,

ω(u) =

{
ω(u)(mod4π), if u ∈ W,
2π, if u ∈ U \ W

and get some interesting metric pseudo-space geometries. For example, let U =
W = Euclid plane =

∑
, then we obtained some interesting results for pseudo-plane

geometries (
∑

, ω) as shown in the following([17]).

Theorem 3.6 In a pseudo-plane (
∑

, ω), if there are no euclidean points, then all
points of (

∑
, ω) is either elliptic or hyperbolic.

Theorem 3.7 There are no saddle points and stable knots in a pseudo-plane (
∑

, ω).

Theorem 3.8 For two constants ρ0, θ0, ρ0 > 0 and θ0 6= 0, there is a pseudo-plane
(
∑

, ω) with

ω(ρ, θ) = 2(π −
ρ0

θ0ρ
) or ω(ρ, θ) = 2(π +

ρ0

θ0ρ
)

such that

ρ = ρ0

is a limiting ring in (
∑

, ω).

Now for an m-manifold Mm and ∀u ∈ Mm, choose U = W = Mm in Definition
3.9 for n = 1 and ω(u) a smooth function. We get pseudo-manifold geometries
(Mm, ω) on Mm. By the reference [2], a Minkowski norm on Mm is a function
F : Mm → [0, +∞) such that

(i) F is smooth on Mm \ {0};
(ii) F is 1-homogeneous, i.e., F (λu) = λF (u) for u ∈ Mm and λ > 0;
(iii) for ∀y ∈ Mm \ {0}, the symmetric bilinear form gy : Mm × Mm → R with
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gy(u, v) =
1

2

∂2F 2(y + su + tv)

∂s∂t
|t=s=0

is positive definite and a Finsler manifold is a manifold Mm endowed with a function
F : TMm → [0, +∞) such that

(i) F is smooth on TMm \ {0} =
⋃
{TxM

m \ {0} : x ∈ Mm};
(ii) F |TxMm → [0, +∞) is a Minkowski norm for ∀x ∈ Mm.

As a special case, we choose ω(x) = F (x) for x ∈ Mm, then (Mm, ω) is a Finsler
manifold. Particularly, if ω(x) = gx(y, y) = F 2(x, y), then (Mm, ω) is a Riemann
manifold. Therefore, we get a relation for Smarandache geometries with Finsler or
Riemann geometry.

Theorem 3.9 There is an inclusion for Smarandache, pseudo-manifold, Finsler
and Riemann geometries as shown in the following:

{Smarandache geometries} ⊃ {pseudo − manifold geometries}

⊃ {Finsler geometry}

⊃ {Riemann geometry}.

4. The contribution of combinatorial speculation to theoretical physics

The progress of theoretical physics in last twenty years of the 20th century enables
human beings to probe the mystic cosmos: where are we came from? where are we
going to? Today, these problems still confuse eyes of human beings. Accompanying
with research in cosmos, new puzzling problems also arose: Whether are there finite
or infinite cosmoses? Is just one? What is the dimension of our cosmos? We do not
even know what the right degree of freedom in the universe is, as Witten said([3]).

We are used to the idea that our living space has three dimensions: length, breadth
and height, with time providing the fourth dimension of spacetime by Einstein.
Applying his principle of general relativity, i.e. all the laws of physics take the
same form in any reference system and the equivalence principle, i.e., there are no
difference for physical effects of the inertial force and the gravitation in a field small
enough, Einstein got the equation of gravitational field

Rµν −
1

2
Rgµν + λgµν = −8πGTµν .

where Rµν = Rνµ = Rα
µiν ,

Rα
µiν =

∂Γi
µi

∂xν
−

∂Γi
µν

∂xi
+ Γα

µiΓ
i
αν − Γα

µνΓ
i
αi,
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Γg
mn =

1

2
gpq(

∂gmp

∂un
+

∂gnp

∂um
−

∂gmn

∂up
)

and R = gνµRνµ.
Combining the Einstein’s equation of gravitational field with the cosmological

principle, i.e., there are no difference at different points and different orientations
at a point of a cosmos on the metric 104l.y. , Friedmann got a standard model of
cosmos. The metrics of the standard cosmos are

ds2 = −c2dt2 + a2(t)[
dr2

1 − Kr2
+ r2(dθ2 + sin2 θdϕ2)]

and

gtt = 1, grr = −
R2(t)

1 − Kr2
, gφφ = −r2R2(t) sin2 θ.

