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THE TETRON MODEL IN 6+1 DIMENSIONS

Bodo Lampe

Abstract

The possibility of a 6+1 dimensional spacetime model being the fundamental

theory for elementary particle interactions is explored. The dynamical object

is an (octonion) spinor defined over a spacetime lattice with S8 permutation

symmetry which gets broken to S4 × S4. Electroweak parity violation is

argued to arise from the interplay of the two permutation groups S4 or even-

tually from the definition of the octonion product. It corresponds to a change

in sign for odd permutation lattice transformations and is shown to suggest

a form for the Hamiltonian.
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Introduction

My grandfather, who as a young man had distributed anti-Hitler pamphlets

even after the Nazis came to power, once asked me, why I would not engage

into politics to help to make a better world, and I replied, I had discovered

science to be more interesting and important than political issues.

My son, who is now studying physics and philosophy, has recently asked me,

why I never tried to make a really fundamental contribution to my research

fields. This note is an attempt to remedy the situation. It relies on the tetron

ordering scheme of elementary particles which I introduced a few years ago

[1, 2, 3]. That scheme elaborates on the one-to-one correspondence between

the quarks and leptons and the elements of the permutation group S4, made

explicit in table 1. Furthermore, it does not only describe fermions but also

leads to an ordering for the gauge bosons of the left-right symmetric Standard

Model (SM) [4].

S4 is isomorphic to the rotational symmetry group of a regular tetrahedron

and is in fact a semi-direct product S4 = K � Z3 � Z2 where K denotes the

Kleinsche Vierergruppe and the Z3 factor is the family symmetry [14]. Z2

and K can be considered to be ’germs’ of weak isospin and color symmetry,

which give rise to the appearance of the full SM gauge group as a collective

emergent phenomenon [2].

In refs. [1, 2, 3] a constituent picture was suggested where quarks and lep-

tons are assumed to be built from 4 tetron ’flavors’ a, b, c and d, whose

interchanges generate the inner S4 symmetry. In the present paper I follow

a somewhat different approach which relies on the fact that S4 is also the

symmetry group of a tetrahedral lattice or of a fluctuating (quantum) lattice

in 3 dimensions. In this approach the inner symmetry space is not continuous

(with a continuous symmetry group) but has instead the discrete structure of
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1234(id) 2143(k1) 3412(k2) 4321(k3)

νe u1 u2 u3

γL W1L W2L W3L

2314 3241 1423 4132

νµ c1 c2 c3

g1L g3L g5L g7L

3124 1342 2431 4213

ντ t1 t2 t3

g2L g4L g6L g8L

3214(1 ↔ 3) 2341 1432(2 ↔ 4) 4123

e d1 d2 d3

γR W1R W2R W3R

1324(2 ↔ 3) 3142 2413 4231(1 ↔ 4)

µ s1 s2 s3

g1R g3R g5R g7R

2134(1 ↔ 2) 1243(3 ↔ 4) 3421 4312

τ b1 b2 b3

g2R g4R g6R g8R

Table 1: Quarks and leptons as well as vector bosons of the left-right sym-

metric SM as two S4 multiplets. ki denote the elements of the Kleinsche Vier-

ergruppe and (a ↔ b) a simple permutation where a and b are interchanged.

WiL and WiR are the gauge bosons of SU(2)L and SU(2)R, respectively. The

currents for photon and gluons were shown to be vectorlike in ref. [2], i.e.

γL = γR and giL = giR. It should be noted that this table is only a heuristic

assignment. Actually one has to consider symmetry adapted linear combi-

nations of permutation states transforming under representations of S4, as

discussed in refs. [1, 2, 3].
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a tetrahedral or S4-permutation lattice, and the original dynamics is governed

by some unknown lattice interaction instead of by four tetron constituents.

The observed quarks and leptons can then be interpreted as excitations on

this lattice and characterized by representations A1 + A2 + 2E + 3T1 + 3T2

or 2G1 + 2G2 + 4H of the lattice symmetry group S4 and its covering [5].

The lattice ansatz naturally explains the selection rule mentioned in ref. [1]

that all physical states must be permutation states: just because the lattice

excitations must transform under representations of S4.

