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Abstract 
When physics must be based on an axiomatic foundation then the law set of traditional 

quantum logic is a valid candidate. However, at first sight, these axioms do not treat physical 

fields and they do not treat dynamics. It only prescribes the static relations that exist between 

quantum logical propositions that treat static subjects. Amongst these propositions 

statements exist that describe everything that can be said about the static condition of a given 

physical item. Such propositions represent that item. Traditional quantum logic is lattice 

isomorphic to the set of closed subspaces of an infinite dimensional separatable Hilbert 

space. That is why quantum mechanics is usually done with the aid of Hilbert space features. 

The representation of a physical field does not fit in a Hilbert subspace. Physical fields have a 

universe wide range and their presentation would cover all of a complete Hilbert space.  

 

Piron has shown that this Hilbert space can be defined over one of three division rings. The 

choice comprises the real numbers, the complex numbers and the quaternions. The choice for 

the quaternions means that manipulations of the Hilbert space, such as Fourier transforms, 

in general use such multi-dimensional numbers.  

 

According to Helmholtz decomposition theorem, the quaternionic Fourier transform can be 

divided in a complex longitudinal Fourier transform and a transverse Fourier transform. For 

quaternionic functions this means that they can be locally split into a one-dimensional 

rotation free part and a two-dimensional divergence free part.  

 

This e-paper indicates that traditional quantum logic can be expanded to extended quantum 

logic, which includes the influences of physical fields in the form of potential propositions 

that concern virtual items. Extended quantum logic is lattice isomorphic with the set of 

subspaces of a set of Hilbert spaces. The fields represent the glue between these Hilbert 

spaces. 

 

In this complicated way the axioms of traditional quantum logic form the constraints of the 

dynamics of quantum physics. When the dynamics of the universe would be put to a hold, 

then the axioms of extended quantum logic would describe all static constraints that are put 

to that universe. Dynamics means that universe steps from one static status quo to the next. 

After the step the conditions are changed and the static constraints are reestablished. If we 

find the laws that control the steps, then we have found a complete axiomatic foundation of 

http://www.scitech.nl/
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physics. Classical physics forms another constraint of dynamical quantum physics. This e-

paper studies what happens during the step. 

 

In the process a classification of skew Hilbert fields will be generated that corresponds 

closely to the Maxwell fields. Further, this e-paper investigates what happens in the 

infinitesimal steps that nature takes in order to arrive at the next static status quo. In this way 

the origin of dynamics and the origin of special relativity may be revealed. 
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It is undeniable that a Creator exists. 

It is easy to give a creator a place in physics 

It is our fate to interpret who or what this creator is. 

Fourier transforms are abundantly present in physics and have the habit to convert 

something that is strongly localized into something that is very widespread and vice versa. 

Consider what the Fourier transform of the universe will be! 

 

 

Introduction 
The aim of this paper is to build upon a fundament consisting of a minimal set of axioms and 

then derive as much as is possible from fundamental physics by using only purely 

mathematical methods. 

 

This e-paper is not about quantum logic. It uses quantum logic because traditional quantum 

logic defines the static framework in which quantum dynamics takes place. Traditional 

quantum logic prescribes the relations that exist between quantum logical propositions. 

Amongst these propositions statements exist that describe everything that can be said about 

the static condition of a given physical item. Such propositions represent that item.  

 

Traditional quantum logic is lattice isomorphic to the set of closed subspaces of an infinite 

dimensional separatable Hilbert space. That is why quantum mechanics is usually done with 

the aid of Hilbert space features. The representation of a physical field does not fit in a 

Hilbert subspace. Physical fields have a universe wide territory and their presentation would 

cover all of a complete Hilbert space.  

 

Piron has shown that this Hilbert space can be defined over one of three division rings. The 

choice comprises the real numbers, the complex numbers and the quaternions. The choice for 

the quaternions means that manipulations of the Hilbert space, such as the Fourier 

transforms in general operate on these multi-dimensional numbers. The representations of 

physical fields are Hilbert fields. Hilbert fields are blurred Hilbert distributions. Hilbert 

distributions are sets of Hilbert vectors. These vectors may be equipped with one or more 

hyper complex numbers or with one or more hyper complex functions that represent a local 

blur. In this way these fields not only touch all Hilbert vectors but they also become 

differentiable. With the help of a normal operator a Hilbert vector can be converted in a 

hyper complex function. We call such functions Hilbert functions. As a consequence, the 

derived theory is largely based on the properties of these multidimensional transforms and 

on the properties of Hilbert fields and Hilbert functions.  

 

A three-dimensional Fourier transform can be divided in a one-dimensional longitudinal 

Fourier transform and a two-dimensional transverse Fourier transform. The longitudinal 

transform works only on the longitudinal part of the function or field that is being 

transformed. The same holds for the transverse parts and transforms. The division in a 

longitudinal part and a transverse part of a field has only a local validity. For Hilbert fields 

this means that they can be locally split in a one-dimensional rotation free part and a two-

dimensional divergence free part. This is the subject of the Helmholtz decomposition 
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theorem. Multi-dimensional Dirac delta functions show the same decomposition as the 

multi-dimensional Fourier transform.  

 

The fact that this categorization has only local validity and that it is related to an imaginary 

direction causes that the quaternionic Fourier transform must be considered to operate in a 

curved coordinate space. The differentiability of quaternionic functions and Hilbert fields 

also offers this categorization. In addition the functions and fields can be categorized 

according to their symmetry properties. These categorizations must also cope with a curved 

coordinate space.  

 

Traditional quantum logic and the Helmholtz decomposition theorem together form a set of 

laws that define the static relational status quo that would exist in nature when dynamics 

could be put to a hold. This paper points out that traditional quantum logic can be expanded 

such that it includes the representation of static physical fields. In this picture the fields 

represent sets of potential propositions. These propositions are statements that say 

everything that can be said about the static condition of virtual items. The set of propositions 

in extended quantum logic is no longer isomorph with the set of closed subspaces of a single 

Hilbert space. It is isomorph with the closed subspaces of a set of Hilbert spaces. One 

member of this set of Hilbert spaces is the actual Hilbert space. It contains the representatives 

of actual physical items. The other members are virtual Hilbert spaces. They contain the 

representations of virtual physical itemsEach virtual Hilbert space corresponds to an 

instance of a virtual (traditional) quantum logic. These virtual logics represent potential 

replacements of the actual traditional quantum logic. A virtual logic differs from other 

virtual logics in the fact that their propositions have a different configuration in terms of 

their atomic predicates or in terms of their sub-ordered propositions. In a similar sense they 

will differ from the actual logic.  

 

The replacement will be made between logics that have a great resemblance with each other 

and the values of the predicates within equivalent propositions will be the same or close to 

each other. At each replacement the existing items are annihilated and replacing items are 

created. It is also possible that annihilation is not followed by creation or that a created item 

is not the replacement of an annihilated item. 

 

A redefiner, which steps from the actual Hilbert space to a virtual one, implements 

dynamics. The redefinition step exchanges the actual Hilbert space against a virtual Hilbert 

space that is taken from the representation of the fields. 

 

Dynamics can be interpreted as a sequence of steps in which each step leads nature from the 

conditions of one status quo to the conditions of the next status quo. The laws that define the 

status quo are clear. During these steps several things happen. The laws that govern the 

dynamics are still obscure. The steps couple the static ingredients into a dynamic mixture. 

The steps are taken universe wide. A redefiner with a universe wide domain controls these 

steps. The step counter presents a universe-wide progression parameter. This parameter 

must not be confused with our common notion of time, but it cannot be denied that it has 

some relation with it. It certainly has a close relation with the relativistic proper time. 
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Traditional quantum logic is usually defined via its structure as an orthomodular lattice. This 

logic only defines part of the static skeleton of the frame in which quantum physics operates. 

It does not state anything about physical fields. Inertia reveals the importance of the 

gravitation fields. The Helmholtz/Hodge decomposition theorem defines the structure of 

static physical fields. In that way this theorem plays a similar role as traditional quantum 

logic. Extended quantum logic encompasses both law sets. These law sets do not specify or 

even touch the source of dynamics. Dynamics couples the static fields. The coupling not only 

applies to parts of the same field. It also concerns different fields. For example dynamics 

couples electrostatic fields with magnetostatic fields into dynamical electromagnetic fields 

and it couples electromagnetic fields with gravitational fields. 

 

Both the propositions about a quantum physical system and physical fields are closely 

related. However, this relation only gets relevant when dynamics comes into play. Dynamics 

causes a continuing redefinition of the propositions. This disturbs the current static status 

quo. When one proposition is changed it interchanges its constituting atomic predicates with 

other predicates. The change can even involve the exchange of atomic predicates against 

atomic predicates that are of another type. It is also possible that the configuration of a 

complex system that consists of simpler components is altered.  

 

The static physical fields can be interpreted as storage of the preconditions for the next step. 

The physical fields are the representatives of the influences that go together with the sticky 

resistance of the set of propositions against the changes that occur due to the redefinitions of 

the propositions that describe physical items. This sticky resistance also occurs in 

propositions that are sub-ordered to other propositions. Inertia is a feature that shows this 

resistance explicitly. 

 

The propositions about quantum physical items can be represented by closed subspaces of a 

Hilbert space. The presence of dynamics means that the relations between these subspaces 

are not stationary. It is also possible to give the physical fields a representation in Hilbert 

space. However, it must be clear that quantum physical items and physical fields are not the 

same stuff. Physical fields cannot be represented by closed Hilbert subspaces. They cover the 

whole universe. In fact, each field covers the whole Hilbert space. However, their strength 

may be concentrated around separate excited places and it may diminish with distance. 

 

The actual physical items are distributed in space and are surrounded by potentials that act 

as a kind of blur. This is why quantum physics has much in common with optics. The blur 

characterizes the transfer quality of the corresponding field. At not too short distances the 

blur of electromagnetic fields has the same shape as the blur of gravitational fields. These 

fields are based on the same Hilbert distributions. The main difference lays in the fact that 

the charges of electromagnetic fields have the same size but may have different sign such 

that they may partly compensate each other’s influence. The charge (mass) of the 

gravitational field is always positive, but it may differ in size. The masses of all physical 

items work together in order to create the immense potential that causes inertia. 

 

It is an elucidating experience to try to implement a complicated quantum logical 

proposition in the representation of quantum logic in Hilbert space. In that way we may 

discover how dynamics emerges in this static skeleton. For that reason, we choose as an 
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example a predicate with quantifiers rather than a clean proposition. In the course of this 

project it will become clear that there is a way to extend the rather static traditional quantum 

logic into a dynamic version. The phenomenon of inertia guides our way.  

 

The selected example proposition (♠) is  

 

‚All items in universe influence each other’s position‛.  

 

The final conclusion of this experiment is: A well-ordered replacement of atomic predicates 

in an enveloping proposition appears to occur without strong consequences, but any 

deviation of a well ordered replacement causes an influence of the complete set of all 

propositions. This explains the interaction between fields and physical items. A local 

deviation of the uniformity of the distribution of physical items can still cause a slight 

influence of neighboring items. At small distances the influences can be large. The influence 

of fields can be implemented in the Hilbert space. Via an action = reaction game the 

interaction between fields and Hilbert subspaces form the source of dynamics. 

 

What further happens during the implementation of our example proposition (♠) is 

completely governed by mathematics. Thus, for our example no further extension of quantum 

logic is needed to transform it into a useful version of dynamic quantum logic.  

 

As number spaces we use the 2n-ons of Warren Smith rather than the hyper complex 

numbers based on the Cayley-Dickson construction. Up to the octonions the corresponding 

number spaces are similar. (See http://www.math.temple.edu/~wds/homepage/nce2.pdf or 

the appendix). For higher n the 2n-ons behave in a nicer way. They keep more of their 

number characteristics. We use the quaternions (n=2) as the number space that is used to 

define the inner product of the Hilbert space. However, we tolerate operators to have 

eigenvalues that are higher dimensional 2n-ons. We also use 2n-ons in order to set the values 

of physical fields. 

 

When we use these numbers as eigenvalues or as field values, then we apply their number 

characteristics as well as their storage capacity. A 2n-on contains 2n real numbers. We also 

tolerate that operators and fields support multiple sign selections, such as the inversion of 

the real axis and the handedness of external vector products for their eigenvalues. 2n-ons 

offer n sign selections and contain n independent imaginary base numbers. Each new 

independent base number introduces a new sign selection. The sign selections translate into 

an n-fold hyper complex conjugation and 2n different skew fields. 

 

With n > m, the 2n-ons act like 2m-ons in their lower m dimensions. Further, the 2n-ons contain 

several subspaces of 2m-ons. We may use smoothly curved manifolds that are crossed by 

curves which form trails of 2n-on numbers and that are locally touched by tangent spaces 

that can be interpreted as 2n-on number spaces. 

 

When the members of a set 2n-ons approach zero, then in their mutual arithmetic actions 

they are getting more and more the characters of lower dimensional 2m-ons. In the same 

sense, when two 2n-ons approach each other, their mutual arithmetic actions are getting 

more and more the characteristics the arithmetic of lower dimensional 2m-ons. 

http://www.math.temple.edu/~wds/homepage/nce2.pdf
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The implementation of the proposition (♠) leads to a story of manipulators and manipulated 

observables. The number waltz feature (c=ab/a) of the 2n-ons that becomes a noticeable effect 

for n>1 seems to play a significant role in our model. If this model applies to quantum 

physics, then it may reveal why special relativity exists and brings clearness in the different 

notions of time that exist in quantum physics. The curvature introduced by the spatial 

variance of what the longitudinal direction is reveals how the mentioned influences can be 

implemented as component fields which are defined on a curved coordinate system. This 

holds for gravitational fields as well as for the other fields such as electromagnetic fields. 

 

Implementing quantum physics in a complex Hilbert space hides these interesting features 

and diminishes the insight that higher dimensional 2n-ons can reveal. 

 

The article shows that there is a need to extend traditional quantum logic such that it not 

only includes the representations of fields but also includes axioms, which specify the 

dynamic underpinning of quantum physics. In the course of this project several fundamental 

aspects of physics get uncovered. 