The standard model of cosmos enables the birth of big bang model for our cosmos
in thirties of the 20th century. The following diagram describes the developing
process of our cosmos in different periods after the big bang.

Fig.4.1¸

4.1. The M-theory

The M-theory was established by Witten in 1995 for the unity of those five already
known string theories and superstring theories, which postulates that all matter and
energy can be reduced to branes of energy vibrating in an 11 dimensional space, and
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then in a higher dimensional space solve the Einstein’s equation of gravitational
field under some physical conditions ([1],[3],[22]-[23]). Here, a brane is an object or
subspace which can have various spatial dimensions. For any integer p ≥ 0, a p-
brane has length in p dimensions. For example, a 0-brane is just a point or particle;
a 1-brane is a string and a 2-brane is a surface or membrane, · · ·.

One mainly discuss line elements in differential forms in Riemann geometry. By
a geometrical view, these p-branes in M-theory can be seen as these volume elements
in spaces in the counterpart. Whence, we can construct a graph model for p-branes
in a space and combinatorially research graphs in spaces.

Definition 4.1 For each m-brane B of a space Rm, let (n1(B), n2(B), · · · , np(B))
be its unit vibrating normal vector along these p directions and q : Rm → R4 a
continuous mapping. Now construct a graph phase (G, ω, Λ) by

V (G) = {p − branes q(B)},

E(G) = {(q(B1), q(B2))|there is an action between B1 and B2},

ω(q(B)) = (n1(B), n2(B), · · · , np(B)),

and

Λ(q(B1), q(B2)) = forces between B1 and B2.

Then we get a graph phase (G, ω, Λ) in R4. Similarly, if m = 11, it is a graph phase
for the M-theory.

As an example for applying M-theory to find an accelerating expansion cosmos
of 4-dimensional cosmos from supergravity compactification on hyperbolic spaces is
the Townsend-Wohlfarth type metric in which the line element is

ds2 = e−mφ(t)(−S6dt2 + S2dx2
3) + r2

Ce2φ(t)ds2
Hm

,

where

φ(t) =
1

m − 1
(ln K(t) − 3λ0t), S2 = K

m
m−1 e−

m+2

m−1
λ0t

and

K(t) =
λ0ζrc

(m − 1) sin[λ0ζ |t + t1|]

with ζ =
√

3 + 6/m. This solution is obtainable from space-like brane solution and

if the proper time ς is defined by dς = S3(t)dt, then the conditions for expansion
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and acceleration are dS
dς

> 0 and d2S
dς2

> 0. For example, the expansion factor is 3.04
if m = 7, i.e., a really expanding cosmos.

According to M-theory, the evolution picture of our cosmos started as a perfect 11
dimensional space. However, this 11 dimensional space was unstable. The original
11 dimensional space finally cracked into two pieces, a 4 and a 7 dimensional cosmos.
The cosmos made the 7 of the 11 dimensions curled into a tiny ball, allowing the
remaining 4 dimensional cosmos to inflate at enormous rates.

4.2. The combinatorial cosmos

The combinatorial speculation enables us to introduce the conception of combina-
torial cosmoss([17]).

Definition 4.2 A combinatorial cosmos is constructed by a triple (Ω, ∆, T ), where

Ω =
⋃

i≥0

Ωi, ∆ =
⋃

i≥0

Oi

and T = {ti; i ≥ 0} are respectively called the cosmos, the operation or the time set
with the following conditions hold.

(1) (Ω, ∆) is a Smarandache multi-space dependent on T , i.e., the cosmos
(Ωi, Oi) is dependent on time parameters ti for any integer i, i ≥ 0.

(2) For any integer i, i ≥ 0, there is a sub-cosmos sequence

(S) : Ωi ⊃ · · · ⊃ Ωi1 ⊃ Ωi0

in the cosmos (Ωi, Oi) and for two sub-cosmoses (Ωij , Oi) and (Ωil, Oi), if Ωij ⊃ Ωil,
then there is a homomorphism ρΩij ,Ωil

: (Ωij , Oi) → (Ωil, Oi) such that

(i) for ∀(Ωi1, Oi), (Ωi2, Oi), (Ωi3, Oi) ∈ (S), if Ωi1 ⊃ Ωi2 ⊃ Ωi3, then

ρΩi1,Ωi3
= ρΩi1,Ωi2

◦ ρΩi2,Ωi3
,

where ◦ denotes the composition operation on homomorphisms.
(ii) for ∀g, h ∈ Ωi, if for any integer i, ρΩ,Ωi

(g) = ρΩ,Ωi
(h), then g = h.

