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The concept of simulating chosen information channels of a linear incoherent imaging system by 
projecting reference signals is proposed and the system's ability to restore severely distorted but 
stationary images is experimentally demonstrated.  A particular instrument's object field is divided 
into N discrete 'points' whose individual simulated outputs is measured at N particular sampling 
points; the NxN output matrix F is the transfer matrix of the system, and being empirically derived, 
it precisely accounts for all diffractions, aberrations, distortions, peculiarities of the chosen object  
points and sensor size and distribution.  As such F can become the basis for eliminating algorithm-
hardware mismatch in various restoration schemes. Calibration allows treating the instrument as an 
unknown 'black box', and imaging through a severely and arbitrarily distorting hardware is  
demonstrated.  Other uses of F are to add or subtract the outputs of separate instruments viewing the 
same object on a pixel-by-pixel basis, and as a graphically or digitally presented measure of the 
instrument's local transfer function, and hence of image quality. 

I.  INTRODUCTION

Imaging instruments have been described by Toraldo di Francia[1], Frieden[2], and others, as input-
output systems utilizing information-carrying channels [3] to transmit signals from an object to an 
image.  We use this concept to propose adding a simple empirical step to a particular linear, 
incoherent time-invariant imaging system:  N randomly chosen band- limited spatial â€˜points' in  
the object field are simulated by known reference signals, one point at a time. The point-spread 
function (PSF) of each object point is partially sampled by one or more of N particular sensors in 
the image field.  The sensor response functions (SRF) for the N object points then become an 
empirically-derived NxN F matrix completely defining, within the measurement noise limitations,  
the instrument's channel capacity between the chosen objects and the sampling points of such an 
image.  As such, F contains, quantized a priori information, accounting for the instrument's 
diffractions, aberrations, distortions, edge effects, as well as for the extent of the object field and 
point size and distributions. Variations and irregularities of sensor size and distribution or sensitivity 
and cross-talk (if the effect is linear) will also be accounted for in F.  F can have several uses in the 
following areas: 

1) Optimizing known restoration schemes by providing the actually sampled PSF value rather than 
the idealized sinc function which only applies to the isoplanatic region[4] of diffraction-limited 
hardware when they are perfectly sampled by ideal sensors.  F can provide accurate mapping of 
useful portions of an image field, saving computational effort outside this portion. 

2) Imaging through unknown hardware that can have a severely unfocused, distorted or 
uncharacterized PSF, as in crystals, or through stationary aberrated systems, when knowledge of F 
allows a coarse but distortion-free restoration.  This function is demonstrated experimentally in 
section VII of this paper. 

3) Absolute pixel-to-pixel addition or subtraction of the digital outputs of two or more separate 
instruments imaging the same object.  Calibration provides the exact knowledge of the object field 
points, so that even if the instruments have different distortions, magnifications, and aberrations, the 
outputs can still be combined, either as direct images, or as restored objects.

 4) The data in F provides a ready reference of image quality in a particular portion of the image 
field.  Graphically presented as a chart of gray levels, F is generally a band matrix that is 
â€˜thinnest' at the point of best focus.  More quantitative analysis of F will provide a numerical 
value, of the local image quality such as the conditioning number[5]. 



In this paper, we consider a spatial object domain.  Calibration can also be performed in the 
frequency domain, where each object 'point' becomes a particular sinosoidal input across the whole 
object field.  Other possibilities are to calibrate the color, polarization or other object signal qualities  
that will affect the image of a particular instrument.  For simplicity, such schemes will not be treated 
here, except to say that the F matrix in such cases will be of size (NxNxMxL...)  where M,L... are 
the various discretized object qualities being considered.  Calibrated Digital Imaging Systems 
(CDIS) provide a general tool applicable to any linear incoherent system, but we have stressed the 
optical approach. 

II.  THE F MATRIX 

The concept of the impulse response of a system appears in many guises. As Green's theorem [6], it 
is the basis for integration by parts.  In control engineering [7] it is a practice to apply reference 
signals as inputs of closed-loop servomechanisms, and to study the response.  As the Dirac Delta 
Function [8]he impulse function is a useful mathematical tool in optical derivations because it is  
based on the physical fact of atomic photon emission. An object function Oi where i=l,2,3...N 

consists of weighted delta functions, and when N is finite, each discretized object point O i can be 

considered the input of one imaging channel. It is not required that the O i be connected, be 

distributed regularly, have equal size or shape, as long as these characteristics are invariant. In 
addition, Oi need not represent the whole image field of a given instrument, or even lie on the same 

plane. They are chosen because of some particular interest in those regions. The Oi. signals pass 

through a particular hardware of unknown transfer function, and add up linearly in an image plane 
where at least one sensing point Sj , j=1,2,3...N is necessary to identify signals from any one Oi.. 

