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Abstract The paper shows that the only possible prime terms of the “consecutive sequence” 

(1,12,123,1234...) represent  of the total, and their structure is explicited. This outcome is then 

extended to every permutation of their figures. The previous result is applied to a consistent subset of 

elements belonging to the circular sequence (resulting from the consecutive one), identifying moreover the 

31 first primes. Therefore, a criterion is illustrated (further extendible) that progressively reduces the 

numerousness of the “candidate prime numbers”. Section 3.3 is devoted to the solution of a similar problem. 

The last section introduces a new sequence which, although much larger, has the same properties as the 

previous ones, and it also proposes a few open problems. 
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§1.  Introduction 

 
In the next section I will take on the meaning of the note “unsolved problem” no.15 (that asks to single out, if 

they exist, which elements of the consecutive sequence - 1,12,123,1234.- are prime numbers) proposed by 

Florentin Smarandache in his publication, “Only problems, not solutions!” [5]. 

In particular, I will be concerned with the problem of the divisibility of a class (small in an absolute sense, 

but with many variants) of successions of natural numbers (positive whole ones excluding zero), and then go 

on to confront some of the other questions posed within the above-mentioned text. 

Subsequently, I will supply a simple formula to greatly narrow down the search for the possible prime 

numbers (those that are required to be identified) accompanied by a percentage of “prime number 

candidates” among all the generic elements of the succession. I will not (unfortunately) give a definitive 

answer to the 15
th
 question, but will develop a simple criterion, also extendable (with very small 

modifications) to other types of “similar” successions. 

 

 

§2.  Divisibility by 3 of the elements of a few integer sequences  

 
We know that a natural number is prime when it is only divisible by 1, or itself, and that the unit is not 

involved in the circle of prime numbers. While a number is divisible by 2 if it ends in an even number 

(0,2,4,6 or 8), yet divisibility by 3 is assured by the condition that the resultant of the sum of all the figures of 

the numbers we propose to factorize is in turn divisible by 3. Also, remember that all the numbers that end in 

5 will count 5
n  

(with n≥1) amongst its divisors 
1 
[8]. 

 

                                                             
1 I am implicitly referring to the base 10 numeral system (that which we adopt daily). For example, using the 

binary system for the succession we are analyzing, it would be 1,110,11011,11011100,…; in the octal system, we 

would have 1,12,123,…, 1234567,123456710,12345671011, 1234567101112,… and so on. 
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Definition 2.1.  We indicate with a1,a2,a3,…,a1-i,ai,... the single elements that comprise the “consecutive 

sequence” 1,12,123,…, 123456789, 12345678910, 1234567891011,… 
Therefore, we know that ai is simply equal to ai-1_gi (with the underscore referring to the postponement of the 

suffix “i” at the end of the preceding symbol, while with “gi” we indicate the i-th insert – formed by “#Cf” 

digits
 
-) 

2
. 

 

The example a1=1 is obviously banal. 

a2 permits us to exploit the criterion of divisibility by 2 and the same consideration is valid for all the other 

elements of the sequence identified by the subscript i=2*n . 

For sure, studying the divisibility by 3 gives more interesting results. Indicating with gi the constituent 

members of the sequence that gradually postpone towards the last of those already present (2.1) we have 

ai=g1_g2_g3_..._gi. 

The generic element g1 (with 1≤l≤i) will be composed of an amount of digits (#Cf) equal to #Cf(l) = min 

, with . 

 

Definition 2.2. We define the singular figure of gl as c1,c2,c3,…: for kmin= #Cf(l), it results                          

gl =c1_c2_c3_..._c#Cf(l). 
At this point, we notice that the postulant condition for the divisibility by 3 of ai (that if verified by imposing 

the non primality of the element ai) gives a satisfactory result (sufficient condition) if it were for the element 

ai-1 and “i” is divisible by 3 (i=3*n). The same is valid if the element ai-2 is divisible by 3 and i-1+i=2*i-1 

contains a 3 (with an arbitrary exponent major or is equal to the unit) among its own factors (2*i-1=3*n). 

Subsequently, it‟s shown that the possible cases, which one can verify concretely, are only two of the three 

that follow 
3
: 

 

A1 :=        (where A1:=ai ≡ ), 

A2 :=       (where A2:=ai-1≡ ),  

A3 :=       (where A3:=ai-2≡ ). 

 

It‟s enough to observe that A3 is redundant 
4
, seeing as it is entirely covered by the case A1 and (alternatively) 

by that of A2. The corresponding succession relating to problem no.15, indicating with A0 the case “sui 

generis” a1=1, is indeed A0,A1,A1,A2,A1,A1,A2,A1,A1,A2,..; where i≥1, =A1 if i=2+3*m or i=3*(m+1) 

 and =A2 in the remaining cases (i=1+3*m). 

In what follows, the sum of the figures of any triplet of consecutive elements (gl-1, gl, gl+1) forms a number 

divisible by 3 (where gl-1+gl+gl+1=3*gl). Operatively speaking, if, for example, we would want to verify the 

divisibility by 3 of ai, we should go on to study that in : if 

=3*n we will find ourselves in the ambivalent situation A3, if =3*n 

                                                             
2
 It is evident that g1=i, gi-1=i-1 etc.. The choice of introducing the letter “g” is just for both explanatory and 

visual simplification. 

