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The so-called ‘Schwarzschild solution’ is not Schwarzschild’s solution,
but a corruption of the Schwarzschild/Droste solution due to David
Hilbert (December 1916), wherein m is allegedly the mass of the source
of the alleged associated gravitational field and the quantity r is al-
leged to be able to go down to zero (although no proof of this claim
has ever been advanced), so that there are two alleged ‘singularities’,
one at r = 2m and another at r = 0. It is routinely alleged that r = 2m
is a ‘coordinate’ or ‘removable’ singularity which denotes the so-called
‘Schwarzschild radius’ (event horizon) and that the ‘physical’ singu-
larity is at r = 0. The quantity r in the usual metric has never been
rightly identified by the physicists, who effectively treat it as a radial
distance from the alleged source of the gravitational field at the origin
of coordinates. The consequence of this is that the intrinsic geometry
of the metric manifold has been violated in the procedures applied to
the associated metric by which the black hole has been generated. It is
easily proven that the said quantity r is in fact the inverse square root
of the Gaussian curvature of a spherically symmetric geodesic surface
in the spatial section of Schwarzschild spacetime and so does not denote
radial distance in the Schwarzschild manifold. With the correct iden-
tification of the associated Gaussian curvature it is also easily proven
that there is only one singularity associated with all Schwarzschild met-
rics, of which there is an infinite number that are equivalent. Thus, the
standard removal of the singularity at r = 2m is actually a removal of
the wrong singularity, very simply demonstrated herein.

I. Schwarzschild Spacetime

It is reported almost invariably in the literature that Schwarzschild’s solution
for Rµν =0 is (using c=G =1),

ds2 =
(

1− 2m

r

)
dt2 −

(
1− 2m

r

)−1

dr2 − r2
(
dθ2 + sin2 θdϕ2

)
. (1)
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Simply by inspection of this line-element the physicists have asserted that r can
go down to zero in some way, producing an infinitely dense point-mass singu-
larity, with an event horizon at the ‘Schwarzschild radius’ at r =2m. Contrast
this metric with that actually obtained by K. Schwarzschild in 1915 (published
January 1916),

ds2 =
(
1− α

R

)
dt2 −

(
1− α

R

)−1

dR2 −R2
(
dθ2 + sin2 θdϕ2

)
, (2)

R = R(r) =
(
r3 + α3

) 1
3 , 0 < r < ∞,

wherein α is an undetermined constant. There is only one singularity in
Schwarzschild’s solution, at r =0. Contrary to the usual claims Schwarzschild
did not set α =2m; he did not breathe a single word about the bizarre ob-
ject that has come to be called a black hole; he did not derive the so-called
‘Schwarzschild radius’; he did not claim that there is an ‘event horizon’ (by
any other name); and his solution clearly forbids the black hole because when
Schwarzschild’s r =0, his R =α, and so there is no possibility for his R to be
less than α, let alone take the value R =0. All this can be easily verified by
simply reading Schwarzschild’s original paper [1]. Thus, eq. (1) for 0 < r < 2m
is inconsistent with Schwarzschild’s true solution, eq. (2).

II. 3-D Spherically Symmetric Metric Manifolds

A line-element, in spherical coordinates, for 3-dimensional Euclidean space is,

ds2 = dr2 + r2
(
dθ2 + sin2 θdϕ2

)
, (3)

0 ≤ r < ∞.

The scalar r is the magnitude of the radius vector ~r from the origin of the
coordinate system, the said origin coincident with the centre of the associated
sphere. All the components of the metric tensor are well-defined and related
geometrical quantities are fixed by the line-element: a geometry is completely
determined by the form of its line-element [2]. Indeed, the radius Rp of the
associated sphere is given by,

Rp =
∫ r

0

dr = r,

the circumference Cp of a great circle (θ = π/2) is,

Cp = r

∫ 2π

0

dϕ = 2πr,

the surface area Ap of the sphere is,

Ap = r2

∫ π

0

sin θdθ

∫ 2π

0

dϕ = 4πr2,
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and the volume Vp of the sphere is,

Vp =
∫ r

0

r2dr

∫ π

0

sin θdθ

∫ 2π

0

dϕ =
4
3
πr3.