Again, the size, shape, distribution, or sensitivity of the Sj sensors can be arbitrary as long as these 

characteristics are invariant. Intuitively, in this special case, a sufficient and necessary sampling rule  
can be stated as follows:  each Oi emits signals received by one or more Sj, and each Sj. receives 

signals from one or more Oi. This guarantees a minimum of one channel between N unique object 

and sensing point pairs, while superfluous sensing points will be discarded when they do not 
receive any signal. A computer check can ascertain whether this rule has been followed after the F 
matrix has been compiled, extra sensing point data is then added or discarded as the case may be. 
The relationship between the Oi and Sj points is given by the well known discretized imaging 

equation :   

                 S == F.O+n                    (1) 

where S is the sensor data column Sj, O is the object intensity column Oi, and F is an NxN transfer 

matrix defining the channel capacity between each Oi and Sj, and n is an N-element noise column 

caused by measurement errors.  An element fij exists for any possible pairing of Oi with Sj, and the 

difference between the values of fij and those of a theoretically-derived transfer matrix are easy to 

see: in CDIS it is the actual channel capacity between a particular and known O i and a known 

sensor Sj that is given by the F matrix associated with the instrument at hand.  It is this fitting of the 

matrix data to the actual hardware that gives the method its advantage. Superficially   Eq.(1) 
resembles the imaging equation for other systems, but it must be kept in mind how F was derived.  
In the case of a diffraction limited optical system, each column of F will consist of a discretized sinc 
function, but only if all Sj and Oi are equal in size and equally tessalated; it is easy to see that where 

these assumptions do not hold, the restoration based on the diffraction-limited deconvolution kernel 
will suffer. 

Calibration entails simulating each object point Oi in turn with a signal emitted with intensity C.  

The SRF associated with any one point Oi is Sj OiC   and is stored as one column of the calibration 



matrix FC.  In reality, the completed FC will consist of the set of measured SRF columns associated 

with each Oi:

        FC =F.C+nC                            (2)

 where F is the instrument's transfer function for unit impulses, and nC is an NxN matrix consisting 

of the measured noise during calibration.  From  Eq.(2):

FC =       (FC - nC )/ C                        (3)

Substituting Eq.(3) into Eq.(l), while adding a subscript (I) to the measured noise column of Eq.(l) 
to distinguish it from the measured calibration noise matrix nC gives:

        S =  [ O(FC - nC )/ C ] + nI                          (4) 

which is the CDIS version of Eq.(l) . The extra noise term nC is an added burden, especially since it 

must also include any errors due to faulty simulation procedures, and the 'phasing-errors' to be 
discussed later.  However calibration can be performed under controlled conditions and nC 
minimized, for example by averaging several calibrations. 

        

                                                a                                               b

FIGURE l   An imaging instrument and its calibration matrix. (a, left) Analog imaging 
situation where object points are imaged by an aberrated lens. The spatial domain object 
field Oi gives a distorted, overlapping, and irregularly sampled image; (b, right) A 

conceptual digital representation of (a), where the aberrations are accounted for in the 
calibration step (not shown here) to obtain the transfer matrix F.  Each object Oi 
contributes a uniquely weighted radiation pattern over various sensors, shown as columns 
of F.  Sensor readings Sj are a result of horizontal summations of the weighted elements of 

the matrix rows.

 



Fig.l a.b. illustrates Eq. (l) for a rough optical system; (a) the actual analog situation of a rough 
imaging lens and (b) as the equivelant mathematical model, where the F matrix is explained 
conceptually to explain how the data is used. Contributions from the object points O i are shaded 

according to the numerical strength of the signal, and in the analog case (a) the overlapping PSFs 
fall on an irregularly sampled image field.  In the digital representation the vertical channels 
represent multiplication (weighting) of Oi signals  into the columns of the F matrix, and each 

column SRF is the CDIS equivalent of the analog PSF.  In the image field, rows of F are added up 
horizontally, giving the direct summed up image function Sj. 