3  It is permitted to write the successive equivalences, in as far as they are made legitimate by the congruence 

relationship 10
n 

(mod 3)≡1. 

4 Using a pinch of immediate logic, it’s clear beforehand that there are only two true and real options: either a 

number is divisible by another, or it is not. For the first situation, we have A1, for the other, we have A2. 
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we would be in the A2 condition, while if =3*n we will once again 

have the case called A1. 

Seeing as A3, A2 and A1 are divisible by 3, we can eliminate all the gh correspondents and limit ourselves to 

studying the remaining ends of the sequence (respectively, two, one and zero) 
5
. If the sum of the figures of 

this, or these, inserts, is in turn divisible by 3, it will therefore be the entire a i. Observing the scheme defined 

by ai for i ∞, it‟s clearly apparent which sequence of ai is divisible by 3. 

 

          
 

Lemma 2.3.  ai is not divisible by 3 if and only if gi=1+3*n (remember that – by definition - gi≡i). 
 

Proof of Lemma 2.3.  In a consecutive succession, like Sm_N, we find that the increment of the sum total of 

the figures, passing from ai to ai+1, is constant in module 3 and in turn forms a purely periodic sequence, if 

calculated in that module. Indicating with T(i) the sum of the figures of ai, we have that, initiating T for a 

certain i, [T(i-1)](mod 3)≡0, [T(i)](mod 3)≡[T(i-1)](mod 3)+gi(mod 3)≡1, [T(i+1)](mod 3)≡[T(i)](mod 

3)+gi+1(mod 3)≡[1+2](mod 3)≡0 and [T(i+2)](mod 3)≡[T(i+1)+3](mod 3)≡[T(i-1)](mod 3)≡0. 
The congruence in module 3 of T(i-1) and T(i+2) imposes: 

gi(mod 3)≡[T(i)](mod 3)≡[T(i+∆i)](mod 3)≡[T(i)+∆i](mod 3) for ∆i=3*n. The assertion automatically 

follows, since gi(mod 3)≡[T(i)+∆i](mod 3)≡[T(i)](mod 3)+∆i(mod 3)≡1. 

 

In our case, being that Sm1=1 – equal to 1(mod 3) -, it results that Sm2(mod 3)≡0 and Sm3(mod 3)≡0. In 

general, [Sm(1+3*k)](mod 3)≡1 and [Sm(2+3*k)](mod 3)≡[Sm(3*k)](mod 3)≡0   . 

So occur only cases A1 and A2 previously seen and % of the Sm_N results in being divisible by 3. The 

same is evident for all the possible permutations of the figures that make up ai Sm_N. 

 

Combining the (2.3) with the scheme of ai:=2*n (described in the opening paragraphs), we can easily strike 

out the majority of them from the group of prime number candidates. At this point, if we superimpose the 

scheme ai that ends in 5 (and is therefore divisible by 5), we obtain a relationship that excludes almost 87% 

of the ai from the set (potentially empty) of cardinal numbers only divisible by one or themselves (which 

we‟ll conveniently define as aj) 
6
. 

The final resulting formula will therefore be 

                                                             
5 In this case, I prefer going back to reason in terms of A3, to not uselessly weigh down the paper. We know that 

the insert gh, that cannot be removed (if it is there) consists of only this one (i⇒A2) and there is no need to make 

other evaluations, because A1 automatically implies divisibility by 3, while A2 is immediately deduced as the 

exact opposite. 

6 
However much is said for the factors 2, 3 and 5 could also be abstractly repeated for 7, 11, 13 etc..., as long as 

we take account of an ulterior variable, so it’s valid to say that the number of figures in “i”: when this element 

varies, they just mutate the rules to apply. It would be sufficient to implement the known reduction methodology, 

inherent in divisibility of the above-mentioned factors, to then generalize the results obtained, and, in the end, to 

further restrict the circle of the possible prime number candidates. For example, I studied that for 95≤i≤996,      

ai | 7  i=95+  , where ds=0,5,9,5,9,5,9,5,9,… for s=0,1,2,3,…,129. Indeed, the succession of the increments ds 

is periodic – of period ∆s=2 - starting from s=1 (the increments +5 and +9 alternate as the proposition value 

grows from the index “s”). Analogically, ai | 11  i=106+ ,  in which ds=0,7,15,7,15,7,15,7,15,… for 

s=0,1,2,3,…,81. Also, here we have that ds – the succession of the increments -  has the period ∆s=2 for 1≤s≤81. 
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                                                     ( ). 

The relationship    indicates the percentage of the “prime number candidates” within our sequence, 

in relation to their total; consequently, a probability of ai≡aj is comprised of an absolute maximum of            

 ≈0.15385 (recorded as corresponding to n=3) and the asymptotic value: 

 

I have directly verified, using the Elliptic Curve Method [1], that all the “i” terms ai with i < 217 (the first 28 

aj) are composite numbers, also managing to individualize some patterns within the relative factorizations
 

[2]. Furthermore, the primality of some ai rests absolutely possible, though this paper will not supply any 

answer to it. 

In virtue of the commutative property of the addition, the inherent rule of the divisibility by 3 of a i is also 

valid for the other sequences containing all the terms of ai, though not in a particular order, rather, in a class 

of an even vaster numeric series. 