Comments 
This project is far from finished. Most parts I have rewritten several times. Some ingredients 

were already included before they are finalized and before they are put at the proper 

position in the context. I try to make the whole paper consistent with its parts and I try to 

keep my goal to include nothing that did not follow directly or indirectly from the axioms of 

traditional quantum logic. I only tolerate mathematics as a valid tool and ingredient. I will 

not use or accept intuition as a reason to include a subject in the text. I will also not tolerate 

the usefulness of a concept or its acceptance in the physical community as a valid argument 

to include that concept. If you encounter places where I did not succeed in that goal, then 

you may conclude that I still have to work on that section. When the paper gets its final 

version, then no deviations of my goal should result. However, I might never reach that 

condition. Then, you reader might take over and finish the job. But first think of the 

possibility that we will succeed. What does it mean that all of fundamental physics is based on 

mathematics and on the 25 axioms of traditional quantum logic?! 

References 

This e-paper contains no lengthy reference list. References to other documents are usually 

presented inline and are mostly put in the form of hyperlinks. A sometimes referenced 

toolkit contains a collection of stuff that otherwise must be grasped from internet. As is done 

in this article, much of the contents of the toolkit are directly or indirectly obtained from 

Wikipedia. In that case the text is adapted to the requirements of the papers that use this 

toolkit. Most texts on internet are based on complex Hilbert spaces, so where necessary I 

have converted these texts into quaternionic versions. 

 

This paper is prepared with MS Word 2010. This word processor version contains a rather 

capable equation editor and a large series of fonts including Cambria Math. However, the 

equation editor does not cooperate with the paragraph indexing in order to automatically 

enumerate the out of line equations. For that reason equations are enumerated manually and 

relative to the current paragraph header. References inside that paragraph just use the 

file:///C:/web/NewWebSite/English/Science/Toolkit.pdf
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equation number. References from outside of the paragraph are hyperlinks that refer to the 

paragraph header. The hyperlink text will then include the equation number. So, you must 

move manually to the equation inside the target paragraph. 

 

This paper draws significantly from the book on electromagnetic field theory of Bo Thidé. 

That book has a different goal and uses different premises. The book does not use the 

quaternionic field approach as is done here, but its contents easily translate to quaternions. 

Further its formulation is very precise, it links formulas to physical concepts and most of all 

it is online: http://www.plasma.uu.se/CED/Book/EMFT_Book.pdf. 

Notation note  

This paper uses {} in order to indicate a set or a function.  

Depending on the context {|fs>}s means an ordered set of vectors |fs> where s is the ordering 

index. In other contexts{|fs>}s means a vector function |f(s)> where s is the (discrete) 

parameter. Continuous functions are presented in the normal way. 

f({qj}j) is a function f(q1, q2, q3, q4,< qn,) of the set of parameters ({qj}j, where j = 1, 2, <, n. The 

index constraint n might be infinity.  

 

The appendix and the toolkit contain information about other notation and naming 

conventions that are used in this paper. 

 

  

http://www.plasma.uu.se/CED/Book/EMFT_Book.pdf
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Logic 
The set of propositions of traditional quantum logic is lattice isomorphic with the set of 

closed subspaces of an infinite dimensional separatable Hilbert space Ң. This isomorphism 

means that quantum logical propositions can be represented by closed subspaces of a Hilbert 

space. The inner products of that Hilbert space can be defined by using numbers of a 2n-on 

number space. Taking n>2 for that purpose raises numeric problems with the closure of the 

subspaces. Traditional quantum logic does not include any axioms that treat dynamics and it 

does not treat the influences of physical fields. It only specifies stationary relations that are 

possible between physical items.  

 

In order to discover the emergence of dynamics we will implement a quantum logical 

proposition in Hilbert space and test its truthfulness. We will introduce in this example 

proposition physical fields as well as dynamics. 

 

The example proposition is: 

All items in universe influence each other’s position. (♠) 

 

It can be answered with either yes or no. And, if we succeed, it can be implemented in 

Hilbert space. So, in that case it is a valid quantum logical proposition. 

Proving ‘yes’ is cumbersome, but the ‘no’ is hardly less difficult. It requires finding an item 

of which the position is not influenced by at least one of the other items. For this purpose it is 

necessary to implement notions of items, the universe, influences and position in Hilbert space. 

 

The statement includes quantifiers (position) and operational elements (influence). The set of 

axioms of traditional quantum logic does not treat these subjects. As we will see, the influence 

of the universe of propositions (items) will put particular restrictions to the extension of 

quantum logic into the realm of a dynamic logic. This restriction is manifested in the 

occurrence of inertia.  

 

Translated in physical terms inertia means that in contrast to a uniform movement, the 

acceleration of an item will go together with the action of a physical field. Notice that we use the 

words ‚goes together with‛ instead of ‚generates‛ or ‚causes‛.  

 

Translated in logical terms a conclusion of the analysis of inertia runs: ‚ 

During a redefinition of a proposition the exchange of atomic predicates in that proposition 

must be done in well-ordered and controlled steps. Otherwise the community of propositions 

will influence the considered proposition.‚  

 

Again it must be noticed that there is no causal relation between the event of being well-

ordered and the event of influencing. The interaction is instantaneous. 

 

When nature’s logic is put in axioms, then influences that correspond to physical fields must 

follow from the axioms. Together with the specification of the origin of dynamics this will 

then result in a dynamic version of quantum logic.  
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I assume that this category of logic does not yet exist in mathematics. There exists a version 

of dynamic operational quantum logic, but it does not cover or mention the effects of the 

representation of physical fields in logic and it does not specify the origin of dynamics. 

Atomic predicates 
Atomic propositions are statements that are either true or false and which cannot be broken 

down into other simpler propositions. When an atomic proposition concerns a property, then 

it may contain the value of that property. We will call that kind of atomic propositions 

atomic predicates. For example ‚The speed is 5.‛ The identity or the category of the property 

is ‚speed‛. The value of the property is 5. Its dimension is ‚meter per second‛, but that is 

another atomic statement and it is a fixed statement. This information is part of the type 

definition of the atomic predicate category ‚speed‛.  

 

The atomic predicates form a set with a particular lattice structure. In this set we only 

consider atomic predicates that are independent of all other atomic predicates.  Several 

choices of such sets exist. A subset consisting of members of a chosen set may be canonical 

conjugates of members of another set. 

 

In Hilbert space the type definitions of atomic predicates that concern numeric variables are 

represented by operators. The values of the properties in the atomic predicates correspond to 

the eigenvalues of the operators or they are expectation values. Expectation values are 

statistically determined via a probability characteristic that characterizes both the operator 

and a physical item. See Wave function. 

Type definitions 
Type definitions are propositions that describe and categorize subjects without specifying 

their variable values. A type definition of a category of atomic predicates specifies the type of 

property that these propositions treat. If that category is ‚speed‛, then the definition also 

contains the dimension (e.g. meters per second) and the allowed range of the potential 

values. 

When the type definition concerns a more complex object that can act as an individual the 

definition will be called an item type definition. Item type definitions use atomic predicate 

types.  

 

When that item cannot be broken into simpler objects that still can act as an individual, then 

the type definition is an elementary type definition. Elementary type definitions are 

constructed of type definitions of atomic predicates. 

The elementary types form (a rather small) subset of the whole set of type definitions. 

Elementary types appear to divide into two categories: bosons and fermions. 

 

If the item is not an elementary type, then its type specification is a system or sub-system 

type definition. A (sub)-system type definition is constructed of elementary item type 

definitions and atomic predicate types.  

 

The type definitions form a set with a different lattice structure. Its structure is isomorph 

with the structure of classical logic.  

 



15 

 

 

In Hilbert space no representation for item type definitions exists. However, in Hilbert space 

atomic predicate types are represented by operators. 

Items 
The first problem that is raised by constructing the representation of proposition (♠) is to 

determine what in this representation stands for an item. The simplest solution is to attach a 

subspace of the Hilbert space to the item. The corresponding proposition can be phrased as: 

‚This is the item‛. Something either belongs to the subspace or it is outside that subspace. 

Everything that can be attributed to the item can also be attributed to this subspace. Each of 

these propositions belongs to a hierarchy for which the mentioned proposition forms the top. 

All sub-ordered propositions correspond to subspaces of the item’s subspace. In this way the 

universe of items can be represented by a set of mutual orthogonal subspaces of the Hilbert 

space. Rays that are spanned by a single Hilbert vector and that are connected with a 

numeric value can be considered as atomic predicates. Subspaces spanned by such rays that 

are related to the same type of value can be considered as statements with a wider scope. The 

rays can be subspace of an items subspace. The subspace that corresponds to a conglomerate 

of elementary items also represents that conglomerate as an item. The configuration of the 

subspace that represents an item will change as a function of the parameter that measures 

the progression of the dynamic behavior of the item. It is possible that not only the values of 

the atomic predicates change. The types of these atomic predicates may change as well. This 

happens for example with atomic types that are each other’s canonical conjugate. It is also 

possible that the configuration of the subspace changes more drastically.  

 

A nice extra is the fact that the subspace can be moved around (rotated around the origin) in 

Hilbert space. In this way it may be possible to implement the dynamics of items. This 

moving around does not mean that the vectors are moved around. It means that at each step 

of the move the set of vectors that span the considered subspace is redefined. The 

redefinition corresponds to a redefinition of the corresponding proposition. Thus, 

redefinition and the laws that govern redefinition convert the static quantum logic into a 

dynamic version of quantum logic. It will be shown that physical fields play a significant role 

in this redefinition. 

 

With his bra-ket notation Dirac has provided us with a marvelous symbolism for vectors and 

even for operators. He did not provide us with symbols for subspaces. However, it is easy to 

extend his symbolism and indicate a subspace with a set of vectors that spans that subspace. 

For example {|fs>}s indicates a set of element vectors |fs> with enumerator s that span a 

closed subspace. This set identifies the subspace. Different sets may identify the same closed 

subspace. 

 

It is sensible to have one vector inside the item’s subspace that is considered as characteristic 

for the location of the representation of the item in Hilbert space. We reserve the name 

locator for this vector. When the item is redefined, that vector may be redefined as well. This 

characteristic vector can be used to obtain a precise location of the subspace in Hilbert space. 

The process via which the locator is determined depends on the requirements. The 

requirements may be set in relation to an operator. For example the vector that corresponds 

with the expectation value of the operator for that subspace can be chosen as the locator. In 
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that case the state vector that corresponds with that operator may play the role of the locator. 

Two or more bosons can share the same locator. Fermions that possess the same property 

values cannot share the same vector as a locator. 

 

Atomic predicates are not considered to be statements that describe a physical item. The 

statement ‚This is the item‛ forms the top of a hierarchy of statements that all say something 

about the item. The hierarchy contains statements that define the item’s type. Other members 

of the hierarchy specify the items constituents. Still other statements concern the item’s 

atomic variables that together with the type definition specify the item’s identity. For atoms 

the variables of the subsystems are hidden from the outside of the atom. This means that 

atoms can be considered as modules. 

Vacuum 
Multidimensional subspaces exist that do not represent a dynamical item. They can be 

considered as vacuum. It is still possible that the subspace represents a ground state. We will 

assume that on the average the ‘filled’ and the vacuum subspaces are evenly distributed over 

a connected part of the Hilbert space. The phrase ‚evenly distributed‛ means that the 

distance between the representations of items makes sense. Here we do not mean the 

distance related to the norm of Hilbert vectors, but the coordinate related distance that will 

be introduced later.  

 

‚Vacuum‛ does not say that these subspaces are empty. It is rather an indication that the 

subspace does not represent a dynamical object. Instead the subspace may represent a 

ground state.  

Fields 
Physical fields are not physical items. Physical fields are represented by Hilbert fields. For 

each Hilbert field, every member of an orthonormal base of the Hilbert space corresponds to 

a value of the field. Hilbert fields have much in common with wave functions. In quantum 

field dynamics the Hilbert fields play a similar role as wave functions do in quantum 

mechanics. Each elementary type corresponds to a kind of physical field. With each fermion 

type an anti-type exists. 

Sign selections 
Four possibilities exist due to the sign selections of the quaternions. One sign selection is 

covered by the conjugation a→a*. The other is caused by the handedness a→a⊗. When both 

combine then the superscript a→a⊕ is used. It is also possible to use the extended quaternionic 
conjugation: 
 

       
 

 ⊗     

 

 ⊕     

 

    
  
  ⊗

⊗
         

 

(1) 

(2) 

(3) 

(4) 

file:///C:/web/NewWebSite/English/Science/ThereExistsATendencyInNatureToReduceComplexity.pdf
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This differs from the complex conjugation: 

 

     (  )
 
   

 

The effects of the quaternionic conjugation are visible in the base numbers 1, i, j, k: 

 
     

 

      

 

     

 

      

 

     
 

      
 

     
 

      
 

     
 

      
 

     
 

      
 

     
 

Thus k follows the rules of complex conjugation. This renders its direction to a special 

direction. This direction is called the longitudinal direction. The directions of i and j are 

transverse directions. Apart from that they are mutual perpendicular and perpendicular to k, 

they have no preferred direction.  

 

These properties hold locally, they are related to other properties of the operators or the 

fields that carry these properties. 

Product rule 

We use the quaternionic product rule. It has eight (16-8) versions. When either a or b is fixed, 

then the product has four versions: 

 

             〈   〉              
 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(1) 
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          〈   〉              
 

          〈   〉              
 

          〈   〉              
 

          〈   〉               
    

 

          〈   〉              
 

          〈   〉              
 

          〈   〉              
 

          〈   〉               
    

 

          〈   〉               
    

 

          〈   〉               
    

 

          〈   〉               
    

 

          〈   〉               
    

 

          〈   〉               
    

 

          〈   〉              
 

          〈   〉               
    

 

Products of the form aa have two versions. 

 

                  
 

                          
 

      〈   〉 
 

                         
 

                
 

      〈   〉 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 
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Product sub-terms 

The product ab contains two particular sub-terms: 

 

     〈   〉              
 

〈   〉                 
 

     (         )   (         )   (         ) 

 

The products a0b and ab0 have two versions. 

The product 〈   〉 has two versions. 

The product     has two versions. 

The sum a0b + ab0 has four versions. If either a or b is fixed it has two versions. 