Different solutions for offered Eq. (l) have been offered,  and no attempt will be made to list the 
many algorithms available, but in the following section the effects of using the F matrix on some of 
these algorithms will be studied. 

 

FIGURE 2   Graphic presentation of types of transfer matrices F for various types of 
focusing, (a) The ideal instrument (b) 1-D diffraction-limited case. (c) 2-D diffraction-limited 
(bands result from sensor labling strategy), (d) A system with aberrations and distortions, 
(e) Severe distortion, yet with sufficient autocorrelation peaks to distinguish signals in 
different columns, (f) Total scattering, or the case of no focusing. 

Fig.2 (a-f) shows the F matrices schematically for different types of focusing capabilities.  Highest 
values are shown as black matrix elements, and lower values as different gray levels with white for 
zero. (a) shows the ideal imaging instrument's F matrix, where each object point is imaged as a 
unique image point [9], when F becomes a diagonal matrix whose every non-zero element gives the 
channel transmission capacity. The F matrix of a super-resolving instrument will look like this. (b) 
shows the isoplanatic patch of a diffraction-limited instrument when the elements of F spread 
slightly from the diagonal, in the 1-D case, and horizontal rows sum up contribution from the 
column sine functions.  The degree of overlap depends on the finesse of the calibration, i.e. on the 
object and sensor point size.  (c) shows F for the 2-D diffraction-limited case: the number of bands 



corresponds to the PSF covering sequentially labeled sensor rows in the image plane of the actual 
instrument, causing neighboring sensor elements to have discontinuously numbered labels.  Each 
column (and each row, if the PSF is symmetrical) will consist of discretized samples from the total  
PSF area, as in Lahart's [5] algorithm. (d) shows F for a system, where the PSF changes from point 
to point: paraxial regions are seen when the data band narrows to a minimum, parallel stripes 
straddling the diagonal maximum.  Distortions are noted if the data band curves away from the 
diagonal while still being fairly compact, while aberrations cause the data to become splayed, with 
decreased contrast between the data elements of a column.(e) shows the F matrix for an instrument 
providing sharp autocorrelation peaks, but whose PSF is quite irregular, causing severe overlapping, 
as in the case of coded-aperture imaging, or in the case of diffraction from gratings or crystals, or as 
in the instrument  illustrated in Fig 6 below, from an arbitrary screen made up of various lenses. 
Compare (e) with Fig.7, which plots the SRF of the experimental calibration.  (f)  shows the F 
matrix in the extreme case of either total scattering or of the absence of any encoding hardware,  
when the elements of F become full of overlapping undifferentiated signals, and F becomes 
singular, and imaging impossible.

III. THE ROLE OF F IN RESTORATION SCHEMES

 

 Frieden, [10] in his review of restoration algorithms refers to the general equivalence of frequency 
domain and spatial domain treatments.  Lahart5, while concluding the same, points out that Fourier 
treatment is more fit for global restoration of invariant (stationary) systems, particularly with 
images assumed to be diffraction-limited with a sinc PSF.  Many of the published restoration 
algorithms such as Phillips' pre-smoothing method [10], Gerchberg's extrapolation [11], Helstrom's 
least squares [12], and. Mammone and Eichmann's use of linear programming [13] and others, 
depend on some manipulation of the transfer matrix, which is usually assumed to be the diffraction-
limited ideally and continuously sampled image.  To fit such 'perfect' algorithms to the images made 
with instruments that are less than perfect will cause the restoration to suffer. Without calibration, it  
is very difficult to check if the diffraction-limited requirements have been met, and in the majority  
of the algorithms mentioned, there is no provision to rectify the procedure if the PSF is found to 
vary from place to place in the image, or if a faulty sensor element is discovered, causing an 
algorithm-hardware mismatch.  In the Fourier domain the F matrix can be compiled by simulating a 
set of sinosoidal inputs of varying frequency, in the manner of instruments used to measure the 
optical transfer function (O.T.F.) [14].  Such empirically derived F matrices will fit the actual 
hardware used better, with an expected improvement in the restoration. Lahart [5] has described one 
type of spatial domain pixel-by-pixel restoration, and CDIS methods should prove particularly 
useful to optimize such restorations by: 1) providing the local SRF value, rather than an idealized 
deconvolution kernel. 2) Computational effort can be saved by confining the restoration to those 
portions of F that are known to be well focused.  Alternately for aberrated regions, neighboring 
rows and columns of F can be summed up and the restoration coarsened by increasing the size of 
the object and sensing 'points' outside paraxial regions, much as the eye's resolution of peripheral 
regions is less than that of foveal vision. 3) When portions of Sj are zero, the F matrix pinpoints the 

exactly corresponding zero object points, as in Fig. 3.