If a generic sequence S contains only elements sj established by the same amounts of the figures of some of 

the ai, we can limit ourselves to applying the rule of the 3 just seen in this context. It will be enough to 

explain the sj in terms of the corresponding ai, effectuating the substitution and studying these last ones to 

then transpose the outcome of sj. Not only will we be able to use what is illustrated to study the divisibility 

by 3 of all the possible permutations of the “i” members of the consecutive model sequence, but we will also 

be able to include the permutations of the  figures that comprise it. The circular sequence perfectly 

re-enters this case study, together with the “right-left sequence” (and the “left-right” one) with natural terms 

and to an infinity of others 
7
. 

The considerations about the divisibility by 2 and by 5 remain the same (those just done while discussing the 

consecutive sequence set). 

 

 

§3.  Skimming of the 499501 initial terms of the circular sequence and making 

explicit the smallest 31 prime numbers contained within it   

This section contains a study of the primality of the elements of the “circular sequence” (in comparison with 

what has been done with the consecutive sequence), within the scope of the decimal number system.  

 

§3.1. Exclusion Criterion and candidate primes. The generic terms of the circular sequence (ref. 

unsolved problem no.16) is explicable via the formula proposed by Vassilev-Missana and Atanassov [4-7]: 

indicating, as always, the first “term” of every ai≡a(i) with g1, the second with g2, and so forth up to gi, we 

can make the formula in question consistent with the notation that we have used up to now. 

 

Definition 3.1.  Let a(i) be the i-th term of the circular sequence, for every natural number “i”, it results that: 

                                                             
7
 Amongst the more illuminating examples is the inverse of the sequence just studied; we obtain it by substituting 

g1 with gi, g2 with gi-1 and so on, until we arrive at the “swap” between gi and g1. In this case, the related result of 

the divisibility by 3 does not change an iota, just in virtue of the commutative property of the sum. It’s been 

verified that among the first 10000 terms of the sequence, only the 82
nd

 is a prime number (82818079...4321) [6]. 
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a(i)=s_(s+1)_..._k_1_2_..._(s-2)_(s-1), 
 

where   k≡k(i)=   

and  g1:=s≡s(i)=    (in fact,  ). 

The expansion of this is the following: 
 

 

As shown in the figure above, a specific sub-group of the elements of the circular sequence can be extracted 

and used to construct a sub-sequence, which we‟ll call O(r), formed only by the terms that verify 

g1=1,g2=g1+1,…,gi=gi-1+1. It is evident that the or, the prime elements of each re-grouping M(r), coincide 

with the “old” ai that we have met while studying the consecutive sequence 
8
. 

 

Being that all the “r” elements constitute a part of every sub-group M(r) of the particular permutations of the 

related or, we have that the elements of M(r), in virtue of the commutativity of the sum 
9
, are divisible by 3 if 

and only if the correspondent or is also divisible by 3. 

 

The pattern of the M(r) therefore results in being: A2,A1,A1,A2,A1,A1,A2,A1,A1,A2… 

The M(r) are not divisible by 3 ⇔ r:=j≡1+3*n     ( ). 

At this point, we can be even more selective eliminating all the elements of the M(j) that end in 0,2,4,5,6, or 

8, in that they are certainly divisible by 2 and/or 5, and therefore not primes. 

We can refer to a specific component of the sequence (in terms of M(r)) or to that ( M(r)) which has as a 

prime “constituent term” a given , observing that it finds itself, by construction, in the position       

 (where with “t” I make reference to the number of terms ai M(t)). Starting from a2, that is, 

for r≥2, the previous formula is equivalent to . 

 

                                                             
8 Let me rapidly note that  is always equal to a triangular number; to be precise, summing the primes 

“m” M(r), we obtain the m-th triangular number. 

9  Given or M(r), a generic term of the consecutive sequence, = . 
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Proposition 3.2.  If we indicate with bj the terms of M(j), where j:=1+3*n (assuming n is positive as far as it 

is clear that M(1)≡1 is not a prime number), we can easily calculate the percentage of bj within the sub-group 

M(j) associated with the eventual A2. 
 

Proof of Proposition 3.2.  We observe that     

Thus   As “i” approaches to infinity, the percentage of the terms of the circular sequence not 

divisible by 2, 3 or 5, reaches – as foreseen – the value ; equal to the percentage 

associated with the consecutive sequence.  

 

Going on to analyze these terms (I have personally studied the possible candidates for M<211 – M(211)  is 

formed of numbers of 525 figures – ), it‟s evident that the smallest value of the subscript, such that ai is a 

prime number, results in being i=8 (the second component of M(4)), or a8≡2341. The next 30 terms, not 

divisible by any other numbers other than one or themselves, are (in order) 

 

a53≡89101234567, 
 

a82≡45678910111213123, 
 

a302≡23456789101112131415161718192021222324251 (This takes stock of the prime element of the sequence 

M, for a fixed j, as being a prime number – and net after the removal of the numbers ending in 0,2,4,5,6 o 8 -), 
 

a591≡30313233341234567891011121314151617181920212223242526272829, 
 

a1055≡2021222324252627282930313233343536373839404142434445461234567891011121314151617181

9, 
 

a1077≡4243444546123456789101112131415161718192021222324252627282930313233343536373839404

1 (It is an example of 2 primes enclosed within  M(j)M(46) itself), 
 

a1340≡1415161718192021222324252627282930313233343536373839404142434445464748495051521234