Consider the generalisation of eq. (3) to a non-Euclidean 3-dimensional spheri-
cally symmetric metric manifold by the line-element,

ds2 = dR2
p + R2

c

(
dθ2 + sin2 θdϕ2

)
= Ψ(Rc) dR2

c + R2
c

(
dθ2 + sin2 θdϕ2

)
, (4)

Rc = Rc(r)

Rc(0) ≤ Rc(r) < ∞,

where both Ψ(Rc) and Rc(r) are a priori unknown analytic functions. Since
neither Ψ(Rc) nor Rc(r) are known, eq. (4) may or may not be well-defined at
Rc(0): one cannot know until Ψ(Rc) and Rc(r) are somehow specified. With this
proviso, there is a one-to-one point-wise correspondence between the manifolds
described by eqs. (3) and (4), i.e. a mapping, as the differential geometers have
explained [3]. If Rc is constant, metric (4) reduces to a 2-dimensional spherically
symmetric geodesic surface described by,

ds2 = R2
c

(
dθ2 + sin2 θdϕ2

)
. (5)

If in eq. (3) r is constant, then it reduces to the 2-dimensional spherically
symmetric surface described by,

ds2 = r2
(
dθ2 + sin2 θdϕ2

)
. (6)

A surface is a manifold in its own right. It need not be considered in relation to
an embedding space. Therefore, quantities appearing in its line-element must
be identified in relation to the surface, not to any embedding space it might be
in:

“And in any case, if the metric form of a surface is known for a
certain system of intrinsic coordinates, then all the results concern-
ing the intrinsic geometry of this surface can be obtained without
appealing to the embedding space” [4].

Note that eqs. (3) and (4) have the same metrical form and that eqs. (5)
and (6) have the same metrical form. Metrics of the same form share the
same fundamental relations between the components of their respective metric
tensors. For example, consider eq. (4) in relation to eq. (3). For eq. (4), the
radial geodesic distance (i.e. the proper radius) from the point at the centre of
spherical symmetry is

Rp =
∫ Rp

0

dRp =
∫ Rc(r)

Rc(0)

√
Ψ(Rc(r))dRc(r) =

∫ r

0

√
Ψ(Rc(r))

dRc(r)
dr

dr,

3



the circumference Cp of a great circle (θ = π/2) is,

Cp = Rc(r)
∫ 2π

0

dϕ = 2πRc(r),

the surface area Ap of the geodesic sphere is,

Ap = R2
c(r)

∫ π

0

sin θdθ

∫ 2π

0

dϕ = 4πR2
c(r),

and the volume Vp of the geodesic sphere is,

Vp =
∫ Rp

0

R2
c (r) dRp

∫ π

0

sin θdθ

∫ 2π

0

dϕ

=
∫ Rc(r)

Rc(0)

√
Ψ(Rc (r))R2

c(r)dRc

∫ π

0

sin θdθ

∫ 2π

0

dϕ

=
∫ r

0

√
Ψ(Rc (r))R2

c(r)
dRc(r)

dr
dr

∫ π

0

sin θdθ

∫ 2π

0

dϕ.

In the case of the 2-dimensional metric manifold given by eq. (5) the Rie-
mannian curvature associated with eq. (4) (which depends upon both position
and direction) reduces to the Gaussian curvature K (which depends only upon
position), and is given by

K =
R1212

g
, (7)

where R1212 is a component of the Riemann tensor of the 1st kind and g =
g11g22 = gθθgϕϕ (because the metric tensor of eq. (5) is diagonal). Now recall
from elementary differential geometry and tensor analysis that