Operators 

The sign selections of operator    (    ) depend on the sign selections of position operator 

Q, which determines the sign selections for its eigenvalues    (    ).  

 

Normally we consider the sign selection for operators Q and ∇ fixed to operators    and 

  . Sometimes we chose instead operator   . 
 

Quaternionic conjugation is directly connected with the concepts of parity and spin. 

 

For quaternionic functions symmetry reduces the differences that are produced by 

conjugation and anti-symmetry stresses the differences. The same holds for operators. 

Matrices 

Another possibility is to present sign selections by matrices. 

 

   0
  
   

1 

 

   [
  
   

] 

 

   0
  
   

1 

 

  0
  
  
1 

 

Construction 
The Cayley-Dickson construction formula enables the generation of a quaternion from two 

complex numbers: 

 

p = a0 + a1k + i(b0 + b1k) 

 

q = c0 + c1k + i(d0 + d1k) 

(1) 

(2) 

(3) 

(1) 

(2) 

(3) 

(4) 

(1) 

(2) 

http://www.vttoth.com/qt.htm
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 (a, b) (c, d) = (ac – db*; a*d + cb) 

 

r = pq 

 

r0= a0c0 – a1c1 – b0d0 – b1d1 

 

rk= a0c1 – a1c0 – b0d1+ b1d0 

 

ri= a0d0 + a1d1 + b0c0 – b1c1 

 

rj= –a1d0 + a0d1 + b0c1+ b1c0 

 

Quaternionic conjugation   means the exchange of ri and rj. 

Colors 
In the following text, the consequences for the product of the sign choices of the conjugate   

or  is indicated by blue color  . The consequence for the product of the choice of the 

handedness   of the cross product is indicated by red color  . The mixed conjugate   acts 
accordingly on both colors. 
 

The sign selections split the ring of quaternions in four different realizations. 

GPS of Hilbert space 
The first step is the introduction of a suitable GPS system in Hilbert space. This can be done 

by taking an orthonormal base of Hilbert vectors and add quaternion values to them. The 

number set must be countable. Let us take the rational quaternions as an example. This 

construction defines a normal operator Ϙ with countable infinite number of eigenvectors |ϙ> 

and corresponding eigenvalues ϙ. We will use the name coordinate space for the eigenspace 

of the coordinate operator Ϙ.  

 

When we speak about the coordinate distance between two vectors |f> and |g> in Hilbert 

space, then we mean the distance between the values of <f|Ϙ f>/<f|f> and <g|Ϙ g>/<g|g>. 

 

Ϙ has an infinite but countable number of eigenvalues. A Location in coordinate space 

represents a location in on the unit sphere of Hilbert space. Thus in fact the eigenspace of Ϙ 

must be treated as an affine space. The uni-coordinate space is by definition an affine space. 

 

Take the polar decomposition of Ϙ in a unitary part Ų and a positive operator Ņ. The 

eigenspace of Ų is the uni-coordinate space. Like the unit sphere of the Hilbert space, the 

uni-coordinate space is an affine space. Besides of that also no a preferred direction exists in 

this unit sphere. Subspaces containing an infinite number of eigenvectors of Ϙ correspond to 

each separate eigenvalue ų of Ų. 

Position 
The original proposition (♠) speaks about the position of the item. The position must be 

related to something that is available in the Hilbert space. The Hilbert space is defined over a 

number space. Thus we might attach a number of this field (or a higher 2n-on) to the 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 
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subspace that represents the item. That number must represent position. The natural way of 

attaching numbers to subspaces of a Hilbert space is via the concept of eigenvalues of normal 

operators. Any symmetry transform of the coordinate operator Ϙ meets the requirements. 

However, this position does not reflect the change of the longitudinal direction with the 

location in an analyzed Hilbert field. Thus it may be sensible to allow transformations of the 

GPS space that produces a correspondingly curved eigenspace of position operator Q. In that 

case the quaternionic Fourier transform in Q coordinates becomes a wider validity range. 

 

The separable Hilbert space has a countable dimension. It means that the eigenvalues may 

offer a dense coverage of a connected part of the number space, but it is not a closed 

coverage. It does not include all limits of all convergent rows. Thus it is sensible to attach a 

tiny environment of the actual eigenvalue to each eigenvector. In this way the position is 

expressed in a tiny environment rather than in a single number. At least the position is 

represented by a single eigenvector and in this way the whole number space is covered by 

the set of eigenvectors. The eigenvector represents an atomic predicate that represents the 

position attribute of the considered item. The eigenvector lies inside the subspace that 

represents the item. The corresponding atomic predicate states that the position of the item 

lies inside the environment that is represented by the eigenvector. 

 

Now the position is connected to eigenvectors. The physical item is connected to a subspace 

rather than to a single vector. So we can use the localizer as a more precise indicator of the 

position of the physical item. On the other hand physical items are characterized by a state. 

A state is either a wave function or a probability density operator. Each wave function 

represents a probability amplitude and can be presented by a Hilbert ray. A Hilbert ray is a 

one dimensional subspace that is spanned by a single Hilbert vector. The locator of the item 

is such a vector. In that case the wave function indicates the probability of finding the 

position of the localizer. The probability density operator is a weighted projection operator 

that is related both to the subspace that represents the item and to the position operator. It 

represents the probability that after measuring the position the parameter of the density 

distribution is found as the result.  

 

The fact, that the position operator must be bounded in order to guarantee that its 

eigenvectors span the whole Hilbert space, is not crucial to our model. It is sufficient when 

all positions that are connected to items stay in a finite sphere. When the position operator is 

blurred and its eigenspace is an affine possibly curved space, then this criterion is fulfilled. 

 

The deliberations that the eigenvalues of operators need not be restricted to the hyper 

complex number space that is used to specify the Hilbert space also hold for the position 

operator. The positions may be elements of a curved manifold. In this case we will call the 

position operator relaxed. The curved position space may be seen as the result of the actions 

of the fields. The fields themselves can be seen either as functions of the observed curved 

position space or as a functions of the untransformed GPS operator. 
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Functions and fields 

Functions in quaternionic Hilbert space 

Every Hilbert vector |f> can be combined with the eigenvectors {|q>}q of a compact normal 

operator Q to give a corresponding Hilbert function f(q). The values of this function follow 

from the inner products of the vector with the eigenvectors of the operator, while the 

corresponding eigenvalues {q}q form the variable of the function.  

 
 ( )         

 

Due to its definition the Hilbert functions are only defined for an infinite but countable 

number of parameter values that lay dense in quaternion space. The Hilbert functions are 

infinitely close to a corresponding differentiable function. Functions that are defined in the 

way described here will be called sharp Hilbert functions. 

 

A locatable probability distribution can be described by the convolution of a Dirac delta 

function, which indicates the Hilbert vector that represents the location of the weighted 

center of that distribution and a function f(q) that describes the distribution relative to that 

location. In this way a blurred Hilbert vector is defined. This means that a blurred Hilbert 

vector is defined by the combination of a sharp locator Hilbert vector and a sharp shape 

Hilbert vector. The blurred Hilbert vector represents a Hilbert probability distribution. 

 

Pure states are characterized by blurred Hilbert vectors. 

Differentiation 

The operator ∇ is directly related to operator Q. Thus, the sign selections for Q transfer to the 

sign selections for operator ∇. With a fixed field there exist four nabla operations. With a fixed 
nabla operator there may exist four results. 

 

g( )  ∇ ( )   ∇   ( )  〈   ( )〉  ∇  ( )      ( )  (    ( )) 

 

g̅( )  ∇  ( ) 

 

  ∇   ( )  〈   ( )〉  ∇  ( )      ( )  (    ( )) 
 

∇ turns a symmetric field f(q) into an anti-symmetric field ∇f(q) and an anti-symmetric field 

into a symmetric field. 

 

The fact that ∇ ( )    means that  ( ) is constant or that at location q function  ( ) is in a 

maximum, a minimum, a saddle point or an asymmetric plateau. The consequence of this 

restriction is: 

 

∇   ( )   〈   ( )〉 
 

 ∇  ( )      ( )   (    ( )) 
 

The fact that ∇  ( )    leads to different equations. 

(1) 

(1) 

(2) 

(3) 

(4) 
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∇   ( )   〈   ( )〉 
 

 ∇  ( )      ( )   (    ( )) 
 

The quaternionic Laplace operator Δ is defined by  

 

 ( )     ( )  ∇ ∇ ( )  ∇∇  ( ) 

 

 ∇ 
  ( )     ( ) 

 

A quaternionic function that fulfills   ( )    is a harmonic function. 

A quaternionic function that fulfills    ( )    is a spatial harmonic function. 

Distributions in quaternionic Hilbert space 

Using a compact normal operator Q and a second distribution operator ρ with the same 

eigenvectors {|q>}q but with eigenvalues {ρq} we can generate a Hilbert distribution. 
 

 ( )             
 

Operator ρ need not be a compact normal operator. Its spectrum of eigenvalues may be 

confined to a discrete set of points. Further, its eigenvalues ρq can be hyper complex 2n-ons 

where n can by larger than 2. In that case ρ(q) is a 2n-on distribution. A Hilbert distribution is 
not differentiable. It can be seen as a combination of a set of Dirac delta functions that are 
multiplied with hyper complex numbers. If all numbers are quaternions, then it is a linear 
combination of Dirac delta functions. 

Discrete distribution 
The Hilbert space is separatable. This means that the set of eigenvalues of an operator is 

countable. Thus a Hilbert distribution ρ(q) is always discrete: 

 

 ( )  ∑    

 

 (    ) 

 

The factors     are hyper complex 2n-ons. 

However, the distribution can represent a very dense coverage. In that case the distribution 

can become quasi differentiable. 

Convolution with a blurring spread function can render the result (mostly) differentiable. 

Depending on the blur, the result may still be singular on the definition points of the Hilbert 

distribution. 

The blur may represent a probability distribution. 

Hilbert field 
By blurring the Hilbert distribution with a suitable spread function, the distribution can be 
transformed into a mostly continuous function. This converts the Hilbert distribution  ( ) into a 
skew Hilbert field  ( ). 
 

 ( )   ( )   ( ) 

(4) 

(5) 

(5) 

(1) 

(1) 

(1) 

http://en.wikipedia.org/wiki/Distribution_(mathematics)
http://en.wikipedia.org/wiki/Skew_field
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With a given Hilbert distribution  ( ), each blurring function  ( ) causes a corresponding 
Hilbert field. 
 
Hilbert fields that correspond to the same Hilbert distribution form a Hilbert field set. 
Each Hilbert field in this set belongs to the same subset that consists of different conjugate 
versions of the same Hilbert field. 
 
A Hilbert field can be categorized according to its: 

 Symmetries 
 Conjugation 
 Corresponding distribution 

 
The differential of a symmetric field of field part is anti-symmetric. 
The differential of an anti- symmetric field of field part is symmetric. 

Blur function 
The blur is a spread function. It is the reason of the significant similarity between optics and 
quantum physics. On the other hand, the blur is a probability distribution. This is the source of 
quantum noise. 
 
The blur is related to the ground state. 
Hermite functions, which are eigenfunctions of the Fourier transformation, have a Gaussian blur. 
Coherent states, which are eigenfunctions of ladder operators have a Poissonian blur. 
 
Quantum shot noise produces a Poisson distribution. When large numbers of quanta are 
produced the distribution approaches a Gaussian distribution. A binomial process that follow a 
noise generating Poisson process can be combined with that binomial process into a generalized 
Poisson process with a lower efficiency. The binomial process represents a weakening effect. 
Spatial blur can be interpreted as a binomial process. This is because it represents a spatial 
integration effect. The efficiency of the detection of quanta is characterized with the detective 
quantum efficiency (DQE) of the detector. Together with the Fourier transform of the spatial 
spread function this determines the signal to noise ratio in the information stream. The spread 
has an integrating (smoothing) effect. A sharper spread improves the signal, but also increases 
the noise. 
 
The blur plays a role when canonical conjugate operators occur together or in sequence. The 
blur is caused by the inaccuracy of the combination of these operators. 
The blur has many functions and interpretations: 
 

 Convolution with a spread function makes a Hilbert distribution differentiable. 
 The spread ensures the compactness of corresponding operators. It also reduces the 

frequency range covered by its Fourier transform. 
 The spread function represents a probability distribution. 
 The probability distribution is characteristic for the inaccuracy of a category of 

operators, such as the Fourier transform, the ladder operators and the number operator. 
 A spread function characterizes a ground state. 
 The spread represent the probability that virtual items exchange roles with actual items. 
 The virtual items represent subspaces of virtual Hilbert spaces that are ready to 

exchange roles with the currently valid Hilbert space. 
 The virtual items represent virtual quantum logical propositions that may exchange 

roles with currently actual propositions. 

http://en.wikipedia.org/wiki/Quantum_noise
http://en.wikipedia.org/wiki/Detective_quantum_efficiency
http://en.wikipedia.org/wiki/Detective_quantum_efficiency
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 The virtual quantum logical propositions are elements of a virtual traditional quantum 
logic that is ready to exchange roles with the currently actual traditional quantum logic. 

 The blur can be interpreted as a spatial quantum noise distribution. 
 The blur works as storage of past, present and future conditions. 
 The blur can be squeezed in order to reflect the importance of momentum versus 

position. 
 A basic (ground) blur has in each direction a symmetric cut. A odd-times differentiated 

blur has in one direction an asymmetric cut. An even-times differentiated blur has in 
each direction a symmetric cut. 

 The blur represents the sticky resistance of the universe against unordered changes (= 
changes of uniform movement in a geodesic). This is proved by the existence of inertia. 

 The blur represents the sticky resistance of the collection of all propositions against 
unordered redefinitions. 

 
In short: Without blur (quantum) physics is impossible! 

Vacuum expectation value 

The vacuum expectation value (also called condensate or simply VEV) of an operator is its 

average, expected value in the vacuum. The vacuum corresponds to a ground state. The 

vacuum expectation value of an operator O is usually denoted by 〈 〉. 

Harmonic functions 
Harmonic functions are suitable spread functions. 
For a harmonic function  ( ) holds: 
 

  ( )  ∇∇  ( )     
 
See for example the section Potential. 

