Sharp concentration of the rainbow connection of random graphs

Yilun Shang
Institute for Cyber Security
University of Texas at San Antonio
San Antonio, Texas 78249, USA
email: shylmath@hotmail.com

Abstract

An edge-colored graph G is rainbow edge-connected if any two vertices are connected by a path whose edges have distinct colors. The rainbow connection of a connected graph G, denoted by $rc(G)$, is the smallest number of colors that are needed in order to make G rainbow connected. Similarly, a vertex-colored graph G is rainbow vertex-connected if any two vertices are connected by a path whose internal vertices have distinct colors. The rainbow vertex-connection of a connected graph G, denoted by $rvc(G)$, is the smallest number of colors that are needed in order to make G rainbow vertex-connected. We prove that both $rc(G)$ and $rvc(G)$ have sharp concentration in classical random graph model $G(n, p)$.

MSC 2000: 05C80, 05C15, 05C40.

Keywords: rainbow connection; graph coloring; concentration; random graph.

1. Introduction

We follow the terminology and notation of [4] in this letter. A natural and interesting connectivity measure of a graph was recently introduced in [6] and has attracted many attention of researchers. An edge-colored graph G is called rainbow edge-connected if any two vertices are connected by a path whose edges have distinct colors. Hence, if a graph is rainbow edge-connected, then it must also be connected. Also notice that any connected graph has a trivial edge coloring that makes it rainbow edge-connected. The rainbow connection of a connected graph G, denoted $rc(G)$, is the smallest number of colors that are needed in order to make G rainbow edge-connected.
If \(G \) has \(n \) vertices then \(rc(G) \leq n - 1 \), since one can color the edges of a given spanning tree of \(G \) with distinct colors, and color the remaining edges with one of the already used colors. Obviously, \(rc(G) = 1 \) if and only if \(G \) is a complete graph, and that \(rc(G) = n - 1 \) if and only if \(G \) is a tree. An easy observation gives \(rc(G) \geq diam(G) \), where \(diam(G) \) denotes the diameter of \(G \). The behavior of \(rc(G) \) with respect to the minimum degree \(\delta(G) \) has been addressed in the work [5, 10, 11], which indicate that \(rc(G) \) is upper bounded by the reciprocal of \(\delta(G) \) up to a multiplicative constant (which we will discuss later). Some related concepts such as rainbow path [9], rainbow tree [8] and rainbow \(k \)-connectivity [7] have also been investigated recently.

The authors in [10] introduce a vertex coloring edition. A vertex-colored graph \(G \) is called rainbow vertex-connected if any two vertices are connected by a path whose internal vertices have distinct colors. Denote the rainbow vertex-connection of a connected graph \(G \) by \(rvc(G) \), which is defined as the smallest number of colors that are needed in order to make \(G \) rainbow vertex-connected. It is clear that \(rvcG \leq n - 2 \), and \(rvcG = 0 \) if and only if \(G \) is complete. Similarly, we have \(rvcG \geq diam(G) - 1 \).

Note that \(rc(G) \) and \(rvc(G) \) are both monotonic property in the sense that if we add an edge to \(G \) we cannot increase its rainbow edge/vertex-connection. Therefore, it is desirable to study the random graph setting [3]. Motivating this idea, in this paper we consider the rainbow edge/vertex-connection in Erdős-Rényi random graph model \(G(n, p) \) with \(n \) vertices and edge probability \(p \in [0, 1] \). Based on some known bounds of diameter and degree of \(G(n, p) \), we establish the following concentration results:

Theorem 1. Suppose that \(\omega = \omega(n) \to -\infty \) and \(c = c(n) \to 0 \). Let \(d = d(n) \geq 2 \) be a natural number and \(0 < p = p(n) < 1 \). If

\[
np = \ln n + \frac{20n \ln \ln n}{d + 1} - \omega, \quad (1)
\]

\[
p^d n^{d-1} = \ln \left(\frac{n^2}{c} \right) \quad (2)
\]

and

\[
\frac{pn}{(\ln n)^3} \to \infty \quad (3)
\]

hold, then \(rc(G(n, p)) = d \) almost surely as \(n \to \infty \).