Rµνρσ = gµγRγ
. νρσ

R1
. 212 =

∂Γ1
22

∂x1
− ∂Γ1

21

∂x2
+ Γk

22Γ
1
k1 − Γk

21Γ
1
k2

Γi
ij = Γi

ji =
∂

(
1
2 ln

∣∣gii

∣∣)
∂xj

Γi
jj = − 1

2gii

∂gjj

∂xi
, (i 6= j) (8)

and all other Γi
jk vanish. In the above, i, j, k =1, 2, x1 = θ, x2 =ϕ. Applying

expressions (7) and (8) to expression (5) gives,

K =
1

R2
c

(9)
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so that Rc(r) is the inverse square root of the Gaussian curvature, i.e. the
radius of Gaussian curvature, and hence, in eq. (6) the quantity r therein
is the radius of Gaussian curvature because Gaussian curvature is intrinsic to
all geometric surfaces having the form of eq. (5) (a geometry is completely
determined by the form of its line-element). Indeed, any 2-D surface has an
intrinsic Gaussian curvature. Note that according to eqs. (3), (6) and (7),
the radius calculated for (3) gives the same value as the associated radius of
Gaussian curvature of a spherically symmetric surface in the space of eq. (3).
Thus, the Gaussian curvature (and hence the radius of Gaussian curvature) of
the spherically symmetric surface in the space of (3) can be associated with the
calculated radius, from eq. (3). This is a consequence of the Euclidean nature of
the space of eq. (3). However, this is not a general relationship. The radius of
Gaussian curvature does not directly determine any distance at all in Einstein’s
gravitational manifold but in fact determines the Gaussian curvature of the
spherically symmetric geodesic surface through any point in the spatial section
of the gravitational manifold, as proven by expression (9). Thus, the quantity r
in eq. (1) gives the inverse square root of the Gaussian curvature (i.e. the radius
of Gaussian curvature) of a spherically symmetric geodesic surface in the spatial
section, not the radial geodesic distance from the centre of spherical symmetry
of the spatial section. It necessarily follows from this simple geometric fact that
all the claims made for black holes are entirely false.

III. The Standard Derivation

The usual derivation [5–13] begins with the following metric for Minkowski
spacetime (using c = 1),

ds2 = dt2 − dr2 − r2
(
dθ2 + sin2 θdϕ2

)
, (10)

and proposes a generalisation thereof as

ds2 = eλdt2 − eβdr2 −R2
(
dθ2 + sin2 θdϕ2

)
, (11)

where λ, β and R are all unknown functions of only r, to be determined, and so
that the signature of (10) is maintained. The form of R(r) is then assumed so
that R(r) = r, to get,

ds2 = eλdt2 − eβdr2 − r2
(
dθ2 + sin2 θdϕ2

)
, (12)

It is then required that eλ and eβ be determined so as to satisfy Rµν =0. Now
note that eq. (12) not only retains the signature −2, but also retains
the signature (+,−,−,−), because eλ > 0 and eβ > 0. Thus, neither eλ

nor eβ can change sign.

The Standard analysis then obtains the solution given by eq. (1), wherein
the constant m is claimed to be the mass generating the alleged gravitational
field. By inspection of (1) the Standard analysis asserts that there are two
singularities, one at r =2m and one at r =0. It is claimed that r =2m is a
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removable coordinate singularity, and that r = 0 a physical singularity. It is
also asserted that r =2m gives the event horizon (the ‘Schwarzschild radius’)
of a black hole and that r =0 is the position of the infinitely dense point-mass
singularity of the black hole.

However, these claims cannot be true. First, the construction of eq. (12) to
obtain eq. (1) in satisfaction of Rµν =0 is such that neither eλ nor eβ can
change sign, because eλ > 0 and eβ > 0. Therefore the claim that r can take
values less than 2m is false; a contradiction by the very construction of the
metric (12) leading to metric eq. (1). Furthermore, since neither eλ nor eβ can
ever be zero, the claim that r =2m is a removable coordinate singularity is also
false. In addition, the true nature of r in both eqs. (12) and (1) is entirely
overlooked, and the geometric relations between the components of the metric
tensor, fixed by the form of the line-element, are not applied, in consequence of
which the Standard analysis fatally falters.