5678910111213, 
 

a1499≡1415161718192021222324252627282930313233343536373839404142434445464748495051525354

5512345678910111213, 
 

a1890≡6061123456789101112131415161718192021222324252627282930313233343536373839404142434

4454647484950515253545556575859 (This time, the prime number is represented by the last number of the 

possible “candidates” of the sequence  M(j)), 
 

a2231≡2021222324252627282930313233343536373839404142434445464748495051525354555657585960

6162636465666712345678910111213141516171819, 
 

a3109≡2829303132333435363738394041424344454647484950515253545556575859606162636465666768

6970717273747576777879123456789101112131415161718192021222324252627, 
 

a3145≡6465666768697071727374757677787912345678910111213141516171819202122232425262728293

0313233343536373839404142434445464748495051525354555657585960616263, 
  

a3620≡5051525354555657585960616263646566676869707172737475767778798081828384851234567891

0111213141516171819202122232425262728293031323334353637383940414243444546474849, 
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a3878≡5051525354555657585960616263646566676869707172737475767778798081828384858687881234

5678910111213141516171819202122232425262728293031323334353637383940414243444546474849 
(Note that this term is congruent - in 1089 – with the preceding prime number of the sequence), 
 

a4405≡3435363738394041424344454647484950515253545556575859606162636465666768697071727374

757677787980818283848586878889909192939412345678910111213141516171819202122232425262728

2930313233, 
 

a6248≡3233343536373839404142434445464748495051525354555657585960616263646566676869707172

737475767778798081828384858687888990919293949596979899100101102103104105106107108109110

11111212345678910111213141516171819202122232425262728293031, 
 

a8878≡1001011021031041051061071081091101111121131141151161171181191201211221231241251261

271281291301311321331234567891011121314151617181920212223242526272829303132333435363738

394041424344454647484950515253545556575859606162636465666768697071727374757677787980818

28384858687888990919293949596979899 (The particular value taken on by the first term of this number – 

g1=100 – gives an indisputable harmony), 
 

a8888≡1101111121131141151161171181191201211221231241251261271281291301311321331234567891

011121314151617181920212223242526272829303132333435363738394041424344454647484950515253

545556575859606162636465666768697071727374757677787980818283848586878889909192939495969

79899100101102103104105106107108109, 
 

a11329≡456789101112131415161718192021222324252627282930313233343536373839404142434445464

748495051525354555657585960616263646566676869707172737475767778798081828384858687888990

919293949596979899100101102103104105106107108109110111112113114115116117118119120121122

123124125126127128129130131132133134135136137138139140141142143144145146147148149150151

123, 
 

a11439≡114115116117118119120121122123124125126127128129130131132133134135136137138139140

141142143144145146147148149150151123456789101112131415161718192021222324252627282930313

233343536373839404142434445464748495051525354555657585960616263646566676869707172737475

767778798081828384858687888990919293949596979899100101102103104105106107108109110111112

113, 
 

a12310≡646566676869707172737475767778798081828384858687888990919293949596979899100101102

103104105106107108109110111112113114115116117118119120121122123124125126127128129130131

132133134135136137138139140141142143144145146147148149150151152153154155156157123456789

101112131415161718192021222324252627282930313233343536373839404142434445464748495051525

354555657585960616263, 
 

a12344≡989910010110210310410510610710810911011111211311411511611711811912012112212312412

512612712812913013113213313413513613713813914014114214314414514614714814915015115215315

415515615712345678910111213141516171819202122232425262728293031323334353637383940414243

444546474849505152535455565758596061626364656667686970717273747576777879808182838485868

788899091929394959697, 
 

a13323≡120121122123124125126127128129130131132133134135136137138139140141142143144145146

147148149150151152153154155156157158159160161162163123456789101112131415161718192021222

324252627282930313233343536373839404142434445464748495051525354555657585960616263646566

676869707172737475767778798081828384858687888990919293949596979899100101102103104105106

107108109110111112113114115116117118119, 
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a13747≡525354555657585960616263646566676869707172737475767778798081828384858687888990919

293949596979899100101102103104105106107108109110111112113114115116117118119120121122123

124125126127128129130131132133134135136137138139140141142143144145146147148149150151152

153154155156157158159160161162163164165166123456789101112131415161718192021222324252627

282930313233343536373839404142434445464748495051, 
 

a15883≡130131132133134135136137138139140141142143144145146147148149150151152153154155156

157158159160161162163164165166167168169170171172173174175176177178123456789101112131415

161718192021222324252627282930313233343536373839404142434445464748495051525354555657585

960616263646566676869707172737475767778798081828384858687888990919293949596979899100101

102103104105106107108109110111112113114115116117118119120121122123124125126127128129, 
 

a17471≡808182838485868788899091929394959697989910010110210310410510610710810911011111211

311411511611711811912012112212312412512612712812913013113213313413513613713813914014114

214314414514614714814915015115215315415515615715815916016116216316416516616716816917017

117217317417517617717817918018118218318418518618712345678910111213141516171819202122232

425262728293031323334353637383940414243444546474849505152535455565758596061626364656667

686970717273747576777879, 
 

a17985≡303132333435363738394041424344454647484950515253545556575859606162636465666768697

071727374757677787980818283848586878889909192939495969798991001011021031041051061071081