Theorem 2. Suppose that \(\omega = \omega(n) \to -\infty \) and \(c = c(n) \to 0 \). Let \(d = d(n) \geq 2 \) be a
natural number and $0 < p = p(n) < 1$. If
\[
np = \ln n + \frac{11n\ln \ln n}{d} - \omega,
\]
(4)
\[
p^d n^{d-1} = \ln \left(\frac{n^2}{c}\right)
\]
(5)
and
\[
\frac{pn}{(\ln n)^d} \to \infty
\]
(6)
hold, then $rvc(G(n,p)) = d - 1$ almost surely as $n \to \infty$.

2. Proof of Theorem 1 and 2

In this section, we will first prove Theorem 1 and then Theorem 2 can be derived similarly.

Let $\delta(G)$ be the minimum degree of a graph G. The following lemma gives upper bounds of rainbow edge/vertex-connection.

Lemma 1. ([10]) A connected graph G with n vertices has $rc(G) < 20n/\delta(G)$ and $rvc(G) < 11n/\delta(G)$.

Proof of Theorem 1. By Lemma 1 and the comments in the Section 1, we have
\[
diam(G(n,p)) \leq rc(G(n,p)) < 20n/\delta(G(n,p))
\]
(7)
if $G(n,p)$ is connected.

To get the concentration result, we need to estimate the diameter and minimum degree of random graph $G(n,p)$. It follows from the assumptions (2) and (3) that $diam(G(n,p)) = d$ almost surely (see [2] or [3] pp.259). By the assumption (1), we get $\delta(G(n,p)) = 20n/(d+1)$ (see [1] or [3] pp.65). Now we almost conclude our proof by (7).

There are nevertheless two things remain to check: (i) The assumptions (1)-(3) are reasonable, that is, there really exist such p and d. (ii) $G(n,p)$ is almost surely connected.

Define $c = c(n) \to 0$ by the equation
\[
\ln \ln \left(\frac{n^2}{c}\right) = (\ln n) \cdot \ln \ln n
\]
(8)
and let $\omega(n) \to -\infty$ sufficiently slowly. By the assumption (1), we define a function of d
\[
f(d) := (np)^d = \left(\ln n + \frac{20n\ln \ln n}{d+1} - \omega\right)^d.
\]
(9)
Take \(d = \ln n \), and we obtain
\[
\ln f(d) = (\ln n) \cdot \ln \left(\ln n + \frac{20n\ln n}{1 + \ln n} - \omega \right)
\geq (\ln n) \cdot \ln \left(\frac{n\ln n}{\ln n} \right)
\geq \ln n + (\ln n) \cdot \ln \ln n
= \ln \left(n \cdot \ln \left(\frac{n^2}{c} \right) \right)
\] (10)
where the last equality holds by the definition (8).

Take \(d = \ln \ln n \), and we have
\[
\ln f(d) = (\ln \ln n) \cdot \ln(n + 20 - \omega)
\leq (\ln \ln n) \cdot \ln(21n)
\leq \ln n + (\ln n) \cdot \ln \ln n
= \ln \left(n \cdot \ln \left(\frac{n^2}{c} \right) \right)
\] (11)
where the last equality holds by the definition (8).

From (10), (11) and the fact that \(f(d) \) is continuous, we derive that there exists some \(d \in [\ln \ln n, \ln n] \) such that \(\ln f(d) = \ln(n \ln(n^2/c)) \) holds. Consequently, the assumption (2) holds. For such \(d \), by (9), we have
\[
np = \Omega \left(\frac{n \ln \ln n}{\ln n} \right),
\] (12)
which clearly satisfies the assumption (3), and \(G(n, p) \) is connected almost surely (c.f. [3] pp.164).

Hence, both (i) and (ii) have been checked and the proof is finally completed. \(\square \)

Proof of Theorem 2. It can be proved similarly by noting the fact
\[
diam(G(n, p)) - 1 \leq rvc(G(n, p)) < 11n/\delta(G(n, p)). \] (13)

We leave the details to the interested readers. \(\square \)

References

[10] M. Krivelevich, R. Yuster, The rainbow connection of a graph is (at most) reciprocal to its minimum degree. *J. Graph Theory* 63(2010), 185–191