To highlight further the geometrical errors that produce the black hole, rewrite
eq. (11) as,

ds2 = A (Rc) dt2 −B (Rc) dR2
c −R2

c

(
dθ2 + sin2 θdϕ2

)
, (13)

where A (Rc) , B (Rc) , Rc (r) > 0. The solution for Rµν =0 then takes the form,

ds2 =
(

1− α

Rc

)
dt2 −

(
1− α

Rc

)−1

dR2
c −R2

c

(
dθ2 + sin2 θdϕ2

)
, (14)

Rc = Rc(r),

where α is a constant. It remains to determine the admissible form of Rc (r),
which, from Section II, is the inverse square root of the Gaussian curvature of
a spherically symmetric geodesic surface in the spatial section of the manifold
associated with eq. (14), owing to the metrical form of eq. (14). From Section
II herein the proper radius for a metric of the form eq. (14) is,

Rp =
∫

dRc√
1− α

Rc

=
√

Rc (Rc − α) + α ln
[√

Rc +
√

Rc − α
]

+ k, (15)

where k is a constant. Now for some ro, Rp (ro) = 0. Then by (15) it is required
that Rc (ro) = α and k = − α ln

√
α, so

Rp (r) =
√

Rc (Rc − α) + α ln

[√
Rc +

√
Rc − α

√
α

]
. (16)

It is thus also determined that the Gaussian curvature of the spherically sym-
metric geodesic surface of the spatial section ranges not from ∞ to 0, as it does
for Euclidean 3-space, but from α−2 to 0. This is an inevitable consequence of
the non-Euclidean geometry described by eq. (14).
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Schwarzschild’s true solution, eq. (2), must be a particular case of the gen-
eral expression we seek for Rc(r). Brillouin’s solution [14, 15] must also be a
particular case, viz.,

ds2 =
(

1− α

r + α

)
dt2 −

(
1− α

r + α

)−1

dr2 − (r + α)2
(
dθ2 + sin2 θdϕ2

)
,

(17)
0 < r < ∞,

and Droste’s solution [16] must as well be a particular solution, viz.,

ds2 =
(
1− α

r

)
dt2 −

(
1− α

r

)−1

dr2 − r2
(
dθ2 + sin2 θdϕ2

)
.

α < r < ∞. (18)

These particular solutions must all be particular solutions in an infinite set of
equivalent metrics [17]. The only admissible form for Rc (r) is [18],

Rc (r) = (|r − ro|
n + αn)

1
n =

1√
K (r)

,

r ∈ <, n ∈ <+, r 6= ro, (19)

where ro and n are entirely arbitrary constants. So the solution for Rµν =0 is,

ds2 =
(

1− α

Rc

)
dt2 −

(
1− α

Rc

)−1

dR2
c −R2

c

(
dθ2 + sin2 θdϕ2

)
,

Rc (r) = (|r − ro|
n + αn)

1
n =

1√
K (r)

,

r ∈ <, n ∈ <+, r 6= ro. (20)

Then if ro =0, r > ro, n =1, Brillouin’s solution eq. (17) results. If ro =0,
r > ro, n =3, then Schwarzschild’s actual solution eq. (2) results. If ro =α,
r > ro, n =1, then Droste’s solution eq. (18) results, which is the correct
solution in the particular metric of eq. (1). In addition the required infinite
set of equivalent metrics is thereby obtained, all of which are asymptotically
Minkowski spacetime. Furthermore, if the constant α is set to zero, eq. (20)
reduces to Minkowski spacetime, and if in addition ro is set to zero, that the
usual Minkowski metric of eq. (10) is obtained.

It is clear from expression (20) that there is only ever one singularity, at the
arbitrary constant ro, where Rc (ro) = α ∀ ro ∀ n and Rp (ro) = 0 ∀ ro ∀ n.
Hence, the “removal” of the singularity at r =2m in eq. (1) is fallacious, and
in a very real sense, is a removal of the wrong singularity, because it is clear
from expression (19) and the form of the line-element at eq. (13), in accordance
with the intrinsic geometry of the line-element as given in Section II and the
generalisation at eq. (12), that there is no singularity at r =0 in eq. (1) and that
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0 ≤ r ≤ 2m therein is meaningless. The Standard claims for eq. (1) violate the
geometry fixed by the form of its line-element and contradict the generalisation
at eq. (13) from which it has been obtained by the Standard method. There is
no black hole associated with eq. (1).