091101111121131141151161171181191201211221231241251261271281291301311321331341351361371

381391401411421431441451461471481491501511521531541551561571581591601611621631641651661

671681691701711721731741751761771781791801811821831841851861871881891901234567891011121

314151617181920212223242526272829, 
 

a19815≡114115116117118119120121122123124125126127128129130131132133134135136137138139140

141142143144145146147148149150151152153154155156157158159160161162163164165166167168169

170171172173174175176177178179180181182183184185186187188189190191192193194195196197198

199123456789101112131415161718192021222324252627282930313233343536373839404142434445464

748495051525354555657585960616263646566676869707172737475767778798081828384858687888990

919293949596979899100101102103104105106107108109110111112113, 
 

a20335≡343536373839404142434445464748495051525354555657585960616263646566676869707172737

475767778798081828384858687888990919293949596979899100101102103104105106107108109110111

112113114115116117118119120121122123124125126127128129130131132133134135136137138139140

141142143144145146147148149150151152153154155156157158159160161162163164165166167168169

170171172173174175176177178179180181182183184185186187188189190191192193194195196197198

199200201202123456789101112131415161718192021222324252627282930313233, 
 

a21676≡148149150151152153154155156157158159160161162163164165166167168169170171172173174

175176177178179180181182183184185186187188189190191192193194195196197198199200201202203

204205206207208123456789101112131415161718192021222324252627282930313233343536373839404

142434445464748495051525354555657585960616263646566676869707172737475767778798081828384

858687888990919293949596979899100101102103104105106107108109110111112113114115116117118

119120121122123124125126127128129130131132133134135136137138139140141142143144145146147. 

All the preceding results have been verified utilizing the elliptic curve method so have not undergone any risk of error 

characteristic of a probabilistic approach. 
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Therefore, of the first 22155 terms of the circular sequence, 31 are prime numbers 
10

.  

For sure it‟s not surprising to notice that no initial term, among the first 210 M(r), is a prime. That was easily 

deducible a priori, because these elements coincide with those of the consecutive sequence set, that I have 

personally verified to not contain any prime numbers amongst the 216 initial components. Nonetheless, they 

have been found to be terms, for which, the prime element of the circular sequence, for a given j, (just 

considering the elements not to be skipped over beforehand – because they end in 1,3,7 or 9 -) is, effectively, 

a prime number. The smallest amongst them is a302 M(25). 

 

An interesting question (open problem) is the following. 

Because the probability of a certain number being a prime, within a comprehending interval „lot‟ of 

numbers to test, reduces as the growth of the dimensions of such numbers increases, is it plausible that 2 is 

the maximum quantitative of prime numbers that we can trace within M(r), or M(j), for a fixed value of r 

(and therefore of j) 
11

? Furthermore, were that not true, is it possible, establishing an arbitrary value “l”, to 

find a whole j such that M(j) contains at least “l” prime numbers? Also, if this affirmation is seen to be 

erroneous, what is the maximum value of  “l” for which the previous result is verifiable (it‟s evident that 

l≥2)?  
 

I will now enunciate, in a synthetic way, what I have called (with a great deal of fantasy) “Exclusion 

Criterion”. We banally state an iterative method to reach, within the range of well-defined terms, some 

“acceptable” percentages of  “prime number candidates” (considering the correct relationship of a prefixed 

quantitative of prime factors – that divide the elements of the consecutive/circular sequence -). In this 

circumstance, of the 2 sequences that we are interested in, I‟m going to consider just the elements composed 

of variable figures between 192 and 2899. 

The procedure bases itself on cancellation, from the list of numbers that could be primes, of the elements of 

the sequence that we know to be divisible by a certain factor. It‟s something very similar to what we‟ve seen 

in the case of 3, but with the substantial difference that the rules which we will apply are not valid for all the 

infinite terms to study. Another cardinal principle is represented by a property that joins determinate 

elements of the circular sequence: in precise situations, it‟s found that all the M(r) have (at least) one 

common factor. Once these fundamental relationships are identified, we can foresee when such events will 

verify themselves again and we will avoid “worrying” about the corresponding terms of the sequence. On 

this premise, Sm_N≡O(r) being strictly contained within the circular sequence, we will certainly have a 

prime number that divides both, but it‟s not obvious that the opposite is true: the divisibility by the prime 

”pr” of a generic or, represents a necessary but not sufficient condition, in that pr also divides all the other  

“r-l” elements of M(r). 

I‟m going to refrain from rigorously showing every rule proposed in the following pages, contrary to what 

I‟ve done for the divisibility by 3 of Sm_N. Provided that we keep in mind that the values of the variable r 

have to be composed of 3 figures (that is 100≤r<1000), the known properties of the algebraic sum, together 

with the fact that we are just considering the uneven terms within a specific M(r) – for a fixed value of r - 

should be sufficient enough to lead the diligent reader to the end of the associated process that‟s required. 

Another discourse is to verify that the property can be generalized for an arbitrary set of prime factors, even 

if it is still to be proven that they divide the or (and the M(r)) with a strict periodic cadence (function of r) – 

in particular the period is a multiple of pr itself -. 
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 Rather, 31 prime numbers out of 22156 terms, if we also add o211 – which we already know to be composed -. 