Conservation of charge 

When   ( ) is interpreted as a charge density distribution, then the conservation of charge is 

given by: 

 

Total change within V = flow into V + production inside V 

 
 

  
∫     

 

 ∮ ̂      
 

 ∫     

 

 

 

This equation represents the conservation of charge. 

Here  ̂ is the normal vector pointing outward the surrounding surface S,  ( ) is the velocity 

at which the charge density   ( ) enters volume V and    is the source density inside V 

With the help of Gauss theorem this converts into: 

 

  ( )  ∇   ( )  〈  (  ( ) ( )     ( ))〉 

 
 ∇   ( )  〈   ( )〉 

 

This equation represents a balance equation for charge (or mass) density. 

Here  ( )is the current density and a(q) is an arbitrary differentiable vector function.  

The blue colored ± indicates quaternionic sign selection through conjugation   or  . 

(1) 

(1) 

(2) 

http://en.wikipedia.org/wiki/Vacuum_state
http://en.wikipedia.org/wiki/Harmonic_function
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The quaternionic charge density is given by: 

 
 ( )    ( )   ( )    ( )    ( ) ( )  

 

The quaternionic source density  ( ) is given by: 

 
 ( )    ( )   ( )  ∇ρ( ) 

 

 
   ( )  ∇    ( )   〈   ( )〉 

Probability amplitude, probability density and probability current 

The probability amplitude ψ(q) can be used to define a probability density and probability 
current. See http://www.vttoth.com/qt.htm.  
 

   ( )    (q) 
  (  (q) (q)) 

 
 ( )    (q)    (q) 

 

   0
  
   

1 

 

   [
  
   

] 

 

   0
  
   

1 

 

  0
  
  
1 

 

Compare Dirac: 

 
  

  
 (   ∇    )  

 

Canonical conjugate 
The canonical conjugate of the operator Q is the operator P. It is defined by using a complex 

subspace of a quaternionic number space that is used to specify inner products. It is defined 

by specifying the function that defines the inner products of the eigenvectors |q> of Q and 

|p> of P with real eigenvalues q and p. 

 

         ̃( )             ( )       (       ) 
 

The constant ħ is Planck’s constant and relates to the granularity of the eigenspaces. The 

imaginary base number k belongs to a complex subspace of the quaternionic number space.  

 

(3) 

(4) 

(5) 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(1) 

http://www.vttoth.com/qt.htm
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Due to its specification, the canonical conjugate operator P can be interpreted as a generator 

of displacement of the eigenvalues of Q. For this purpose the considered function  ( ) must 

be differentiable. 

 

         
 

  
 

 

               
 

  
 ( ) 

 

The definition leads to the commutator: 

 

 ,   -                
 

The sign selections of P depend on the sign selections of Q. 

Complex Fourier transform  

The specification of the canonical conjugate also defines a complex Fourier transform.  

 

Let |f> be the generator of a quaternionic function that is generated with the help of the 

eigenvectors and eigenfunctions of operator Q with canonical conjugate P. 

 

The Fourier transform Ƒȋ = Uqp converts the base {|q>}q into the base {|p>}p. The inverse 

Fourier transform Upq does the reverse. 

 

                   ( )     ∑(           )

 

  

 

 ∑    (     )      

 

   ∑             

 

  ∑          

 

 

 

         ∑(           )

 

 

 

   ∑          

 

 

 

The complex Fourier transform of a symmetric (complex) function is a cosine transform. It is 

a real function. 

 

The complex Fourier transform of an anti-symmetric (complex) function is a sine transform. 

It is an imaginary function. 

(2) 

(3) (3) 

(4) 

(1) 

(2) 
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Through Fourier transformation the operators P and Q exchange roles. 

Heisenberg’s uncertainty 

The Heisenberg’s uncertainty principle is a consequence of the definition of the combination 

of the canonical conjugate and the definition of the Hilbert field. It means that a small spread 

of q values goes together with a large spread of p values and vice versa. 

 

Δq·Δp ≥ ħ/2 

 

A squeezed coherent state is any state such that the uncertainty principle is saturated. That 

is: 

 

Δq·Δp = ħ/2 

 

See: http://en.wikipedia.org/wiki/Squeezed_coherent_state. 

Quaternionic Fourier transform split 
The complex Fourier transform specified above is a longitudinal quaternionic Fourier 

transform Ƒk that works on the complex part of the function that is defined via the imaginary 

base number k. The longitudinal Fourier transform concerns the rotation free part of the 

function or field. This fact concerns a local property, so definition of the longitudinal part of 

a field or function has only local validity. 

 

  ( ( ))    (( ((   ))  )) 

 

Or 

 

  ( ( ))    .  ( )/  

 

It relates to the full quaternionic Fourier transform Ƒ 

 

 ( ( ))    ̃( ) 

 

The inverse Fourier transform runs: 

 

   ( ̃( ))    ( ) 

 

The split in longitudinal and transverse Fourier transforms corresponds to a corresponding 

split in the multi-dimensional Dirac delta function. 

The transverse Fourier transforms 

Apart from the longitudinal quaternionic Fourier transform a transverse quaternionic 

Fourier transform exists. Like the longitudinal part, the definition of the transverse part of a 

function or field has only local validity. 

 

  ( ( ))    (  ( ))  

(1) 

(1) 

(2) 

(3) 

(4) 

(1) 

http://en.wikipedia.org/wiki/Squeezed_coherent_state
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This Fourier transform acts on the resulting subspace of the quaternionic number space. 

 

Like quaternions, quaternionic functions and operators can be split in a longitudinal part and 

a transverse part.  

Transverse plane 

The Cayley-Dickson construction, as well as Warren Smith’s construction formula shows that 

the transverse part can be considered as a complex number space multiplied with a fixed 

imaginary quaternionic base number. The selection of the imaginary base number i is 

arbitrary as long as it is perpendicular to k. The resulting plane is spanned by axes i and ik. 

When base number i is divided away, then a normal complex number space results. When 

the origin of the new plane is shifted, then any displacement in the new plane means an 

angular displacement with respect to the first origin. In that case the momentum operator for 

this plane is in fact an angular momentum operator. 

 

Also here a complex Fourier transform can be defined in a way that is similar to the 

longitudinal Fourier transform. It must be reckoned that the sign selections for these 

directions differ.  

Fourier modes 

There is still another way to split the quaternion space into complex spaces. Let us redefine 

the longitudinal canonical conjugate and define two transverse canonical conjugates. All 

three share the real axis. May be this share includes a shift with respect to the origin of the 

real axis. Similar shifts may exist with respect to the origin of the imaginary axes. 

 

           ̃ (  )          
     

 (  )       (  (            )  ) 

 

           ̃ (  )          
     

 (  )       (  (            )  ) 

 

           ̃ (  )          
     

 (  )     (  (            )  ) 

 

A Fourier mode corresponds to the inner product of an eigenvector of Q and an eigenvector 

of P. Thus equations 1, 2 and 3 describe shifted Fourier modes The shifts are indicated as δμ.. 

When the blurring function stretches very wide, then in that direction the blurred Hilbert 

field approaches a Fourier mode.  

 

Fourier modes can be combined. For example two synchronized (same p0 and q0) modes can 

be combined into elliptically polarized waves. When the shifts are equal, then the wave is 

circular polarized. When the shifts are half a radian apart, then the wave is linearly 

polarized. The direction of the wave is perpendicular to the two selected imaginary axes. 

 

If we accept that the longitudinal direction is runs along k, then for a given Hilbert field ψ, 

the imaginary direction is a linear combination of directions i and j. This direction may vary 

with q0.  

 

If we take the field ψ as a guide, then at every instance of q0 the longitudinal direction k runs 

in the direction of the divergence ∇ψ0 of the field ψ0. 

(1) 

(2) 

(3) 
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Alternative approach 

 

The following draws from the work of S. Thangavelu. 
 

Let us take the non-abelian group ℍ1 which is ℝ ⊗ ℝ ⊗ℝ with the group law 

 

(     )(        )    (                             ) 
 

Then it is clear that ℍ1 is non-abelian and the Lebesgue measure dx dy dt is both left and right 

invariant Haar measure on ℍ1. With this measure we can form the Hilbert space L2(ℍ1). Let Γ 

= ℤ ⊗ ℤ ⊗ ℤ. Then it is easy to check that Γ is a subgroup of ℍ1 so that we can form the 

quotient M = Γ/ℍ1 consisting of all right cosets of Γ. Functions on M are naturally identified 

with left Γ-invariant functions on ℍ1. As the Lebesgue measure dx dy dt is left Γ-invariant we 

can form L2(M) using the Lebesgue measure restricted to M. As a set we can identify M with 

[0, 1)3 and we just think of L2(M) as L2([0, 1)3). 
 

Fourier expansion in the last variable allows us to decompose L2(M) into a direct sum of orthogonal 

subspaces. Simply define ℋk to be the set of all f ∈L2(M) which satisfy the condition 

 

 (         )    e p(         )  (     ) 
 

Then ℋk is orthogonal to ℋj whenever k ≠ j and any f ∈ L2(M) has the unique expansion 

 

     ∑   

 

    

     ∈  ℋ  

 

We are mainly interested in ℋ1 which is a Hilbert space in its own right. It is interesting to note that 

functions in ℋ1 are also invariant under the left action of Γ. 
 

Our next example of a unitary operator is the following. Consider the map J : ℋ1 → ℋ1 given by  

 

 (     )    (            ) 

 

  (     )    (           ) 

 

         

 
  (     )     (             )    (        ) 

 
       

 
 (     )    (     ) 

 
   (     )     ( (      ))     (            ) 

 

Weil-Brezin transform  

Next consider the Weil-Brezin transform V: 

 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

http://www.math.iitb.ac.in/atm/faha1/veluma.pdf
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   (     )       (       ) ∑   (     ) e p(         )

 

 

 

∫     (     )     ∫ ∑    (     )  
   

    

 

   

 

   

   

 

∭    (     )            ∫    ( )    
 

 

 

 

 

  

V is unitary.  

See also Zak transform 

Fourier transform 

We define the Fourier transform F by: 

 

           
 

         ; for every   ∈    (ℝ)  

     ( )     (  ); for almost every   ∈  ℝ 

 ‖   ‖    ‖ ‖  

 

For   ∈    (ℝ)     (ℝ) the Fourier transform is given by 

 

 f( )    ∫ f( )  e p(       )  
  ∈ ℝ

 

 

If we further assume that    ∈    (ℝ) then for almost every x we have 

 

 f( )    ∫  f( ) e p(         )  
  ∈ ℝ

 

 

Fourier transform eigenfunctions 

In this section we confine to a complex part of the Hilbert space. 

See http://en.wikipedia.org/wiki/Hermite_polynomials.  

There exist two types of Hermite polynomials: 

 

1. The probalist’s Hermite polynomials: 

 

  
    ( )  (  ) e p(   ) 

  

   
 e p(    ). 

  

 

2. The physicist’s Hermite polynomials 

 

  
    ( )  (  ) e p(  )

  

    
 e p(   )  e p(   ) (  

 

  
)  e p(    ) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

  
    ( )

        
    
( √ ) 

(1, 2) 

http://en.wikipedia.org/wiki/Hermite_polynomials
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These two definitions are not exactly equivalent; either is a rescaling of the other: 

 

  
    ( )         

    
( √ ) 

 

In the following we focus on the physicist’s Hermite polynomials. 

 

The Gaussian function φ(z) defined by  

 
 ( )       (     ) 

 

is an eigenfunction of F. It means that its Fourier transform has the same form. 

As        any λ in its spectrum   ( )  satisfies λ4 = 1: Hence,  

 

  ( )    *          +.  

We take the Fourier transform of the expansion: 

   (                 )     ∑    (     )   ( )  
    

 

   

 

First we take the Fourier transform of the left hand side: 

 
 

√  
 ∫    (       )    (    

              )
 

    

    

     (     
                

 ) 

   ∑    (     
 )   (  ) (    )

    

 

   

 

The Fourier transform of the right hand side is given by 

 

√  
 ∑  ∫    (       )     (    

 )   ( )  
    

 

    

 

   

    

Equating like powers of c in the transformed versions of the left- and right-hand sides gives 

 

√  
 ∫ e p(       )     (    

 )   ( )  
    

 

    
     

  (  )  e p(     
 )   (  ) 

  

  
 

Let us define the Hermite functions   ( ) 

 
  ( )             c  e p(    

 )   ( )  

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 
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              (  )

  

 

with suitably chosen cn so as to make 

 
‖  ‖

       
 

c  
 

√    √ 
 

 

The importance of the Hermite functions lie in the following theorem. 

 

‚The Hermite functions ψn; n  N form an orthonormal basis for L2(R)‛ 

 

Consider the operator  

 

      
  

   
        

 

Apply this to ψn(z): 

 
    ( )   (     )   ( )  

 

Thus, ψn is an eigenfunction of H. 

  
Let           be any of the Hermite functions. Then we have 

 

 ∑  (     )  e p(         (   ))

 

    

 

 

  (  )   ∑  (     )    (         )

 

    

 

 
Proof: As  

 

           
 

the equation  

 

     (  )   
 

translates into 

 

   (       )   (  )    (       ) 

 

With the definition of V and t = xy: 

 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 
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   (     )       (       ) ∑   (     )    (         )

 

 

 

QED. 

 

The vectors |ψn> are eigenvectors of the Fourier transform operator with eigenvalues (-k)n. 

The eigenfunctions ψn(x) represent eigenvectors |ψn> that span the complex Hilbert space 

Ңk. 

For higher n the central parts of   ( ) and    ( ) 
  become a sinusoidal form. 

 
A coherent state is a specific kind of state of the quantum harmonic oscillator whose 

dynamics most closely resemble the oscillating behavior of a classical harmonic oscillator 

system. The ground state is a squeezed coherent state. 

Ladder operator 

The Hermite functions    represent Fock states. 