Fig. 3 The F matrix used for restoring signals near a known dark field.  The data band is 
known from calibration, and when a set of sensors give zero readings, the corresponding 
zero objects will be known, even in non-stationary cases. Sub-matrices (heavy square) 
can then be used to restore edge signals iteratively.

 This permits edge enhancement with a much smaller matrix, and a 'running' iterative restoration 
away from the edges can be made, substituting restored (solved) object weighting values in each 
successive set of columns of F.

Fig.4 summarizes the concepts of this section.  Hitherto digital imaging is confined to steps 6,7 and 
8, (including a theoretically compiled version of 5), when unknown signals enter some instrument 
and the restoration is made using essentially assumed relationships between the hardware used and 
the restoration algorithm.  By adding the calibration steps 1,2,3,4, the F matrix becomes a hardware-
derived set of data on  which can be based the restoration algorithm (step 5). The significance of 
step 4 might not be too obvious at first: it is the a- priori information about simulation source 
position and size, i.e. the parameters of the object point geometry and field extent, absolute position 
in space etc.  This data is not directly visible in the F matrix, but can be put to good use when the 
restored data is displayed.  Step 4 is analogous to knowledge of X-ray source angular position in 
medical tomographic imaging. The closed-loop nature of the system in Fig.4 suggests that the 
calibration mechanism might be made to double as an analog optical processor for performing the 
restoration by repeated passes, as in the system described by Goodman et al [15] for incoherent 
optical matrix-vector multiplication, but in that case the process cannot be described as a calibration  
process, although the same hardware will be in use as for CDIS.  The possibility of this application 
is interesting because the imaging equation Eq.(l) is also a matrix-vector multiplication   F.O 



.

FIGURE 4 Schematic diagram showing the closed-loop feedback nature of CDIS imaging.  
Point signals 1 are simulated, and the encoded calibration image 2 is recorded as the 
sampled PSF in one column of F. Steps 3 and. 4 signifies the a priori knowledge of 
simulated point size, field extent and absolute position in space. A restoration algorithm 5 
is then used to restore an unknown signal 6, passing through the same calibrated 
hardware, 7, and a restored object obtained 8.

IV.  THE INVERSE RESTORATION

In most high-resolution applications, F is known to be ill conditioned when a simple inversion of 
Eq. (4) will be too sensitive to noise.  In special cases when rough resolution is acceptable and the F 
matrix well behaved, the direct inverse restoration can be used, for example in X-ray or nuclear 
application. From Eq.(4):

  Oi=FC
-1.S(j)= O(i){1-FC

-1nC+FC
-1nI}/C                                       (5)

Giving the estimate as a ratio of the calibration intensity C, and with the attendant double noise 
errors already referred to.    Discretizing a continuous function gives rise to another source of errors 
which arise when a strong impulsive signal is smaller in extent than the spatial calibration point size  
A, as in Fig.5, and the image cannot fit within the corresponding PSF or its sampled SRF

Fig. 5. 'Phasing-Errors' occur when a strong impulsive signal As is smaller in size than the 

calibrated object point size A, resulting in a mismatch between the actual and the 
calibrated PSF. 



 If neighboring PSFs have similar shapes, this 'phasing error' is likely to be a horizontal dc term, but 
in very rough systems, neighboring PSFs will not resemble each other, and the impulsive object's 
PSF will not resemble any of the calibrated PSFs. Such errors appear in Hadamard spectroscopy, 
and have been treated by Fenimore and Weston [16] through fine sampling. The Equivalent CDIS 
treatment would be either to make a new calibration using smaller points and sensors, or to create 
new rows and columns in F by calculation of the intermediate values.  This of course is only 
possible if there exist extra unused sensors elements that had been left out of F.

V. THE F MATRIX AS A MEASURE OF IMAGE QUALITY

  It has been demonstrated in section B. and in Fig.2, how the F matrix, converted into graphical 
form, can be a quick visual reference mapping of the imaging system's focusing efficiency, in terms 
of the specific sampling points used for the calibration.  This is akin to the "F1F2 Diagram" 
proposed by Goodman [17], which however is based on the computed cross product of object 
Fourier transforms.                                    