11
 In reality, we have to also take account the fact that the pure numerousness of the bj M(j) – the elements to 

test – augments when j grows, so the result appears anything but taken for granted – even in a probability sense. 



10 
 

We could ask the following question: “Is this exclusion criterion efficient (at least for the elements formed 

by the same number of figures)?” 

Answer: No, at least not in any absolute sense. In fact, it does not provide any information about what 

happens within a given M(r), as soon as “r” has overcome all the barriers (and is therefore considered a 

reserve of prime number candidates – r:=j -). Considering the consecutive sequence, the discourse does not 

change very much; to realize it, it‟s enough to observe the factorization, for example, of the 133
rd
 term: its 

smallest prime number is, in fact, composed of 19 figures! 

Stubbornly persevering in the previous direction, we vainly ask ourselves if, superimposing all these 

(innumerable) terms, it were possible to cover the entire Sm_N set. 

In the case of the circular sequence, we could ask if it were true, or not, from a certain point onwards (seen 

that the periodicity is not strictly pure). At this juncture, however, I‟ll gladly leave the burden of the answer 

to whoever is stubborn enough to go on with the subject. 

Aware that this iterative method will not be able to lead us to the definitive answer, I reserve the right to 

confide in you that it can at least be a starting point for more valid future arguments, based on a larger 

amount of data than I‟ve been able to provide here. 

Exclusion Criterion, valid for :  

An operative algorithm for the research on prime numbers in the gamut of the terms of Sm_N≡ai (if they 

exist) and exhaustive sampling of the M(r) which may contain prime numbers, for some selected values of 

the variables : 

 

Laws of exclusion, valid for every Sm_N (ai with 100≤i<1000):  

ai | 2    i=100+2*k 

ai | 3    i=101+3*k          or    i=102+3*k 

ai | 5    i=100+5*k 

ai | 7    i=100+ ,       where ds=0,9,5,9,5,9,5,…         for s=0,1,2,3,…,129 

ai | 11  i=106+ ,       where ds=0,7,15,7,15,7,15,…    for s=0,1,2,3,…,81 

ai | 13  i=113+ ,       where ds=0,7,19,7,19,7,19,…    for s=0,1,2,3,…,68 

And we could continue in this way, extending the analysis to the following prime numbers (over 13). 

Laws of exclusion, valid for every M(100≤r<1000): 

M(r) | 3    r=101+3*k      or   r=102+3*k 

M(r) | 7    r=100+14*k 

M(r) | 11  r=106+22*k 

M(r) | 13  r=120+26*k 

Etc… 

Reminder: not all the remaining terms are prime number candidates, in that, prizing out the elements within 

every M(r≡j) remaining, we’ll have to thoroughly examine only the values ending in 1,3,7 or 9. 
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Taking into consideration just the laws of exclusion of 3,7,11 and 13, we would register a relationship  (for 

i(r) which varies within the range 4951-499500) equal to 28.29845314*0.40042158≈0.11331 
12

. 

If we were not already satisfied, we could further improve the result obtained, reducing the value  (for both 

Sm_N and M(r)), observing, for example, that:  

M(r) | 37  ai | 37   r (and i)=123+ ,     where ds=0,12,25,12,25,12,25,… for s=0,1,2,3,…,47 

And so forth (these relationships are formalized in Section 3.2). 

Curiously: for r=172 it verifies 3 of the preceding conditions; in fact M(r=172) results in being divisible by 

11, 13 and 37 at the same time. This means that all the 172 M(172) are divisible by 5291 (and obviously 

none of them will be a prime). 

Taking up again for a moment the classic consecutive sequence in consideration, we can try to apply, all 

together, the laws related to  2,3,5,7,11,13 – and also add the rule relative to 37 just illustrated. By so doing, 

for 100≤ai≤1002, we get to a relationship  expressible in a percentage inferior to 8.54% (of the 902 

elements comprised within Sm 100 and Sm 1002, extremes included, only 77 elements are not excludable by 

means of the conditions that we have imposed). 

The new rules that I have formulated, about the divisibility of Sm_N/M(r), are valid when the independent 

variable assumes values with 3 figures, but they are not valid anymore for 10
3
≤i<10

4
 (respectively 

10
3
≤r<10

4
), because the divisibility criteria (on which I have based my analysis) are strictly linked to the 

amount of figures that compose the number to factorize. Therefore, if we wanted to apply the exclusion 

criterion to M(r≥1000), we’d need to identify the new patterns, relative to fixed prime numbers >5, that lead 

us to the formulation of rules similar to those already seen and that would be applicable to 10
4
≤r<10

5
. 

To whoever would like to venture into the research of the larger prime numbers, I would advise starting from 

the elements of the sequence Sm_N≡O(r) (if they know the factorization of it) in which the smallest factor – 

in the form a
b 

 - has a very large base “a”. In other words, numbers that, when factorized, are explainable via 

the product of prime numbers, of which the smallest is, in turn, a large prime! 