Advantages of a Planck Scale Quantum Lattice

The question then immediately arises, where the lattice and its discrete inner

S4 symmetry may come from. The most natural answer is obtained by con-

sidering a larger lattice in a 6+1 dimensional spacetime (with, for example,

S8 as symmetry group) and by assuming that the symmetry of this lattice is

broken so that for each timestep one has

• a 3-dimensional inner symmetry lattice with symmetry group Sin
4

(ac-

counting for the tetron structure of elementary particles table 1) and

• a 3-dimensional spatial lattice with symmetry group S
sp
4

(inducing a

lattice structure on physical space)

The totality of excitations on the Sin
4
×S

sp
4

lattice can be classified according

to [8]

(A1 + A2 + 2E + 3T1 + 3T2)
in
⊗ (G1 + G2 + 2H)sp (1)

where the first factor contains the 24 inner symmetry d.o.f of quarks and

leptons (table 1), and G
sp
1

of the second factor describes their (spin 1/2)

spatial transformation behavior.1

1The other components G
sp
2

and H
sp of the second factor may serve as dark matter
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Figure 1: This picture shows part of a 3-dimensional S4-symmetric lattice

containing 1-dimensional sublattices with symmetries S4 → Sin
2

× S
sp
2

as

visualization of S8 → Sin
4

× S
sp
4

. The big fat arrow gives the direction of

time (perpendicular to the paper plane). The 4 big circles correspond to

one timestep t0. At t0, transitions between the big open circles correspond

to spatial transformations (with symmetry S
sp
2

), and transitions between the

big black circles to inner transformations (with symmetry Sin
2

). In other

words, the dashed dark line defines 1-dimensional inner symmetry space at

t0, while the dashed pale line gives 1-dimensional physical space at t0.
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Using a discrete instead of a continuous spacetime has 2 advantages and 2

drawbacks. The advantages:

• Ultraviolet divergences do not appear; correspondingly there is no need

for renormalization.

• No-go theorems like the Weinberg-Witten theorem [18] which in the

continuum forbid the unification of spatial and inner symmetries do

not apply.

On the other hand there are 2 drawbacks (which however are not relevant

for a quantum lattice with lattice spacings of the order of the Planck scale):

• On a lattice Lorentz symmetry is broken to a discrete subgroup, which

is of course in contradiction to everyday experience. However, for a

classical observer Lorentz symmetry can be restored by assuming the

lattice to be a fluctuating quantum lattice, where the lattice points

move around randomly, with the fluctuations following some (quantum)

stochastic process [6].2

candidates, as discussed in [8]. If one takes serious the assumption that Sin
4
×S

sp
4

originally

stems from a higher symmetry (like e.g. S8), expression (1) should better be replaced by

(G1 + G2 + 2H)in ⊗ (G1 + G2 + 2H)sp (2)

i.e. one should work with projective representations of the tetrahedral group both in the

inner symmetry and in the spatial sector, simply because there are no mixed bosonic and

fermionic S8 representations.
2There is some relation of this idea to other models which involve a fundamental length

scale, like quantum foam models [15, 16, 17], which however assume gravity to play the

central role in the dynamics, while in the present model gravitational interactions and

cosmological phenomena appear only as byproducts of the tetron lattice interactions, as

shown in ref. [8].
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• It is usually difficult to define fermions on a lattice without getting

problems with (micro)causality, because in contrast to bosons fermions

’know’ about other fermions on neighbouring lattice sites and this in-

duces nonlocal correlations and possible synchronisations beyond the

event horizon. However, assuming the lattice spacings to be of the order

of the Planck scale, quantum effects torpedo the concept of causality

at those tiny distances anyhow. We shall see later, how this may be

coined in a lattice Lagrangian model.

A 6+1 dimensional Spinor as the fundamental dynamical Field in

the Tetron Model

I propose to use a 6+1 dimensional spinor as the fundamental dynamical

field, whose lattice excitations are to describe the SM fields. Such a spinor

corresponds to a SO(7) spinor by a Wick rotation3 and reduces to two SO(6)

spinors in the non-relativistic limit.