 

Boson ladder operators are characterized by 

 

       √          
 

        √            

 

  
 

√ 
(  
 

  
    )      √

 

       
  √

   

   
 

 

(1) 

(2) 

http://en.wikipedia.org/wiki/Coherent_state
http://en.wikipedia.org/wiki/Fock_state
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√ 
(   

 

  
    )     √

 

       
  √

   

   
 

 

In the Heisenberg picture, the operators have the following time dependence: 

 

 ( )   (  ) e p(     (t    )) 

 

  ( )    (  ) e p (    (t    )) 
 

We can also define an enumeration operator N which has the following property: 

 

         

 
                

 

In deriving the form of   , we have used the fact that the operators X and Px, which 

represent observables, are Hermitian. These observable operators can be expressed as a 

linear combination of the ladder operators as 

 

 ( )    √
 

     
   (  ( )   ( )) 

 

 ( )      √          (  ( )   ( )) 

 

The Q and P operators obey the following identity, known as the canonical commutation 

relation: 

 
,   -       

 

Using the above, we can prove the identities 

 

        (        )       (     ) 

 

,    -      

 

Now, let |fE>denote an energy eigenstate with energy E. The inner product of any ket with 

itself must be non-negative, so 

 

                         
              

 

Expressing     in terms of the Hamiltonian H: 

 
     (  (   )     )       (  (   )     )      

 

so that 

 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 
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         .  

 

Note that when              (is the zero ket i.e. a ket with length zero), the inequality is 

saturated, so that  

 
         

 

It is straightforward to check that there exists a state satisfying this condition; it is the ground 

state 

 
                   (     )  

 

Using the above identities, we can now show that the commutation relations of   and    

with H are: 

 
,   -          

 
[    ]          

 

Thus, provided          is not the zero ket,  

 
            ,   -           

 
                   

 
                    

 
  (       )        

 

Similarly, we can show that 

 

             (       )   
      

 

In other words,   acts on an eigenstate of energy E to produce, up to a multiplicative 

constant, another eigenstate of energy E – ħ ω, and      acts on an eigenstate of energy E to 

produce an eigenstate of energy E + ħ ω. For this reason, a is called a "lowering operator", 

and     "raising operator". The two operators together are called ladder operators. In 

quantum field theory,   and    are alternatively called "annihilation" and "creation" 

operators because they destroy and create particles, which correspond to our quanta of 

energy. 

Given any energy eigenstate, we can act on it with the lowering operator  , to produce 

another eigenstate with ħ ω-less energy. By repeated application of the lowering operator, it 

seems that we can produce energy eigenstates down to E = −∞. However, this would 

contradict our earlier requirement that E ≥ ħ ω/2.  

Ground state 

Therefore, there must be a ground-state energy eigenstate, which we label |fground>, such that 

 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 
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                    (zero ket). 

 

In this case, subsequent applications of the lowering operator will just produce zero kets, 

instead of additional energy eigenstates. Furthermore, we have shown above that 

 
              (     )           

 

Finally, by acting on           with the raising operator and multiplying by suitable 

normalization factors, we can produce an infinite set of energy eigenstates  

 

*                       .       +,  

 

such that 

 
              (    )       

 

which matches the energy spectrum. 

This method can also be used to quickly find the ground state wave function of the quantum 

harmonic oscillator.  

Indeed  

 
                   

 

becomes 

 

       ( )    ( )                     
 

   
 
 

  
   ( ) 

 

so that 

 

    ( )    ( )  
 

   
         n(  ( ))    

   

  
            

 

After normalization this leads to the following position space representation of the ground 

state wave function. 

 

  ( )    √
   

  

 
    
   
  
    

 

Coherent state 

A coherent state is a specific kind of state of the quantum harmonic oscillator whose 

dynamics most closely resemble the oscillating behavior of a classical harmonic oscillator 

system.  

 

The coherent state |α> is defined to be the 'right' eigenstate of the annihilation operator  . 

Formally, this reads: 

 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(5) (7) 

(8) 
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Since   is not Hermitian, α is a hyper complex number that is not necessarily real, and can 

be represented as 

 
      e p (   ) 

where   is a real number.     is the amplitude and   is the phase of state |α>. 

This formula means that a coherent state is left unchanged by the annihilation or the creation 

of a particle. The eigenstate of the annihilation operator has a Poissonian number 

distribution A Poisson distribution is a necessary and sufficient condition that all 

annihilations are statistically independent. 

The coherent state's location in the complex plane (phase space) is centered at the position 

and momentum of a classical oscillator of the same phase θ and amplitude. As the phase 

increases the coherent state circles the origin and the corresponding disk neither distorts nor 

spreads. The disc represents Heisenberg’s uncertainty. This is the most similar a quantum 

state can be to a single point in phase space. 

 

 

Phase space plot of a coherent state. This shows that the uncertainty (blur) in a coherent state 

is equally distributed in all directions. The horizontal and vertical axes are the X and P 

quadratures of the field, respectively. Oscillations that are said to be in quadrature, if they are 

separated in phase by π/2 radians. The red dots on the x-axis trace out the boundaries of the 

quantum noise. Further from the origin the relative contribution of the quantum noise 

becomes less important. 

 

The representation of the coherent state in the basis of Fock states is: 

 

     e p(      )∑
  

√  

 

   

      e p(      ) e p .    /      

 

(1) 

(2) 

(3) 

http://en.wikipedia.org/wiki/Poissonian
http://en.wikipedia.org/wiki/Phase_space
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where |n> are Hermite functions (eigenvectors of the Hamiltonian). This is a Poissonian 

distribution. The probability of detecting n photons is: 

 

 ( )  e p( 〈 〉)
〈 〉 

  
 

 

Similarly, the average photon number in a coherent state is  

 

〈 〉  〈   〉        
 

and the variance is 

 

(  )     .   /        

Squeezing 

The squeezing operator can squeeze a state more or less in the direction of either P or Q. The 

operator is defined as: 

 

  ( )  e p ( .       /) 

 
    e p (   ) 

 

The ground state is a saturated squeezed coherent state where  

 

      and Δq·Δp = ħ/2 

Base transforms 

Now we have discovered the following base transforms: 

Position⟺momentum: 

 

        
 

√   
 e p (
     

 
) 

 

Position⟺Fock state: 

 

        √
  

  

  

√     
 e p ( 

  

  
   )  ( √

  

 
) 

 

Fock state⟺coherent state: 

 

        
 

√  
    e p (      ) 

Rotational symmetry 

In case of rotational symmetry in the imaginary part of quaternion space, the exponential 

function must be replaced by a Bessel function. The corresponding Fourier transform then 

becomes a Hankel transform. 

(4) 

(5) 

(6) 

(1) 

(2) 

(3) 

(1) 

http://en.wikipedia.org/wiki/Squeezing_operator
http://en.wikipedia.org/wiki/Hankel_transform
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Hilbert field equations 

Despite the obvious similarity, Hilbert field equations are not Maxwell field equations. First 

of all, the Hilbert field is a skew field and it carries the properties of the quaternions and the 

properties of the quaternionic Fourier transform. Next Hilbert fields are mathematical (skew) 

fields, while Maxwell fields are physical fields. Finally the Hilbert fields consist of a 

collection of member fields. They are which the members show different behavior. 

The law of charge conservation in configuration space runs: 

 
  ( )  ∇   ( )  〈   ( )〉 

 

In Fourier space this becomes: 

 
 ̃ ( )     ̃ ( )  〈   ̃( )〉 

 

We reserve the character E for the imaginary longitudinal static part of the Hilbert fields. 

This differs from the approach in Maxwell equations. 

We reserve the character B for the imaginary transverse static part of the Hilbert fields. 

 

The quaternionic divergence is defined by: 

∇ ( )   ∇   ( )  ∇  ( )      ( )  〈   ( )〉  (    ( )) 

 
In Fourier space: 

 

  ̃( )      ̃ ( )     ̃( )     ̃ ( )  〈   ̃( )〉  .    ̃( )/ 

 

Due to the fact that the Fourier transform transfers a divergence ∇ in a simple multiplication, 

the split divides differentiable quaternionic functions into a (longitudinal) rotation free part 

and a (transverse) divergence free part. The longitudinal part is complex. The transverse part 

is imaginary. 

 

 ( )     ( )    ( ) 
 

∇  ( )    
 

∇    ( )    
 

 ̃( )    ̃ ( )   ̃ ( ) 
 

〈   ̃ ( )〉    
 

   ̃ ( )    
 

Special Fourier transform pairs 

Functions that keep the same form through Fourier transformation are: 

 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 
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 ( )  e p (     ) 

 

 ( )   
 

   
 

 
 ( )      ( )  

 

The comb function consists of a set of equidistant Dirac delta functions. 

Convolution 

Through Fourier transformation a convolution changes into a simple product and vice versa. 

 

 ( ( )   ( ))    ̃( )   ̃( ) 
 

Parceval’s theorem 

Parceval’s theorem runs: 

 

∫  ( )   ( )       ∫ ̃
 ( )   ̃( )      

 

This leads to 

 

∫  ( )        ∫| ̃( )|
 
     

Source conservation 

The law of charge conservation in configuration space runs: 

 
  ( )  ∇   ( )  〈   ( )〉 

 

In configuration space the distribution ρ(q) becomes a potential ϕ(q) through convolution 

with a blur φ(q). 

 
 ( )   ( )   ( )  

 

In Fourier space the convolution becomes multiplication: 

 
 ̃ ( )     ̃ ( )  〈   ̃( )〉 

 
 ̃ ( ) ̃( )     ̃ ( ) ̃( )  〈   ̃( )〉 ̃( ))     ̃ ( ) ̃( )  〈   ̃( ) ̃( )〉 

 

 ̃( )   ̃( ) ̃( ) 
 

 ̃ ( )   ̃ ( ) ̃( ) 

 

 ̃( )   ̃ ( ) ̃( ) 

 

In configuration space, with   ( )    this means: 

(1) 

(2) 

(3) 

(3) 

(1) 

(2) 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 
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∇   ( )  〈   ( )〉    

Potential 

If there is a static spherically symmetric Gaussian charge density ρ (r): 

 

 ( )   
 

√    
 e p(    

 (   )⁄ ) 

where Q is the total charge, then the solution φ (r) of Poisson's equation, 

 

∇  ( )   
 ( )

 
 

 

is given by 

 

 ( )  
 

      
erf 4
   

√  
5 

 

where erf(x) is the error function.  

 

In fact the quaternionic Poisson’s equation represents two separate equations: 

 

(∇ 
    )  ( )   

  ( )

 
 

 

(∇ 
    ) ( )   

 ( )

 
 

 

Note that, for     much greater than σ, the erf function approaches unity and the potential φ 

(r) approaches the point charge potential 
 

      
, as one would expect. Furthermore the erf 

function approaches 1 extremely quickly as its argument increases; in practice for     > 3σ the 

relative error is smaller than one part in a thousand. 

 

The definition of the quaternionic potential ϕ(q) is based on the convolution of a 

quaternionic distribution ρ(q) with the real function  ( ) See Newton potential and 

Bertrand’s theorem in Wikipedia. The real part ρ0(q) of the distribution ρ(q) can be 

interpreted as a charge distribution. The imaginary part ρ(q) can be interpreted as a current 

distribution. 

The convolution blurs the distribution such that the result becomes differentiable. 

 

In configuration space holds: 

 

 ( )    ( )  
 

   
. 

 

Reversely, according to Poisson’s equation: 

 

 ( )        ( ) 

(8) 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

http://en.wikipedia.org/wiki/Poisson%27s_equation
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The real part of ϕ(q) presents a scalar potential. The imaginary part presents a vector 

potential.  

 

 ( )     ( )   ( ) 
 

 

Mass is a form of charge. 

 
(The selected blurring function has striking resemblance with the ground state of the quantum 

harmonic oscillator). 

 

In Fourier space holds: 

 

 ̃( )    ̃( )  
 

   
. 

 

   ̃ ( )   ̃( ) 
 

In Fourier space the frequency spectrum of the Hilbert distribution is multiplied with the 

Fourier transform of the blurring function. When this falls off when the frequencies go to 

infinity, then as a consequence the frequency spectrum of the potential is bounded. This is 

valid independent of the fact that the frequency spectrum of the Hilbert distribution might 

be unbounded. 

 

The equation for the conservation of charge: 

 
  ( )  ∇   ( )  〈   ( )〉 

 

Translates in the source free case   ( )    into: 

 
∇   ( )   〈   ( )〉 

 

And in the Lorentz Lorentz Gauge condition: 

 

∇   ( )   〈   ( )〉 
 

 (q)  ∇ ( ) 
 

   ( )   ∇   ( )  〈   ( )〉    
 

In the source divergence free case    ( )    this means: 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 
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∇    ( )    〈   ( )〉 

 

∇    ( )    〈   ( )〉 
 

 〈   ( )〉       ( )     ( ) 
 

Due to the fact that there are other charges present, the divergence of the scalar potential 

need be in the direction of the current ρ(q), which for a spherical symmetric blur is also in the 
direction of the vector potential ϕ(q). However, a tendency exists to minimize that difference. 

Thus ∇    ( ) is parallel to  ( ).  With other words: 

 
 ( )   〈   ( )〉    

 

Reckoning the sign selections for the sign ± of the conjugation and the handedness ± of the 

cross product will provide four different sets of equations. This will provide four different 

Hilbert fields.  