IV. Other Violations

Special Relativity forbids infinite density because infinite density implies that a
material body can acquire the speed of light in vacuo (or equivalently there is
infinite energy) [19]. General Relativity cannot, by its very definition, violate
Special Relativity. Therefore General Relativity also forbids infinite density.
But the point-mass singularity of the alleged black hole is infinitely dense. Thus,
General Relativity forbids black holes.

In writing eq. (12) the Standard Model incorrectly asserts that only the com-
ponents g00 and g11 are modified by Rµν =0, allegedly manifest in eq. (1), as it
is usually interpreted. However, it is plain by expression (20) that this is false.
All components of the metric tensor are modified by the constant α appearing
in eq. (20), of which eq. (1) is but a particular case.

The Standard Model asserts in relation to eq. (1) that a ‘true’ singularity
must occur where the Riemann tensor scalar curvature invariant (i.e. the
Kretschmann scalar) is unbounded. However, it has never been proven that
Einstein’s field equations require such a curvature condition to be fulfilled. Since
the Kretschmann scalar is finite at r =2m in eq. (1), it is then claimed that
r =2m marks a “coordinate singularity” or “removable singularity”. However,
these assertions violate the intrinsic geometry of the manifold described by eq.
(1). The Kretschmann scalar depends upon all the components of the metric
tensor and all the components of the metric tensor are functions of the Gaussian
curvature of the spherically symmetric geodesic surface in the spatial section,
owing to the form of the line-element. Einstein’s gravitational field is manifest
in the curvature of spacetime, a curvature induced by the presence of matter. It
is therefore to be expected that the Gaussian curvature of a spherically symmet-
ric geodesic surface in the spatial section of the gravitational manifold is also
modified from that of ordinary Euclidean space, and this is indeed the case.
Eq. (20) gives the modification of the Gaussian curvature fixed by the intrinsic
geometry of the line-element and the required boundary conditions specified by
Einstein, in consequence of which the Kretschmann scalar is constrained by the
Gaussian curvature of the spherically symmetric geodesic surface in the spatial
section. Recall that the Kretschmann scalar f is,

f = RαβγδR
αβγδ.

Using eq. (20) gives,

f = 12α2K3 =
12α2

R6
c

=
12α2

(|r − ro|
n + αn)

6
n

,
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then
f (ro) =

12
α4

∀ ro ∀ n,

which corresponds to Rp (ro) = 0, Rc (ro) = α, K (ro) = α−2.

Doughty [20] has shown that the radial geodesic acceleration a of a point in a
manifold described by a line-element with the form of eq. (13) is given by,

a =

√
−g11

(
−g11

)
|g00,1 |

2g00

.

Using eq. (20) once again gives,

a =
α

R
3
2
c (r)

√
Rc (r)− α

.

Now,
lim

r→r±o

Rp (r) = 0,

lim
r→r±o

Rc (r) = α,

and so
r → r±o ⇒ a →∞ ∀ ro ∀ n.

According to eq. (20) there is no possibility for Rc (r) < α.

Now according to eq. (1), for which ro =α =2m, n =1, r > α, the acceleration
is,

a =
α

r
3
2
√

r − α
.

which is infinite at r =2m. But the usual unproven (and invalid) assumption
that r in eq. (1) can go down to zero means that there is an infinite acceleration
at r =2m where, according to the Standard Model, there is no matter! However,
r can’t take values less than r = ro =2m in eq. (1), as eq. (20) shows, by virtue of
the nature of the Gaussian curvature of spherically symmetric geodesic surfaces
in the spatial section associated with the gravitational manifold and the intrinsic
geometry of the line-element.