This is a summary of the 241 macro-candidates M(100≤r<1000) within which, based on the previously 

mentioned rule for 3,7,11,13 and 37, the presence of prime numbers is not excludable (I have already tested 

the values associated with r<211 and the results are those reported in this article): 

103,109,112,115,118,121,124,127,130,133,139,145,151,154,157,163,166,169,175,178,181,187,190,193,196,

199,202,205,208,211,214,217,220,223,229,232,235,241,244,247,256,259,262,265,274,277,280,283,286,289,

292,295,298,301,307,313,316,319,322,325,331,334,337,340,343,346,349,355,358,361,364,367,373,376,379,

385,388,391,397,400,403,409,412,415,418,421,424,427,430,433,439,442,445,448,451,454,457,460,463,466,

469,472,475,481,487,490,496,499,508,511,514,517,523,526,529,532,535,538,541,544,547,550,553,556,559,

565,571,574,577,580,583,586,589,592,595,598,601,607,610,613,619,622,625,628,631,637,643,649,652,655,

658,661,664,667,670,673,676,679,682,685,694,697,703,706,709,712,721,724,733,736,739,742,745,748,751,

754,757,760,763,769,775,778,781,784,787,790,793,799,802,805,808,811,817,820,823,829,835,841,844,847,

850,853,859,862,865,868,871,877,880,883,886,889,892,895,901,904,907,910,913,916,919,922,925,928,931,

934,943,946,955,958,961,967,970,973,976,979,985,988,991,994,997. 
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 In this case, the value 40.042158...% =  is an exact number; it represents the percentage of possible 

prime terms within the M(r≡j), with 100≤r≤999. In Section 3.3 I will resolve the general case – which appears on 

page 25 of [3]. 
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(If we have the proof that the or  -  for r≤k – are all composed, it‟s permissible to exclude every first element of M(r≤k) 

from the research – or the r terms of the sequence - ). 

N.B. 

The number of the M(j), in which the presence of terms only divisible by one and by themselves is not 

excludable, depends on how many and from which prime factors we have employed to extend the exclusion 

criterion (for r within the fixed interval): for example, proposing r=118, we have that 83 is a fixed factor for 

all the terms of the circular sequence formed of 246 digits, but there’s no hope of revealing such a property 

just basing itself on the few relationships that we have previously chosen to consider.  

 

 

§3.2. A few linear exclusive conditions. Formalization of the exclusion rules, that a prime number 

candidate of the consecutive sequence must respect, for 100≤i<1000 – just taking into account the divisors 

2,3,5,7,11,13 and 37 -: 

 

The corresponding rules, such that ai M(100≤r<1000) is a prime candidate of the circular sequence – 

considering the divisors 3,7,11,13 and 37 and implying that   - are instead: 

 

 

 

§3.3. General solution of the circular sequence final digits probabilistic problem. Kenichiro 

Kashihara [3] also cites the circular sequence, posing two additional questions regarding the series in 

consideration. While the second question is not at all pertinent to the current article, a variant of the first 

question has been briefly confronted, when I had to calculate the percentage of the terms of M(j) (with 

100≤j≤999) that can be made up of one prime number. In this circumstance I have calculated the sum of the 

probability associated with c  for the terms of the sequence, comprising those between the 4951st 

and the 499500th, such that r≡j. 
So, the question I will answer, in this subsection, is linked to the extension of that calculation: “What is the 

probability that a generic element of the circular sequence ends with a given final figure - 

c  -?” 
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To be brief, I will omit describing in detail how I have identified the successive relationships, seeing that the 

test of their validity is relatively simple and quick. With p(c=k) I will indicate the probability that 

ai≡a(r) M(r) – a generic element of the circular sequence that is between 1 and  – has k as a final 

figure (that is to say ai(base 10)≡k). I have chosen to consider “r” as a parameter (rather than “i”) to not 

excessively complicate the exposition. Remember, however, that to recognize the exact probability linked to 

the first ah (with  =  < h <  = ) terms of the sequence, it is sufficient to insert in the 

numerator (in the relationship that defines the probability that we propose to calculate) the “successful cases” 

among the elements
  13  

contained in the M(t≤r-1), then to add to these the other successes, associated with the 

remaining terms of the sequence (of the numerousness surely inferior to r) and finally to divide all this by 

h≡  (the complex of the terms considered). The substance of the procedure remaining intact, I will 

refer, as already said, just to ai≤ . 

Specifically, we have that: 

 

in which      

 

 

in which    

 

 

in which   

 

in which   

We can say the same for the other 6 remaining cases. In general, if we indicate with “k” the value taken up 

by “c”, the following relationship is valid: 
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 Such elements are exactly . 
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where    

(⎣x⎦ indicates the operator “floor” or the smallest integer regarding  x ). 

Doing the calculations, we can rewrite the entirety more compactly as: 
 

 

 

Remembering that, by definition, r≥1; from the preceding we deduce that the last of the 6 cases, that I 

avoided explaining, is that to which the highest probability of success is associated, . In fact, for 

k=1, it results that: 

 

with    

Logically, , p(c=1)+p(c=2)+p(c=3)+…+p(c=9)+p(c=0)=1 and furthermore  

, because, as 

the independent variable draws out towards infinity, the chain of equivalence results in being valid: 

.  

Out  of curiosity, we can analyze the case in which  p(c)>0, c , is characterized by 

the maximum discrepancy of values (under our initial condition). It is easy to understand that I am referring 

to the event r=10: 

,  

,  

,  

… 

. 

 

Definitively, for every finite number of terms of the succession, we have that 
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p(c=0) < p(c=9) < p(c=8) < p(c=7) < p(c=6) < p(c=5) < p(c=4) < p(c=3) < p(c=2) < p(c=1)
 14

. 