Discrete distribution 

If ρ(q) is discrete, such that  

 
  ( )  ∑       (    ) 
 

where   
  is a point charge at location q′, then the contribution to the field E(q) that is 

generated by a point charge at location qi is given by: 

 

   ( )      
    

|    |
       ∇  

 

|    |
 

Differential potential equations 

The gradient and curl of ϕ(q) are related. In configuration space holds: 

 
∇ ( )   ∇   ( )  〈   ( )〉  ∇  ( )      ( )     ( ) 

 
 ( )       ( ) 

 
 ( )       ( ) 

 
 ( )  ∇ ( )     ( )   ( )    ( )  ∇  ( ) 

 
  ( )   ∇   ( )  〈   ( )〉 

 
 ( )     ( )    ( )  ∇  ( ) 

 
〈   ( )〉        ( )      ( ) 

 

   ( )   ; Rotation free field 

(14) 

(15) 

(16) 

(17) 

(1) 

(2) 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 
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〈   ( )〉    ; Divergence free B field  

 

   ( )   〈   ( )〉     ( )   〈   ( )〉   ( )  ∇ 
  ( ) 

 

   ( )   ∇    ( )   ( )  ∇ 
  ( ) 

 

  ∇  ( )   ( )  ∇ 
  ( ) 

 

Since ∇  ( )is supposed to be parallel to    ( ), it is sensible to define  ( )as the total field 

in longitudinal direction: 

 

 ( )      ( )  ∇  ( )   ( )  ∇  ( ) 
 

And 

 

 ( )   ( ) 
 

With this definition: 

 

   ( )    ∇  ( ) 

 
〈   ( )〉    

 
   ( )    ( )  ∇  ( ) 

In Fourier space 

In Fourier space holds: 

 

 ̃( )      ̃ ( )  〈   ̃( )〉     ̃( )     ̃ ( )     ̃( ) 
 

 ̃( )    ̃( )     ( )   ̃( )    ̃( )     ̃( ) 

 

 ̃ ( )      ̃ ( )  〈   ̃( )〉 
 

 ̃( )     ̃ ( ) 

 

 ̃( )     ̃ ( )     ̃( ) 
 

 ̃( )      ̃( ) 

 

 ̃( )     ̃( )    ̃( )     ̃( ) 
 

〈   ̃( )〉       ̃ ( )     ̃ ( ) 

 

   ̃( )   ; Rotation free field 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 
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〈   ̃( )〉    ; Divergence free B field  

 

   ̃( )   〈   ̃( )〉     ̃( )   〈   ̃( )〉   ̃( ) 

 

 

   ̃( )       ̃ ( )   ̃( )      ̃( )   ̃( ) 

 
If the distribution ρ(q) is differentiable, then the same equations that hold for fields ϕ(q) and 

 ̃( ) hold for the non-blurred distributions ρ(q) and  ̃( ). 

(9) 

(10) 

(11) 
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Maxwell 

 

Differentiable distribution 

If the distribution ρ(q) is differentiable, then the same equations that hold for fields ϕ(q) and 

 ̃( ) hold for the non-blurred distributions ρ(q) and  ̃( ). 

Using: 

 

  ∇     (∇    ∇   )   (∇    ∇   )   (∇    ∇   ) 
 

gives 

 

(1) 

𝑬(𝒓 𝑡)    𝛁𝜙 (𝒓 𝑡)  
𝜕𝑨(𝒓 𝑡)

𝜕𝑡
 𝕰(𝒓 𝑡)  

𝜕𝑨(𝒓 𝑡)

𝜕𝑡
 

〈𝛁 𝑬(𝒓 𝑡)〉    𝛁 𝜙 (𝒓 𝑡)  
𝜕〈𝛁 𝑨(𝒓 𝑡)〉

𝜕𝑡
 

 
𝜌 (𝒓 𝑡)

𝜀 
 
𝜕〈𝛁 𝑨(𝒓 𝑡)〉

𝜕𝑡
 

𝑩(𝒓 𝑡)   𝛁  𝑨(𝒓 𝑡)  𝕭(𝒓 𝑡) 

𝛁  𝑬(𝒓 𝑡)    
𝜕𝑩(𝒓 𝑡)

𝜕𝑡
 

〈𝛁 𝑩(𝒓 𝑡)〉    

First it must be noted that the derived field equations hold for general quaternionic 

fields. 

The resemblance with physical fields hold for electromagnetic fields as well as for 

gravitational fields and for any fields whose blurring function approximates  

 

𝑓(𝑞) ≈  
 

 𝑞 
.  

 

In Maxwell equations, E(r) is defined as: 

 

 

Further: 

 

 

 

In Maxwell equations, B(r) is defined as: 

 

 

Further: 

 

 

 

𝛁  𝑩(𝒓 𝑡)   𝜇 (𝒋 𝜀 
𝜕𝑬

𝜕𝑡
) 
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∇   ( )   ∇   ( ) 

 

∇   ( )    .∇   ( )  ∇   ( )/ 

 

∇   ( )    .∇   ( )  ∇   ( )/ 

 
∇   ( )  〈   ( )〉  ∇   ( )  ∇   ( )  ∇   ( ) 

 

And correspondingly in Fourier space 

 

   ̃ ( )      ̃ ( ) 

 

   ̃ ( )    .   ̃ ( )     ̃ ( )/ 

 

   ̃ ( )    .   ̃ ( )     ̃ ( )/ 

 

   ̃ ( )  〈   ̃( )〉     ̃ ( )     ̃ ( )     ̃ ( ) 

Conservation laws 

Flux vector 

The longitudinal direction k of  ( ) and the direction i of  ( ) fix two mutual perpendicular 

directions. This generates curiosity to the significance of the direction    . With other 

words what happens with  ( )   ( ).   
 

The flux vector   ( ) is defined as: 

 
  ( )    ( )   ( ) 

 

Conservation of energy 

Field energy density 

 
〈   ( )〉  〈 ( )    ( )〉  〈 ( )    ( )〉 

 
  〈 ( ) ∇  ( )〉  〈 ( )  ( )〉  〈 ( ) ∇  ( )〉 

 
   ∇ (〈 ( )  ( )〉  〈 ( )  ( )〉)  〈 ( )  ( )〉 

 
The field energy density is defined as: 

 

      ( )   (〈 ( )  ( )〉  〈 ( )  ( )〉)     ( )    ( ) 

 

 ( ) can be interpreted as the field energy current density. 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(1) 

(1) 

(2) 
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The continuity equation for field energy density is given by: 

 

∇       ( )  〈   ( )〉    〈 ( )  ( )〉      ( )〈 ( )  ( )〉 

 

This means that 〈 ( )  ( )〉 can be interpreted as a source term. 

  ( ) ( ) represents force per unit volume. 

  ( )〈 ( )  ( )〉 represents work per unit volume, or, in other words, the power density. It 

is known as the Lorentz power density and is equivalent to the time rate of change of the 

mechanical energy density of the charged particles that form the current  ( ). 

 

∇       ( )  〈   ( )〉   ∇            ( ) 

 

∇             〈 ( )  ( )〉    ( )〈 ( )  ( )〉 

 
∇       ( )  〈   ( )〉   ∇            ( ) 

 

∇ .       ( )              ( )/   〈   ( )〉 

 

Total change within V = flow into V + production inside V 
 

 ( )        ( )             ( )    ( )    ( )             ( ) 

 

                                       ∫    

 

 

 
 

  
∫    

 

 ∮〈 ̂  〉  
 

 ∫     

 

 

 

Here the source s0 is zero. 

Conservation of linear momentum 

Field linear momentum 

 ( ) can also be interpreted as the field linear momentum density. The time rate change of 

the field linear momentum density is: 

 

∇  ( )        ( )  ∇   ( )   ( )   ( )  ∇  ( ) 

 

 (   ( )   ( ))    ( )   ( )     ( ) 

 
 ( )    (     )  〈     〉  〈   〉    〈    〉  〈   〉 

 
   (  )    〈    〉  〈    〉  

 
   (      〈    〉)  〈    〉  

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(1) 

(2) 

(3) 
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 ( )    (     )    (      〈    〉)  〈    〉  

 
 ( )     (      〈    〉) 

 
∇  ( )   ( )   ( )   ( )    ( ) 

 
  ( )   ( )   ( )    ( )  〈    〉  〈    〉  

 
  ( )   ( )   ( )    ( )    ( )  ( ) 

 
  ( )   ( )   ( )   ( )   ( ) 

 

 (q) is the linear momentum flux tensor. 

The linear momentum of the field contained in volume V surrounded by surface S is: 

 

       ∫         

 

 ∫        

 

 ∫  〈∇   〉    ∮〈 ̂   〉  
 

 

 

 
 ( )   ( )    ( )    ( )  ( ) 

 

Physically,  ( ) is the Lorentz force density. It equals the time rate change of the mechanical 

linear momentum density            . 

 

           ( )      ( ) ( ) 
 

The force acted upon a single particle that is contained in a volume V is: 

 

  ∫    
 

 ∫(         )   
 

 

 

Brought together this gives: 

 

∇ .      ( )             ( )/    〈   ( )〉 

 

This is the continuity equation for linear momentum. 

The component     is the linear momentum in the i-th direction that passes a surface element 

in the j-th direction per unit time, per unit area. 

 

Total change within V = flow into V + production inside V 

 

 ( )        ( )             ( ) 

 

                     ∫    

 

 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 
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∫    

 

 ∮〈 ̂  〉  
 

 ∫     

 

 

 

Here the source sg = 0. 

Conservation of angular momentum 

Field angular momentum 

The angular momentum relates to the linear momentum. 

 

 (  )  (    )   ( ) 

 
      (  )  (    )        ( ) 

 
           ( )  (    )             ( ) 

 

 (  )  (    )   (q) 
 

This enables the balance equation for angular momentum: 

 

∇ .      (  )             (  )/    〈   (  )〉 

 

Total change within V = flow into V + production inside V 

 

                     ∫    

 

 

 
 

  
∫    

 

 ∮〈 ̂  〉  
 

 ∫     

 

 

 

Here the source sh = 0. 

 

For a localized charge density contained within a volume V holds for the mechanical torque: 

 

 (  )  ∫(     )   (  )  

 

 

 

 ∫(     )  (ρ (  ) (  )    (  )     (  ))  

 

 

 
  (    )  ( ( )    ( )     ( )) 

 
      (  )        ( )      ( ) 

(14) 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 
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Using 

 

〈    〉    
   

   
   

 

〈    〉    
   

   
   

 

holds 

 

      ( )  ∫ 
   (  )  

 

 ∫    (  )     (  )   

 

 

 

 ∫(   〈(  )  〉  〈     (  )〉)   

 

 

 

 ∫   〈(  )  〉  
 

 

 

 ∫      

 

 ∫〈       〉  
 

 ∫(    )〈   〉  
 

 

 

Define the non-local spin term, which does not depend on qʹ is: 

 

       ∫ ( )   ( )  

 

 

 

And 

 

      ( )  ∫ 
  〈(  )  〉  

 

 ∫        
 

 

 

Using Gauss: 

 

∫〈   〉   
 

∮〈 ̂  〉  
 

 

And 

 

   〈   〉 
 

Leads to: 

      ( )               ( )  ∮〈 ̂   
   〉  

 

 

 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 
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States 
Where a unique closed Hilbert subspace represents a given physical item, its state characterizes 

the probabilistic properties of that item. In quantum physics, a quantum state is a set of 

mathematical variables that as far as is possible describes the corresponding physical item. 

For example, the set of 4 numbers {n, l, ml, ms} define part of the state of an electron within a 

hydrogen atom and are known as the electron's quantum numbers. The observables that 

determine the state are mutually compatible. The position of the electron within the atom is a 

hidden property. If two operators are each other’s canonical conjugate, then only one of them 

can participate in the state, or the state must contain an account of the combination of both 

values. An example of such a combination is the ladder operator. 

Quantum states can be either pure or mixed. Pure states cannot be described as a mixture of 

others. Mixed states correspond to a random process that blends pure states together. 

Realizations of elementary types are characterized by pure states. 

When performing an observation on a quantum state, the result is generally described by a 

probability distribution, and the form that this distribution takes is completely determined 

by the quantum state and the operators that are related to the observation of the quantum 

state. The result of an observation is only determined probabilistically. In relation to the 

observables that determine the state a pure state is characterized by a single blurred Hilbert 

vector and that vector corresponds in relation to these observables to a mathematical object 

known as a wave function. If a pure state corresponds with an eigenvector of the operator 

that represents the observation, then the result of the observation equals the corresponding 

eigenvalue. The probalistic nature of observations reflects a core difference between classical 

and quantum physics.  

Linear combinations (superpositions) of states can describe interference phenomena. A 

mixed state cannot be characterized by a single blurred Hilbert vector. Instead, it is described 

by its associated density operator and it is represented by a (blurred) closed Hilbert 

subspace. 

Pure states can be represented by a blurred Hilbert vector. 

State definition 
In Hilbert space a state, or probability function, is a real function P on the Hilbert subspaces, 

with the following properties: 

1.  ( )    

 

2.   ∈ * ( )   +, y is a Hilbert subspace 

 
3. ∑  (  )   , where      form an orthonormal base of Ң and xj  is the ray spanned 

by |xj> 
 

4.  ( )  ∑  (  )
 
    where   are mutually orthogonal rays spanning subspace y 

http://en.wikipedia.org/wiki/Quantum_system
http://en.wikipedia.org/wiki/Quantum_number
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Gleason’s theorem states: Given a state P on a space of dimension ≥ 3, there is an Hermitian, 

non-negative operator ρ on Ң, whose trace is unity, such that 

 

    ∈ * ( )           +, where x is a ray spanned by |x> 

 

With each compact normal operator Q corresponds an orthonormal base of eigenvectors 

*   +  with eigenvalues q. As a consequence a notion of state is attached to each physical 

item combined with one or more mutually compatible compact normal operators *  + . 

Pure state 

In particular, if some ray x0 satisfies P(x0) = 1, then according to Born’s rule: 

 
    ∈ * ( )           

 + 

 

This happens when |x0> represents a pure state. 

The pure state  (*  + )  is connected to a wave function  (*  + ), where  

 

 (*  + )    | (*  + )|
 
  

 

and *  +  are the eigenvalues of eigenvector*    + of the operators *  + . Two operators A 

and B are compatible when their commutator is zero: 

 
 ,   -              

 

If the state is characterized by a set of independent properties, then each of these properties 

corresponds with a corresponding operator. These operators must be normal, but they need 

not be compact. It must be possible to construct a spectral decomposition for each of the 

operators. Further, the operators that together determine the state must be mutually 

compatible. The wave function is then the product of the probability amplitudes that 

correspond to the separate operators. Thus the resulting wave function is a characteristic that 

represents the probability amplitudes of a set of mutually compatible observables that 

correspond to the normal operators that determine the state. 

 

The squared modulus of the probability amplitude is the probability density. The wave 

function can also be a function of time. Position can be a state characterizing observable. 

However, spacetime does not occur as an eigenvalue of a single operator. The operators may 

vary. For example an operator may be replaced by its canonical conjugate. In that case, care 

must be taken that the operators that form the changed state are still compatible. Thus, even 

with the same physical item, the wave function is not unique. 