(iii) for ∀i, if there is an fi ∈ Ωi with

ρΩi,Ωi

⋂
Ωj

(fi) = ρΩj ,Ωi

⋂
Ωj

(fj)

for integers i, j, Ωi

⋂
Ωj 6= ∅, then there exists an f ∈ Ω such that ρΩ,Ωi

(f) = fi for
any integer i.

By this definition, there is just one cosmos Ω and the sub-cosmos sequence is

R4 ⊃ R3 ⊃ R2 ⊃ R1 ⊃ R0 = {P} ⊃ R−
7 ⊃ · · · ⊃ R−

1 ⊃ R−
0 = {Q}.
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in the string/M-theory. In Fig.4.1, we show a combinatorial cosmos with a higher
dimensional cosmos outside our visual cosmos.

Fig.4.2¸

If the dimensional of this cosmos outside our visual cosmos is 5 or 6, there has
been established a dynamical theory by this combinatorial speculation([20][21]). In
this dynamics, we look for a solution in the Einstein equation of gravitational field
in 6-dimensional spacetime with a metric of the form

ds2 = −n2(t, y, z)dt2 + a2(t, y, z)d
2∑

k

+b2(t, y, z)dy2 + d2(t, y, z)dz2

where d
∑2

k represents the 3-dimensional spatial sections metric with k = −1, 0, 1 re-
spective corresponding to the hyperbolic, flat and elliptic spaces. For 5-dimensional
spacetime, deletes the undefinite z in this metric form. Now consider a 4-brane
moving in a 6-dimensional Schwarzschild-ADS spacetime, the metric can be written
as

ds2 = −h(z)dt2 +
z2

l2
d

2∑

k

+h−1(z)dz2,

where

d
2∑

k

=
dr2

1 − kr2
+ r2dΩ2

(2) + (1 − kr2)dy2

and

h(z) = k +
z2

l2
−

M

z3
.

Then the equation of a 4-dimensional cosmos moving in a 6-spacetime is
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2
R̈

R
+ 3(

Ṙ

R
)2 = −3

κ4
(6)

64
ρ2 −

κ4
(6)

8
ρp − 3

κ

R2
−

5

l2

by applying the Darmois-Israel conditions for a moving brane. Similarly, for the
case of a(z) 6= b(z), the equations of motion of the brane are

d2ḋṘ − dR̈√
1 + d2Ṙ2

−

√
1 + d2Ṙ2

n
(dṅṘ +

∂zn

d
− (d∂zn − n∂zd)Ṙ2) = −

κ4
(6)

8
(3(p + ρ) + p̂),

∂za

ad

√
1 + d2Ṙ2 = −

κ4
(6)

8
(ρ + p − p̂),

∂zb

bd

√
1 + d2Ṙ2 = −

κ4
(6)

8
(ρ − 3(p − p̂)),

where the energy-momentum tensor on the brane is

T̂µν = hναT α
µ −

1

4
Thµν

with T α
µ = diag(−ρ, p, p, p, p̂) and the Darmois-Israel conditions

[Kµν ] = −κ2
(6)T̂µν ,

where Kµν is the extrinsic curvature tensor.
The idea of combinatorial cosmoses also presents new questions to combinatorics,

such as:

(i) to embed a graph into spaces with dimensional≥ 4;
(ii) to research the phase space of a graph embedded in a space;
(iii) to establish graph dynamics in a space with dimensional≥ 4, · · ·, etc..

For example, we have gotten the following result for graphs in spaces in [17].

Theorem 4.1 A graph G has a nontrivial including multi-embedding on spheres

P1 ⊃ P2 ⊃ · · · ⊃ Ps if and only if there is a block decomposition G =
s⊎

i=1
Gi of G

such that for any integer i, 1 < i < s,
(i) Gi is planar;

(ii) for ∀v ∈ V (Gi), NG(x) ⊆ (
i+1⋃

j=i−1
V (Gj)).

Further research of these combinatorial cosmoses will richen the knowledge of
combinatorics and cosmology, also get the combinatorization for cosmology.
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