Another approach, following Lahart [5]  is to compute the conditioning number of F, which is a 
measure of the stability of the system of linear equations represented by Eq.(l) and hence, their 
susceptibility to noise.  The conditioning number will then be a spatial version of the O.T.F.  This is 
not for descriptive purposes only, since an unstable F can be improved by adding neighboring rows 
and columns until F is better behaved, with a smaller conditioning number. This number is the 
product of some norm of the matrix with its inverse

(F)= ||F|| ||F-||                 (6) 

one such norm being:

||F|| =   max  ∑(j-1)   [fὒ|: i=1,N]                                                        (7)

As described in Ref.5 and the references therein.

VI. NEW POSSIBILITIES FOR CDIS  INSTRUMENTS

The importance of any a priori knowledge of the object is well known10.  The simulation step gives 
specific information about the absolute extent of the object field, points' size, and their  
distribution.    Apart from any advantage this exact knowledge of the field will give to a given 
restoration scheme, and as an aid to accurately display unequally calibrated fields' restorations, a 
new possibility is the precise pixel-to-pixel addition and subtraction of outputs of separate 
instruments. When the two or more instruments have equal magnifications, and equivalent focusing 
and sensing capabilities, such as in an array of radio telescopes, such operations are 
straightforward.  However if the separate instruments imaging the same object have different 
magnifications, aberrations, distortions and sensor or sampling irregularities, such addition or 
subtraction of the digital outputs becomes useless. 

CDIS methods offer an elegant solution to this problem: if the two or more instruments are 
calibrated by identical simulation methods (simulating point size, intensity, orientation in space,  
etc.) then the columns of the resulting matrices F1, F2, F3...of the separate instruments will refer to 
the same points in space, and can simply be added up. A similar argument permits the addition (or 
subtraction, as the case may be) of the sensor rows of F, creating a composite F matrix that can be 
used to restore the combined Sj of the separate instruments.  Alternately, the separate restored 

outputs of the different instruments can be combined after the separate computations are done. The 
results of a stable restoration will be without distortion in CDIS.  So long as the PSFs have 
sufficient peaks to match the calibration point size, resulting in a stable F, the process of calibration 
will account for the severest distortions in PSF shape.   This is so because of the absolute 
knowledge of the Oi positions, so object space can be referred to a fixed grid where restored points 

can be displayed, regardless of the distortions in the actual PSF.  This aspect of CDIS can be useful 
in designing new types of imaging instruments using such hardware as crystals, gratings or 3-D 



apertures of unknown transfer functions, or as a means to correct the distortions of more 
conventional instruments. A new kind of maging technique using unconventional â€˜instruments' 
such as a given geological formation  refracting seismic signals, or reflecting optical or radar 
signals, will then become possible.

 VII. AN EXPERIMENTAL RESTORATION USING CDIS METHODS  

Fig. 6 Experimental set-up for CDIS imaging experiment. (a) 12 LED sources were used 
as calibration and object signals in turn.  A sensor scanned 12 positions along an arbitrarily 
chosen straight path through the severely distorted overlapping images. 

 

Fig. 6 shows the basic set-up used to test the CDIS premise that calibration permits imaging through 
unknown and even arbitrary hardware, which consisted in this case of a screen upon which was 
glued at random broken lenses and chunks of diffusing glass.  Oi was a set of 12 light emitting 

diodes (LED) set near the screen, and giving a diffuse PSF shown in Fig 7a., while Fig. 7b. shows 
the direct image when several diodes are on simultaneously, to give some object pattern.  The direct 
image from a pattern of, for example, 3 LEDs illuminated together becomes quite diffuse, because 
the already distorted individual PSFs are severely overlapped.  A large detector sampled this image 
by scanning 12 sensing 'points' Sj along an arbitrarily chosen straight line through the image field.  

In other experiments the detector positions lay on a circle within the image plane, without affecting 
the successful restoration.   Calibration consisted of switching on the first LED (O1) and digitally 

storing the 12 detector readings S1, S2,..S12 as the first column f11,f12..f1 12 of an F matrix.  Only the 

second LED (O2) was then switched on and the second column's data was taken, and the process 

continued for all 12 LEDs until F was compiled. 



Fig. 7 (a,b). Aberrated images photographed from the setup of Fig.6.  (a, top) Typical PSF 
from a single LED; the randomly chosen sampling path is shown by parallel lines.  (b, 
bottom) Direct image of the 5 LEDs of pattern A of Fig. 9, showing severe superposition of 
6 PSFs.