 

For the operator Q with eigenfunctions |q> and eigenvalues q the probability amplitude 

function ψ(q) is given by the smoothed version of    q   

 
 ( )       q   

 

When Q is a compact normal operator then the smoothed version of ψ(q) is a continuous 

function. Then ψ(q) has a Fourier transform φ(p), where the operator P with eigenvectors |p> 

(1) 

(1) 

(2) 

(3) 

(4) 

http://en.wikipedia.org/wiki/Quantum_logic#Statistical_structure
http://en.wikipedia.org/wiki/Compact_operator_on_Hilbert_space
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and eigenvalues p is the canonical conjugate of Q. Like ψ(q),  the function φ(p) is also a 

function that characterizes the corresponding item and |φ> is a characterizing vector. The 

parameters q and p may be quaternionic. 

 
 ( )       p   

 

With respect to the correspondence with traditional quantum logic, it is wrong to take any 

characteristic vector including the locator or any function including the wave function as the 

representative for the item. It is ridiculous to expect that a single vector carries all properties of 

a complex physical item, such as a DNA molecule or an elephant. The Heisenberg 

uncertainty relation also offers objections against this single vector based representation. 

 

In quantum mechanics the wave function can be interpreted as the combination of a 

stationary vector and a progression operator. The progression operator has the form 

A·exp(S/ħ). A is Hermitian and positive. S is anti-Hermitian. This is reflected in the 

Hamilton-Jacobi equation. 

 

In quantum field theory the fields are replacing the wave function. Thus a field may be 

interpreted as the amplitude of the probability to find something at the location of the field 

value. For bosons that something may be interpreted as a virtual particle. For fermions that 

something may be interpreted as a pair of virtual particles. Each type of virtual particle has 

its own type of field. 

 

There are some questions left with wave functions:  

 Can it be non-zero outside the subspace that represents the physical item?  

o Answer: No 

 Is the wave function a regular function?  

o Answer: When only compact normal operators are involved, then the wave 

function is regular. 

 What happens to the representing subspace and to the wave function when a 

measurement is performed? 

o Answer: The subspace is squeezed into an appropriate configuration and the 

wave function is adapted to this new form. 

 Has a system a wave function? 

o Answer: In general a system must not have a wave function, but it has a 

density operator. 

Probability density 

Gleason’s theorem states that a probability measure μ(P) on the lattice L(Ң) of projections P 

on closed subspaces of a Hilbert space Ң corresponds to a non-negative Hermitian operator 

ρ with trace 1, such that μ(P) = tr(ρP). When the projections Pq correspond to the rays formed 

by the eigenvectors |q> of operator Q and μi(Pq) corresponds to the considered physical item, 

then μi(Pq) =  <q, ρi q> corresponds to the square of the modulus of the wave function ψi(q). ρi 

is the probability density operator corresponding to μi. The probability measure μ is a 

regular function. μi(Pq) is zero outside the subspace that represents the considered physical 

item. 

 

(5) 

http://en.wikipedia.org/wiki/Quantum_logic#Statistical_structure
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The probability density function P(q) = |ψ(q)|2 of an absolutely continuous random variable 

q is a function that describes the relative chance for this random variable to occur at a given 

point in the Q observation space. The probability for a random variable to fall within a given 

set is given by the integral of its density over the set. 

The probability density operator ρ is positive-semi-definite (  f ∈ Ң {<f|ρ f> ≥ 0}), self-adjoint 

(ρ = ρϯ), and has trace one (tr(ρ) = 1). For the operator Q with eigenfunctions |q> and 

eigenvalues q with probability amplitude ψ(q), the density operator ρ is given by 

   ∑ *               +  

Von Neumann entropy is defined using the density operator of physical items. 

The operator A can be decomposed 

 
    ∑          

 

For the state |ψ> the expectation value 〈 〉 for the observable A is 

 
 〈 〉             ∑ *                 +    (  )  

 

A Hilbert field is a blurred Hilbert distribution. The blur may represent a probability 

distribution. When a Hilbert distribution has only non-zero values for a set of Hilbert vectors 

and these Hilbert vectors span a Hilbert subspace, then the corresponding Hilbert field 

represents a density operator. 

Observables and field values 
In Hilbert space observables are represented by operators. The observed value is represented 

by an eigenvalue or by the expectation value of the operator that represents the observable. 

Scalar physical fields have numeric values. Vector and tensor fields consist of vectors and 

tensors that are constructed using numbers. Both the eigenvalues of operators and the values 

of fields may be hyper complex 2n-ons. 

Numbers 
The Hilbert space can be specified by using a number space that allows the mutual 

orthogonalization and the closure of subspaces. The real’s, the complex numbers and the 

quaternions can perform that job. Horwitz showed that even the octonions with some 

trouble can achieve this (see: http://arxiv.org/abs/quant-ph/9602001). The real’s, the complex 

numbers, the quaternions and the octonions are the only normed division algebras and they 

are the only alternative division algebras. In general the octonions are not associative, but the 

product of two octonions that belong to the same quaternionic subfield is associative. 

Neither all quaternions nor all octonions commute. However, within complex subspaces the 

numbers commute. 

 

We will take the following freedom. The fact that a given number space is used for 

specifying linear combinations of Hilbert space vectors does not mean that eigenvalues of 

operators must also be restricted to that same number space. In this sense a Hilbert space 

(1) 

(2) 

(3) 

http://en.wikipedia.org/wiki/Probability_density_function
http://en.wikipedia.org/wiki/Random_variable
http://en.wikipedia.org/wiki/Function_(mathematics)
http://en.wikipedia.org/wiki/Integral
http://en.wikipedia.org/wiki/Density_operator
http://en.wikipedia.org/wiki/Positive-semidefinite_matrix
http://en.wikipedia.org/wiki/Self-adjoint_operator
http://en.wikipedia.org/wiki/Trace_class
file:///C:/web/NewWebSite/English/Science/Toolkit.pdf
http://arxiv.org/abs/quant-ph/9602001
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specified over the quaternions may allow eigenvalues of operators that are taken from the 

octonions or even higher 2n-ons (see http://www.math.temple.edu/~wds/homepage/nce2.pdf 

or the toolkit). The problem with higher dimension 2n-ons is that their number characteristics 

deteriorate with n. However, as long as the (full) eigenvalues are not used to construct linear 

combinations of vectors, or to specify the inner products of the Hilbert space, there is no 

problem. All higher dimensional 2n-ons contain several subspaces that are lower dimensional 

2m-on number spaces. Further, 2n-ons behave like 2m-ons in their lower 2m dimensions.   

 

In general the elements of curves or curved manifolds are themselves not numbers. So, in 

general they cannot be used as eigenvalues. However, locally the elements of a curved 

manifold may resemble numbers of a 2n-on number space. Smoothly curved trails of objects 

that locally resemble 2n-ons can be treated with the Frenet-Serret frame toolkit.  Number 

spaces can be attached as tangent spaces to smoothly curved manifolds. In that way the 

elements of the curves and the manifolds obtain number characteristics in a small enough 

environment. Sequences or sets of operators can locally have eigenvalues that are numbers 

which can be considered as member of smooth curves or of the tangent space of a curved 

manifold at that location. In that way the elements of smooth curves or of curved manifolds 

can be related to the corresponding eigenvalues. 2n-ons are ideally suited for this purpose. 

This means that the eigenspaces of the subsequent operators in a trail need not overlap. 

These eigenspaces are only used locally. When curvature and bending of the operator trail 

diminish, the dimension of the local number space can be lower. When the curvature and the 

bending increase, the dimension must be higher. This will be reflected in the dimensionality 

of the local eigenvalues. Apart from the application as eigenvalues of operators the 2n-ons are 

suited as values of physical fields. 

 

We will restrict to the 2n-ons as extensions of the quaternions. As we stated, the numbers 

created with the Cayley-Dickson construction are not so well behaved. Alternatives are the 

use of Clifford algebras, Jordan algebras or Grassmann algebras. We will show that in the 

Hilbert space the 2n-ons for n > 1 automatically introduce these latter algebras through their 

number waltz. 

 

The niners are the most extensive numbers that still keep a reasonable set of number 

characteristics. More precisely said the 2n-ons, even those that have a higher dimension than 

the octonions, keep reasonable number characteristics in the space spanned by their 

coordinates that have an index lower than nine. The real numbers, the complex numbers, the 

quaternions and the octonions completely fall within these boundaries. The above hyperlink 

describes exactly what characteristics the niners retain.  

 

The subspace of the 2n-on field that is spanned by the first 2m dimensions acts as a 2m-on 

number space. Thus in a dynamic situation, an octionic operator acts locally as a 

quaternionic operator. In a smaller or more flat region it acts as a complex operator and at 

‚nano‛-locality as a real (or better as an imaginary) operator. 

2n-on construction 
The 2n-ons use the following doubling formula 

 

 (a, b) (c, d) = (a·c – (b·d*)*,(b*·c*)* + (b*·(a*·((b-1)*·d*)*)*)*) (1) 

http://www.math.temple.edu/~wds/homepage/nce2.pdf
http://www.scitech.nl/English/Science/Toolkit.pdf
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Up until the 16-ons the formula can be simplified to 

 
(a, b) (c, d) = (a·c – b·d*, c·b + (a*·b-1)·(b·d)) 

 
Up to the octonions the Cayley Dickson construction delivers the same as the 2n-on 

construction. From n>3 the 2n-ons are ‘nicer’ than the Cayley Dickson numbers. They keep 

more useful number characteristics. The 2n+1-ons contain the 2n-ons as the sub-algebra of 

elements of the form (a, 0) 

Waltz details 
The 16-ons lose the continuity of the map x => xy. Also, in general holds  xy·x ≠ x·yx for 16-

ons. However, for all 2n-ons the base numbers fulfill eiej·ei = ei·ejei. All 2n-ons feature a 

conjugate and an inverse. The inverse only exists for non-zero numbers. The 2n-ons support 

the number waltz  

 

c = a·ba-1. 
 

Often the number waltz appears as a unitary number waltz 

 

c = u*·bu 
 

where u is a unit size number and u* is its conjugate u·u* = 1. 

 

In quaternion space the quaternion waltz a·b·a-1can be written as 

  
a·b·a-1 = exp(2·π·ĩ·φ)·b·exp(-2·π·ĩ·φ) 

  
= b – b┴ + exp(2·π·ĩ·φ)·b┴·exp(-2·π·ĩ·φ) 

  
= b – b┴ + exp(4·π·ĩ·φ)·b┴ 

  
∆b = (exp(4·π·ĩ·φ) – 1)·b┴ 

  
= (cos(4·π·φ) + ĩ·sin(4·π·φ) – 1)·b┴ 

  

= exp(2·π·ĩ·φ)·2·ĩ·sin (2·π·φ)·b┴ 

  

||∆b|| = ||2·sin(2·π·φ)·b┴|| 

 
Another way of specifying the difference is:  
 

∆b = (a·b – b·a)/a = 2·(a×b)/a 

(2) 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 
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||∆b|| =2·||a×b||/ ||a||  

Infinitesimal number transformation 

The number v is close to 1. Thus v = 1 + Δs. Let us investigate the transform c = v*·b·v.  

 

c = (1 + Δs*)·b·(1 + Δs)  

= b + Δs*·b + b·Δs + Δs*·b· Δs  

≈ b + Δs*·b + b·Δs 

= b + Δs0·b + 2·b×Δs 

 

Δb = Δs0·b + 2·b×Δs 

 

This comes close to the effect of an infinitesimal number waltz, especially when Δs0 = 0 In 

that case Δb0 = 0 and Δb is perpendicular to Δs. 

 

a

b||

2Φ

ab#a
-1

b

b#

aa

aτΦ

aba-1

The transform aba-1 rotates the 

imaginary part b of b around an 

axis along the imaginary part a of 

a over an angle 2Φ that is twice 

the argument Φ of a in the 

complex field spanned by a and 11

a = ||a||exp(2πiΦ)

Δb

# means perpendicular

||  means parallel 

 
Figure 1. The rotation of a quaternion by a second quaternion. 

(7) 

(1) 

(2) 
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b#

2Φ

Δb

ab#a
-1

b#2sin2(2πΦ))

b#isin(4πΦ) 

Δb = (-2sin2(2πΦ) + isin(4πΦ))b#

 
Figure 2: The difference after rotation 

For 2n-ons with n > 1, a·ba-1 in general does not equal b. This effect stays unnoticed when 

quantum mechanics sticks to a complex Hilbert space. 

Sign selections 
The paper that describes 2n-ons does not describe the choice for right or left handedness of 

the external vector product. So, we do it here. The generally accepted convention is to let the 

handedness depend on the orientation of the underlying ℝn space. However, when numbers 

are constructed via the Cayley-Dickson construction or the 2n-on construction then the 

handedness follows from the applied construction formula. We want to get rid of these 

restrictions, because we want to give operators the freedom to select the handedness and 

other sign selections of their eigenvalues.  

 

The 2n-ons have n independent binary base numbers and n sign selections. The real numbers 

do not offer a sign selection. The complex numbers offer the selection of the sign of the real 

or the imaginary axis. This is inherited by all higher 2n-ons. The quaternions have two 

independent imaginary base numbers and offer an extra sign selection that represents the 

handedness of its external product. The octonions have three independent imaginary base 

numbers and offer an extra sign selection for the handedness in external products that 

involve this new base number. 

Need for spinors 
In the number waltz the current manipulator only needs an argument α in order to turn the 

subject over 2α. This is typical behavior for spinors. Spinors also have a storage place for the 

handedness of rotations. By using the number waltz and the sign selections the 2n-ons can 

perform the same act as the spinors. Spinors are only required when quantum mechanics is 

restricted to complex Hilbert spaces. Spinors are the carriers of the spin phenomenon. Thus, 

in our model the sign selections in combination with the number waltz form the carriers of 
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spin. Because a strange trick is played with the real parts of eigenvalues, the influence of the 

selection of the sign of the real axis will be revealed later.  

 

The approach taken in this paper might cause a revival of the importance of the hyper 

complex numbers that turned in oblivion when Gibbs introduced his vector analysis.  