While the covering group of SO(6) is isomorphic to SU(4) and has 2 funda-

mental complex representations 4 and 4∗ which are conjugate to each other,

the covering group of SO(7) is Spin(7) with one spinor representation of di-

mension 8, which is closely related to the non-associative division algebra of

octonions [9, 10, 11, 12]. Breaking Spin(7)→SU(4) there is a decomposition

8 → 4 + 4∗ which reveals the particle antiparticle content of the original

SO(6,1) spinor.

Dividing SO(6) into a spatial and an inner symmetry part SO(3)sp
×SO(3)in

reduces its spinor representation 4 → (2, 2) further, and going to a lattice

with S
sp
4

× Sin
4

symmetry one obtains states which transform as (Gsp
1

, Gin
1

)

where G1 is the 2-dimensional spinor representation of S4 obtained by re-

3More generally, in SO(p,q) the spinor dimensions viewed over complex space coincide

with the case of the (p+q)-dimensional Euclidean space.
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relation to octonions nonrelativistic limit restriction to a lattice

Spin(7) ↔ ˜SO(6, 1) ˜SO(6, 1) → SU(4) SU(4) → S̃
sp
4

× S̃in
4

8 8 → 4 + 4∗ 4 → (Gsp
1

, Gin
1

)

Table 2: Group theoretic view on the fundamental dynamical field F in the

tetron model. The tilde denotes covering groups.

stricting the Pauli representation of SU(2) = S̃O(3) to S4.

The overall situation is summarized in table 2.

4-Fermion interactions of (6+1)-dimensional Dirac spinors F formally look

similar like in (3+1)-dimensional Minkowski space, e.g.

L ∝ (F̄ eµF )(F̄ eµF ) (3)

for vectorlike interactions where e0, ...., e6 are the seven 8×8 Dirac matrices in

6+1 dimensions. They are made up from building blocks of Dirac spinors in

lower dimensions as described for example in [13] and have a close relationship

to the octonion algebra [9], just as quaternions have to Pauli matrices. While

the Pauli matrices can be identified more or less directly with the quaternion

units, the situation in 7 or 6+1 dimensions is somewhat more subtle because

the octonion algebra is not associative, i.e. the octonion units I, J, IJ, L, IL,

JL and (IJ)L cannot be exactly represented by the 7 matrices eµ. A detailed

and explicit description of the relationship can be found, for example, in the
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book by Dixon [9].

Spin Models as an Approach to the Tetron Model Dynamics

It is hard to say, what the true dynamics on the tetron lattice may be.

What seems to be clear is that a fermionic component as described in the

last section is involved. In addition there could be a fundamental (6+1)-

dimensional vector boson, for example on a supersymmetric basis, and other

stuff. Candidates for a dynamical model would then be either a 4-fermion

interaction like eq. (3) restricted to the S8 or Sin
4
× S

sp
4

permutation lattices

or a (6+1)-dimensional lattice Yang-Mills theory.

If one prefers effective theories, one should try out spin models. Spin models

have been considered in statistical and solid state physics for a long time,

and they have been used to describe magnetism and magnetic excitations as

well as many other phenomena. The basic components in that model would

be ’spin vectors’ ~S(i) sitting on each lattice site i together with an interaction

of Heisenberg type

H = gSS

∑

i,j

~S(i)~S(j) (4)

where gSS is the coupling strength and the sum runs over all neigbouring

lattice sites i and j.4 Fermionic excitations have been claimed to arise [7]

when one decomposes these vectors in terms of a fermion degree of freedom

as ~S = F †~eF .

An essential requirement on the dynamics is that the parity violation (PV)

of the weak interactions should be described correctly. Usually a natural

explanation of weak parity violation in subquark models is not an easy task.

In the present framework the situation is somewhat simpler. The point is

that in the tetron model, as can be seen in table 1, weak isospin transfor-

4Note that an Euclidean notation is used here. In 6+1 dimensions (x0 → ix0) the

vector product used in eq. (6) is in fact imaginary.
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mations are related to odd permutations, i.e. to rotoreflections in the inner

symmetry lattice, and those rotoflections have something to do with parity

transformations (see below).