 

Fig.8 is a plot of the resulting SRF data of F, where each numbered curve indicates the 
particular column related to a numbered LED.  It is interesting to note that no two curves 
are identical, and that for this coarse resolution the F matrix was well behaved, given the 
roughly 20dB signal to noise ratio (SNR) in the measurements. This F matrix thus 
represents an image field with total overlapping of all PSF. Imaging was performed with the 
same set of LEDs used for the calibration. In an actual instrument this is neither possible 
nor desirable. Fig.8 shows plots of three separate direct images Sj, A, B and C. Next to 

each curve is a small diagram showing the LED pattern that generated the image. Note 
that superposition of many PSFs has caused the Sj to have even less contrast than the 

SRF of Fig.7.  In spite of that, a restoration was possible using the direct inverse, as in Eq. 
(5).  Fig.10 plots the restored object for A, B, and C patterns of Fig.9.  Note that all 'on' 
points are lower than the calibration intensity, 1, due to a dimming of all the LED set when 
more than one were switched on. Point 2 of pattern G is visibly lower than the rest, a filter 
having been put on that LED during imaging. 



 

FIGURE 8                                          FIGURE 9

 Fig. 8.(top,left) Graphs of the calibrated sensor data that form columns of the F matrix .  
Each of the 12 graphs shows the measured intensity plot of the image of a single object 
LED. They are the sensor response function (SRF), which is the PSF sampled from 12 
sensor positions during calibration.  Despite total superposition, each curve is significantly 
different from any other. See photo Fig.7(a)

 Fig. 9.(top,right) The measured Sj outputs of three separate imaging situations from A, B 

and C object patterns, (shown in boxes adjoining the image plots). LED No.2 in pattern C 
was dimmed by a filter. See photo Fig.7(b) corresponding to the image of pattern A.

 

                                 A                                               B                                         C

Fig. 10.Successfully restored object intensities computed with Oi = F-1.Sj . The  data of Fig. 

8 was used to obtain the calibration matrix F. The sensor data  Sj of the three test patterns 

A,B, and C of Fig. 9 was used in turn . The computed intensity of  object 2 in C was 
correctly restored at half-strength because of the filter used over that particular LED.



Besides measurement noise there was considerable instability in the source.  It was only possible to 
restore the image cast by a small number of objects due to the severe degradation due to the 
hardware: the PSFs were spread over many if not all of the sensors. In this case merely using 
smaller object and sensor size and calibrating more points will not increase the instrument's  
resolution, because the noise accumulated by one sensor tends to corrupt the restoration beyond a 
certain limit. With better focusing, a given sensor will receive signals from fewer object points and 
a finer calibration object and sensor size can  be used. This will result in a higher signal-to-noise 
ratio (SNR) and a more sophisticated restoration scheme based on a large F becomes possible with 
greater resolution. 

The process of point-by-point simulation to calibrate an instrument's impulse response has a curious 
historical antecedent. In the 10th century, the Arab scientist Al-Hassan ibn al-Haytham (Alhazen) 
imaged several lamps lit singly and then together, through the pinhole of a camera obscura, noting 
that the image cast on the screen changed according to the number of lamps lit. This was to 
disprove an ancient belief that the eye emitted  a sort of visual ray during vision. [18].

VIII. CONCLUSION 

We have described a new imaging process, that of spatially calibrating an instrument's impulse 
response from chosen points in the object field, to obtain a discretized version of the transfer matrix 
of that instrument, including the peculiarities of the chosen object point size and distribution, and 
those of the set of sensors in the image field.   Simple as it is, the resulting F matrix was shown to 
have useful applications to optimize existing restoration algorithms by giving a better algorithm-
hardware fit.  CDIS methods allow imaging through severely distorted systems, which can be used 
to design new types of instruments.  Other possible uses for the F matrix are the accurate digital 
addition or subtraction of outputs from separate instruments, as a graphical or digital quality 
measure of an optical system, and as an aid in local restoration schemes using edge enhancement 
adjoining a dark field. The systems necessary to calibrate a particular instrument will vary,  
according to the type of signal, the required accuracy, size of aperture, and whether the signals 
simulated arrive from the near or far fields.  The details of calibration methods are outside the scope 
of this introductory and general paper, but they need careful treatment. 
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