 

 

§4.  The consecutive-permutational integer sequence and the primality of its 

terms 

 

As I‟ve explained in Section 2, the rule of the divisibility by 3 is commutative and this property let us apply a 

more extensive criterion, focused on groups of figures rather than their sum. Therefore, combining this 

consideration with what has been illustrated in the opening (about Sm_N), we can create an even “larger” 

sequence with the same characteristic. This sequence (chosen a base, for example, the decimal one) is 

formed by all the permutations of the figures of Sm_N, arranged in ascending order 
15

: fixed the number of 

terms in the previous sequence (that is, by definition, unlimited), we have to take each term and write down 

the permutations of the elements of it. Then we have to order these items from the smallest to the biggest. 

The first terms of this new sequence, which we‟ll define as P(i(r)), - taking into account the growth of “r” – 

coincide with the o(r) of the circular one, but only for r<10, because, for r=10 (and above), the first term of 

the group is p409114≡01123456789, which we consider to be equal to 1123456789. So, for r≥10, a few terms 

of the same group have a different amount of digits, but the total of the elements in that group still remains 

#Cfo(r)! (the factorial of the number of the digits of o(r)). 
Applying the rule of 3, pi(r) is not divisible by 3 iff r:=j=1+3*n ( ). We only have to study the 

groups (formed by #Cfo(r)! terms) such that they are congruent modulo 10 to {1,3,7,9}, also satisfying the 

condition r=j. 

At this point, we could ask ourselves the following questions: 

 What is the general term for the new sequence? 

 How many primes are there (is it possible to find a formula to identify them)? 

 Are there terms that can be written as a power of a prime number? 

 What is the probability that the trail digit of a (general) term of the sequence is (0,1,2,3,4,5,6,7,8 or 

9) – we need a universal formula - 

About the first and the last questions, remember that, for  a fixed value “k”, the number of terms pi:=p(r≤k) is 

 (that is ≥ of ).  

The above result could easily be extended to find the formula for the numerousness of terms of the sequence 

P formed by, at most, “k” digits, just calculating  taking as “h” the r values of                      

h(r)≡   such that h(r)≤k [9]. 
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 Therefore, to estimate the probability that a generic element of the sequence, between the first and the h-th 

one, ends with the figure k, it will be sufficient to calculate – with the formulae just illustrated – what the 

extreme values of the interval are in which (with absolute certainty) p(c=k) will be found:  

seeing that ≤h≤ , ph(c=k) will be between the probability associated with r’≡(r-1) and r’’≡r. Given that 

p(r’)<p(r’’) for k=(1,2,3,4,5)  and  p(r’)>p(r’’) for k=(6,7,8,9,0), if 1≤k≤5 the interval will be  p(r’)≤p(c=k)≤p(r’’), 

otherwise we will have p(r’’)≤p(c=k)≤p(r’). 

15 This means that the generic term “pi” is strictly less than “pi+1”,  
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To answer the second problem, we could try to calculate the first primes of this sequence. The result appears 

quite interesting. 

Among the first 1000 terms (pi≤1325467), we have to test only these 62 elements: 

1243, 1423, 2143, 2341(three consecutive prime terms - for p(j=4) -), 2413, 2431, 3241, 3421, 4123, 4213, 4231, 

4321, 

1234567≡o(7), 1234657, 1235467, 1235647, 1236457, 1236547, 1243567, 1243657, 1245367, 1245637, 

1245673, 1245763, 1246357, 1246537, 1246573, 1246753, 1247563, 1247653, 1253467, 1253647, 1254367, 

1254637, 1254673, 1254763, 1256347, 1256437, 1256473, 1256743, 1257463, 1257643, 1263457, 1263547, 

1264357, 1264537, 1264573, 1264753, 1265347, 1265437, 1265473, 1265743,1267453, 1267543, 1274563, 

1274653, 1275463, 1275643, 1276543, 1324567, 1324657, 1325467. 

I have underlined only the terms that are prime numbers, so the    ratio could  seem “high”        

(  ≈ 0.3226), but this is “untrue”. Even if this ratio, calculated taking into account the terms between 

1234567 and 1325467, is roughly the same (  ≈ 0.32), according to the prime number theorem, we could 

expect a result close to   ≈ 0.071   (or   ) 
16

. 

If we consider that we are not taking into account the even terms, the elements with 5 as the trail digit, plus 

all the terms divisible by 3, we could conclude that the general rule is also sound to describe the percentage 

of prime terms in the sequence P. Just keeping attention on my extended criterion (for prime factors above 5) 

is not applicable to all the permutations of the digits, even if it remains valid for every “rotation” (circular 

permutations) of them (performed by cutting any amount of the initial digits of a term of the consecutive 

sequence and pasting them at the end of the number 
17

, to form a new one that still remains divisible by the 

given factor). 

 

This new sequence, encompassing a lot of well-known integer sequences (like the 

consecutive one, the reversed, the circular, the left-right, the right-left, etc…). This means that the study of 

its properties directly  involves them and vice versa the known features of these sequences (like the primality 

of its terms) lest we know more about the consecutive-permutational sequence! 

In my opinion, P  is the most “normal” sequence dealing with the divisibility criteria, because they are based 

on the sum-difference of figures and on their own positions. So, the study of P(r) and the divisibility rules 

result in being strictly connected with each other. 
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