There are in principle two possibilities to break parity: explicitly or sponta-

neously. In the 4-fermion interaction eq. (3), for example, an explicit parity

violation can be introduced by adding a (6+1)-dimensional γ5-matrix. In

contrast, the Heisenberg ansatz (4) is parity even. So one needs a sponta-

neous breaking like in the left-right symmetric SM. This point of view was

taken in earlier papers on the tetron idea, where the SU(2)L and SU(2)R

bosons WL and WR together with photon and gluons were put into a single

Sin
4

multiplet (cf. table 1 and ref. [2]). In the framework of 6+1 dimensions

this means one should start with a dynamics like (4) which in addition to

S4 is invariant under the product P inP sp, the parity operation in 6 dimen-

sions. These operations simultaneously induce isospin transitions of fermions

like e ↔ ν as well as from left- to righthanded states and of vector bosons

WL ↔ WR (cf. table 1), so that one ends up with the currents of the left-right

symmetric SM

(
ν̄L ēL

)
~W

µ
L

(
νL

eL

)
+
(

ν̄R ēR

)
~W

µ
R

(
νR

eR

)
(5)

being parity invariant before spontaneous symmetry breaking.

An interesting example of a spin model with explicit PV and with a tetron

excitation spectrum is given by

H = gSSS

∑

t

(~S4 −
~S1)[(~S3 −

~S1) × (~S2 −
~S1)] (6)

which is defined on tetrahedra t with lattice points 1,2,3,4 and uses the

existence of the cross product ~A × ~B in 7 dimensions.

The triple product ~C( ~A × ~B) is sometimes called ’associative calibration’ in

the literature [20]. In the continuum its invariance group is in fact not the
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full SO(7) but the exceptional Lie group G2 ⊂ SO(7) which comprises the

Sin
4
× S

sp
4

symmetry group of the permutation lattice. The interaction (6) is

antisymmetric under odd permutations in both factors of that group. This

is precisely what is needed to describe the PV on the tetron lattice, simply

because one will get negative energy contributions to the partition function,

if an odd transformation is applied to the base points of the tetrahedron t.

With such an ansatz one actually connects weak PV to the definition of

the octonion product. The point is that the 7-dimensional cross product is

related to the imaginary part of the octonion product [10]. Namely, after

identifying the axes of 7-dimensional space with the octonion units the cross

product is given in terms of octonion multiplication by

~A × ~B =
1

2
(AB − BA) (7)

for any two octonions A = A0 + ~A and B = B0 + ~B. The failure of the cross

product to satisfy the Jacobi identity is due to the nonassociativity of the

octonions. A change in sign in the definition of the associator (IJ)L=-I(JL)

would reverse all PV effects.

Conclusions

It is an old dream of theoretical physicists that inner symmetries may be ob-

tained by extending ordinary space to higher dimensions (see for example ref.

[19]). In the present paper a discrete (6+1)-dimensional spacetime has been

proposed to unify spatial and inner symmetries with the additional benefit of

having relations to the division algebra of octonions. A fundamental fermion

field has been considered, and lattice spin models have been discussed as

possible effective schemes for the implementation of the tetron idea.

At the present stage, the true nature of the underlying dynamics remains

unclear. For example, it is possible that it turns out to be in some sense
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supersymmetric with a (vector) boson appearing in addition to the funda-

mental fermion. However, one should consider this option far from being

compelling. In particular, the appearance of discrete lattice structures at

Planck distances gives no indication that the fundamental Lagrangian will

have anything to do with the nowadays popular superstring or M-theories.

The presented ideas are not only in opposition to superstrings. They also

reduce the celebrated gauge theories and the Standard Model to what they

probably are: a beautiful and logical theoretical framework which however

holds true only on a certain level of matter and energy. The tetron model is

an idea that goes beyond this level (just as quarks go beyond nuclear physics)

and also offers explanations for outstanding cosmological problems [8].

In fact, such a situation is not unusual in the development of science. It is

well known from the macroscopic world as well as from molecular and atomic

physics that when going to a lower level of matter one has to give up the full

understanding of some emergent phenomena known from the higher levels.

In the present case we have given up continuus Lorentz invariance (which is

restored at large distances / low energies) as well as the full gauge symmetry

groups (whose appearance is considered to be a collective emergent effect).

Instead of increasing the symmetry at higher energies like in GUT or SUSY

ansätzen our starting point was a fluctuating quantum lattice picture in 6+1

dimensions with a permutation symmetry.
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