The proponents of the Standard Model admit that if 0 < r < 2m in eq. (1)
above, the rôles of t and r are interchanged. But this violates their construction
at eq. (12), which has the fixed signature (+,—,—,—), and is therefore inad-
missible. To further illustrate this violation, when 2m < r < ∞ the signature
of eq. (1) is (+,–,–,–); but if 0 < r < 2m in eq. (1), then

g00 =
(

1− 2m

r

)
is negative, and

g11 = −
(

1− 2m

r

)−1

is positive.
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So the signature of eq. (1) changes to (–,+,–,–). Thus the rôles of t and r are
interchanged. To amplify this, set t = −r∗ and r = − t∗, and so for 0 < r < 2m,
eq. (1) becomes,

ds2 = −
(

1 +
2m

t∗

)−1

dt∗2 +
(

1 +
2m

t∗

)
dr∗2 − t∗2

(
dθ2 + sin2 θdϕ2

)
,

−2m < t∗ < 0.

which has the signature (+,–,–,–). But this is now a time-dependent metric
since all the components of the metric tensor are functions of the time t∗, and
so this metric bears no relationship to the original time-independent problem to
be solved. In other words, this metric is a non-static solution to a static problem:
contra-hype! Thus, in eq. (1), 0 < r < 2m is meaningless, as eqs. (12) and (20)
show.

The Gravity Probe B did not detect the alleged Lense-Thirring effect and so
NASA has cancelled the project [21].

Nobody has ever found a black hole anywhere because nobody has found an
infinitely dense point-mass singularity and nobody has found an event horizon.
All claims for detection of black holes are patently false. And it is clear from
the foregoing analysis that General Relativity does not predict the black hole
and does not predict the big bang.

According to Einstein [22], his ‘Principle of Equivalence’ and his laws of Special
Relativity must manifest in his gravitational field. Now Rµν =0 is a construc-
tion by which there is no matter present in the Universe. Therefore, Einstein’s
‘Principle of Equivalence’ and his laws of Special Relativity cannot manifest in
the manifold for Rµν =0, and so Rµν =0 does not describe Einstein’s gravi-
tational field. Furthermore, there can be no freely falling inertial systems, no
observers, and no energy in a spacetime that by definition contains no matter.
Consequently, there is no black hole associated with eq. (1). The introduction
of mass into eq. (1) is post hoc and therefore inadmissible.

Since Rµν =0 does not describe Einstein’s gravitational field, his field equations
must take the form [23, 24],

Gµν

κ
+ Tµν =0,

where the Gµν/κ are the components of a gravitational energy tensor. This is
an identity. The total gravitational energy is always zero; the Gµν and the Tµν

must vanish identically; there is no possibility for the localisation of gravitational
energy (i.e. no Einstein gravitational waves). Furthermore, Einstein’s General
Theory of Relativity violates the usual conservation of energy and momentum so
well established by experiment. It is therefore invalid. The current international
efforts to detect gravitational waves are destined to detect nothing. They have
detected nothing [25].
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The Big Bang cosmology, spawned by General Relativity, not observation, is
theoretically meaningless, owing to the failure of General Relativity.

It is also claimed by the physicists that spacetimes can be intrinsically curved,
i.e. that there are gravitational fields that have no material cause. An example
is de Sitter’s empty spherical Universe, based upon the following field equations
[2, 17]:

Rµν = λgµν (21)

wherein λ is the so-called ‘cosmological constant’. Now in the case of line-
element (1) the field equations are:

Rµν = 0. (22)

Curiously, the physicists claim on the one hand that (21) is devoid of matter and
so has no material cause for the associated alleged gravitational field (i.e. the
curvature of spacetime), because the energy-momentum tensor is zero there,
yet on the other hand they also claim that (22) has a material cause, which
they insert post hoc, even though the energy-momentum tensor is zero there
as well. The interpretations by the physicists of the alleged gravitational fields
associated with (21) and (22) are therefore contradictory. Furthermore, despite
the assertions of the physicists, there is no experimental evidence whatsoever to
support the claim that a gravitational field can exist without a material cause.
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