Influence 
The original proposition (♠) talks about influencing the position of an item. This implies that 

the position of the item changes due to the mentioned influence. Thus when the influence 

occurs, the eigenvector that represents the position of the item is exchanged against another 

eigenvector. That other eigenvector corresponds to another environment inside the 

eigenspace of the position operator. The new eigenvector takes the role of the old eigenvector 

and is the new characteristic for the item’s position. This replacement may take place inside 

the subspace, which represents the considered item, or the original eigenvector moves 

outside the subspace, while the new eigenvector moves in or stays in the subspace. In both 

cases the eigenvectors of the position operator move with respect to the vector that 

characterizes the subspace of the item. The movement is relative and takes place inside the 

Hilbert space. Another possibility is that the eigenvectors stay, but the corresponding 

eigenvalues change while the Hilbert subspace moves. See Heisenberg picture versus 

Schrödinger picture.  

 

Thus, there is a way to implement influence in Hilbert space. The influence causes a move of 

the item’s subspace relative to one or more eigenvectors of the position operator. The 

original proposition (♠) claims that this movement is caused by other items. We must check 

whether this is true. 

 

If this is true then influences are the motor behind the dynamics of the items. 

The universe of items 
The original proposition (♠) states that all items influence each other’s position. This includes 

that all items influence the considered item. Part of the items compensates each other’s 

influences on the currently considered item. It will be shown that this holds for the largest 

part. 

Inertia 
The influence may decrease with distance according to some function f(r) of the distance r. 

However the number of contributing items increases with the distance. Depending on 

function f(r) the most probable result is that the strongest influence comes from the 

cooperative activity of the most distant items. Due to the enormous number of items in the 

universe, any variation of the influences of the distant items averages away. This also holds 

for the density distribution of the items. So there exists a fairly uniform background 

influence caused by the universe of items. What will happen can be deduced from an 

equivalent of Denis Sciama’s analysis. We will take his analysis as a guide. Sciama’s analysis 

uses a different setting: the (observed) 3D space and coordinate time. (See: 

http://arxiv.org/abs/physics/0609026v4.pdf). This setting raised critique because the approach 

involves instantaneous action on large distances. In Sciama’s setting this is in conflict with 

http://arxiv.org/abs/physics/0609026v4.pdf
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special relativity. In our setting we do not (yet) encounter special relativity. We use the 

coordinate space defined by operator Ϙ and the progression parameter t as our setting. A 

Location in coordinate space represents a location in on the unit sphere of Hilbert space. 

 

The most important aspects of the analysis are: 

 

The total potential at the location of the influenced subject is 

 

    ∫
 

 
  

 

    ∫
  

  
 

 

(See: http://en.wikipedia.org/wiki/Newtonian_potential). This conforms to a Gaussian blur. 

The integral is taken over the coordinate space volume V. In fact, the integral is taken over 

the unit sphere of Hilbert space. This is an affine space. The parameter r is the length of the 

vector from the actor to the location of the subject. The considered subject is located 

somewhere in the affine coordinate space. All other subjects have positions relative to that 

considered subject. At large distances, the density ρ of the contributing items can be 

considered to be uniformly distributed. Also any variance in strength other than the 

dependence on r becomes negligible because the differences are blurred and averaged away. 

In fact we also assumed that the average blur of the distribution of matter in the universe is a 

Gaussian blur. We take the average of the strength as the significant parameter. We combine 

it with ρ. Therefore the average of ρ can be taken out of the integral. Thus, apart from its 

dependence on the average value of ρ, Φ is a huge constant. (Sciama relates Φ to the 

gravitational constant).As a consequence we can consider the universe as a very large rigid 

body. If nothing else happens then all influences compensate each other. 

 

In the following equations we use imaginary quaternions rather than 3D vectors. In this way 

we can avoid the distracting factor i. 

 

If the subject moves relative to the universe with a uniform speed v, then a vector potential A 

is generated. 

 

  =  ∫
   

   
  

 

 

 

Both ρ and v are independent of r. Together with the constant c they can be taken out of the 

integral. Thus 

 

A = Φ·v/c 
 

What we have here is the reverse of the definition of the potential that goes together with a 

charge distribution. When we defined a Hilbert field we started from a charge distribution 

and a current distribution and considered the blurred influence of these distributions on the 

universe. Here we consider the influence of the universe on a local charge or current. For this 

purpose we use the same volume integrals! 

 

(1) 

(2) 

(3) 

http://en.wikipedia.org/wiki/Newtonian_potential
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The notions of charge and current correspond to equivalent notions in Noether’s theorem. Here 

we talk about inertia. Thus charge may symbolize mass. 

 

Here a progression parameter t plays the role of manipulator time. Be aware, this is not our 

usual notion of time. 

 

According to Helmholtz theorem the Hilbert field derived from the above potentials can be 

split into a divergence free part and a rotation free part. The Helmholtz decomposition 

theorem only concerns the static versions of the derived field. It is related to the fact that the 

Fourier transform of a vector field can be split in a longitudinal and a transversal version. 

There also exists a corresponding split of the multi-dimensional Dirac delta function in a 

longitudinal and a transversal version. In curved manifolds the Helmholtz decomposition 

should be replaced by the Hodge decomposition. 

 

A variation of v goes together with a variation of A. On its turn this goes together with a 

non-zero field  ̇(   ) which is a dynamical part of the derived Hilbert field.  

 

Sciama uses a Maxwell equation to explain the relation between ∂v/∂t and  ̇(   ). Our setting 

differs, but the main reasoning is the same. 

 

 (   )      (   )   
 

 
  ̇(   )  

 

 ̃(   )       ̃(   )   
 

 
   ̃(   )  

 

Remark: As soon as we turn to the dynamic version (4) an extra component  ̇ of field E 

appears that corresponds to acceleration ∂v/∂t. (See for derivation of Maxwell equations e.g. 

the online book http://www.plasma.uu.se/CED/Book; formula 3.25) 

 

As already claimed, in our setting the component    of the field E is negligible. With respect 

to this component the items compensate each other’s influence. This means that if the 

influenced subject moves with uniform speed v, then E ≈ 0. However, a vector field A is 

present due to the movement of the considered item. Any acceleration of the considered item 

goes together with a non-zero E field. In this way the universe of items causes inertia in the 

form of a force that acts upon the accelerating item’s charge. 

 

We have used the coordinate space as a playground to implement an equivalent of Sciama’s 

analysis. The analysis uses the fact that every item in universe causes an influence and that 

this influence reduces according to f = –k/r. (Compare this with Bertrand’s theorem in 

Wikipedia) 

 

A uniform movement in Hilbert space does not generate a reaction of the universe of items. 

Any alteration of that uniform movement will cause as reaction a field. The physical name 

for this reaction is action. It usually gets the symbol S. When the path of the item coincides 

with a geodesic, then it can be travelled field free. 

 

(4) 

(5) 

http://en.wikipedia.org/wiki/Noether%27s_theorem
http://www.plasma.uu.se/CED/Book
http://en.wikipedia.org/wiki/Bertrand's_theorem
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It must be noticed that the original analysis of Sciama uses observable position space rather 

than Hilbert space, coordinate space or action space and it uses a different notion of time. 

However, the general conclusion stays the same. Sciama’s analysis is criticized because it 

uses infinite speed of information transfer. Since we do not work in observable position 

space, we do not encounter coordinate time. So for us, this criticism is misplaced.  

(Coordinate time relates to observations of position.) 

 

The situation with electromagnetic fields is different, because with this field positive and 

negative charges compensate each other’s long range influence. For that reason there exists 

no electromagnetic background influence. The masses of the gravitational and inertial fields 

only compensate each other’s long range influences through geometrical circumstances. Still 

they together create gigantic potentials. 

Nearby items 
Items that are located nearby have a different effect. In general their influence will not have 

strength equal to the average strength. Further these items are not uniformly distributed. Still 

their influence depends on inter-distance as f = –k/r. As a consequence their influences form a 

landscape of which the effects will become sensible in the action of the fields that surround 

the considered item. This landscape will form a curved action space. The considered item 

will try to follow a geodesic through that curved space. 

Rotational inertia 
Besides linear inertia there exists rotational inertia. In a non-rotating universe hold near the 

origin A = 0 and Φ = -c2/G. We choose units such that c=G=1. In a universe rotating slowly 

with angular speed ω hold 

 

Ax = ω·y 

 

Ay =  ω·x 

 

Az = 0 

 

    √  (   )   
 

A constant angular movement meets the fields that correspond to a centripetal force. 

 

The field E has the form 

 

    
   

√       
 

 

An added uniform speed v meets the fields corresponding to a Coriolis force.  

 

            
 

          

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 
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The forces are usually considered as fictitious but they are actually caused by inertia. Sciama 

treats them in section 5 of his paper. Like fields of linear inertia these rotation related fields 

correspond to actions of the manipulator. 

Storage, sign selections and virtual items. 
The static fields act as storage media for the location and the speed of the charges of the 

physical items.  

 

When the values of the fields are stored in hyper complex numbers, then the sign choices for 

these numbers will also be reflected in these fields. For example the handedness will show in 

the transverse fields. A right handed and a left handed version of the field will exist. The 

sign selection of the real part of the hyper complex numbers may also cause extra versions of 

fields.  

 

The fields can be interpreted as reflections of the presence of virtual items that are ready to 

exchange roles with actual items. 

The proposition 
This finding indicates that when our interpretation of Sciama’s analysis is correct, the 

original proposition  

All items in universe influence each other’s position. 

is not generally true. The universe of items does not influence position. It counteracts 

acceleration of individual items. Position is only influenced in an indirect way and 

presupposes an observation. If the item moves in a geodesic with uniform speed, then the 

position changes while the influences of all other items compensate each other. In such cases 

the summed influence is zero. 

 

We may alter the original proposition (♠). If our analysis is correct, then the proposition  

All items in universe influence each other’s acceleration. 

is true.  

The origin of dynamics 
If we want to discover the origin of dynamics, we must first determine what the static 

structure of nature is. We already found an important ingredient of this skeleton: the lattice 

structure of quantum logic and the corresponding lattice structure of the closed subspaces of 

a Hilbert space. Both structures are only defined in a static way. Nothing is said about their 

dynamics. Besides of these static relations the concept of wave functions and density 

operators offer insight in the probability and information content of these relations.  

 

In the previous part of the paper the next component of the static structure of nature is also 

investigated: the static structure of the influences. It appears that this structure is identical 

with the structure of static Hilbert fields. Both the analysis of inertia and the study of Hilbert 

fields showed the static relation between divergence free fields and rotation free fields. These 

analyses also showed the influence of dynamics on the coupling of these static fields. The 

analysis of Hilbert fields explained how these fields change as a function of q0. Inertia 
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showed how these fields get coupled when the uniform movement of a physical item is 

disturbed. Next we try to find the origin of this dynamics. 

Extended quantum logic 
Wave functions represent the probability of finding a property of realistic items. This 

property can be the position of the item. In quantum field theory the values of fields are 

treated in equations of motion in a similar way as the wave functions of realistic items are 

treated in such equations. When fields can be considered as representations of the 

probability of finding properties of virtual items, then the fields get an interesting 

interpretation. In quantum logic the realistic physical item is represented by a proposition in 

the form of a statement that says everything about that item. For virtual items the new 

interpretation would mean that in extended quantum logic the virtual items are represented 

by potential propositions that are ready to become actual propositions.  

 

This would mean that traditional quantum logic id embedded in extended quantum logic 

that apart from propositions about actual physical items also contains potential proposition 

that represent virtual particles. 

 

The set of propositions of extended quantum logic is much larger than the set of propositions 

of quantum logic. It is a set of sets. According to Cantor its cardinality is one level higher and 

the set is no longer countable. 

 

It may be so that this set is isomorphic with the set of subspaces of a rigged Hilbert space. 

Interpretation in logical terms 
The results of the analysis of inertia mean that when the redefinition of the set of vectors that 

belongs to the representation of the item occurs such that this corresponds to a uniform 

movement of the physical item, then the influences of the universe of items tend to 

compensate each other. Otherwise, the universe of items reacts with a corresponding field. 

That field manifests as an action of the current manipulator. Besides of the universe wide 

response, a local variance in the distribution of items causes a variation in the influences. 

 

It seems that quantum logic and Helmholtz decomposition together define an important part 

of the static relations that exist in physics. The fields appear to resist the disturbance of the 

interrelations in the lattice of quantum propositions. In dynamical sense this lattice might 

step from one static status quo to the next. After a step new conditions are established that 

again must fulfill the laws that govern the static situation. If this is a proper interpretation, 

then it is likely that the progression step is taken universe wide. After each step the positions 

of the physical items relative to the fields have changed, thus when the fields are not 

uniformly distributed, the items meet a different field configuration. The next step is taken 

with and due to these new conditions. 

 

Quantum logic only defines a static skeleton in which the dynamics of quantum physics 

takes place. To make it a dynamic logic, the set of axioms must be extended. The new axioms 

must state that all propositions influence each other. The influence depends on their mutual 

(coordinate) distance. In stationary conditions, which include uniform motion, these 

influences compensate each other. When an atomic predicate that concerns an element of an 
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ordered set is replaced in a non-ordered fashion, meaning that the distance between the 

replaced elements does not stay the same, then the universe of all propositions will react 

such that the influences of the other propositions no longer compensate each other. The 

disordered influences counteract the disordered replacement.  

 

Besides of that the local variance in the distribution of the propositions, which corresponds 

to a variance of the distribution of the corresponding physical items, also cause a variation in 

the influences that propositions have with respect to each other. 

 

In Hilbert space these influences are implemented in the actions of Hilbert fields. In quantum 

physics the influence appears as a set of physical fields. 

Redefiner action 
One important step must still be taken. In physics observed spacetime has a Minkowski 

signature. Further we observe that space corresponds with the imaginary part of a position 

quaternion for which the real part seems to have no physical meaning. We must find an 

explanation for these facts. The Minkowski signature defines the following time-like relation 

between the proper time Δt, the space step Δq and the coordinate time step Δτ 

 

                ⁄  
 

A possible explanation can be given by the action of the redefiner when the infinitesimal 

action step is perpendicular to the space step and the coordinate time step is used to close the 

rectangular triangle. The action step Δs equals Δt. Δt, Δs and Δt are 3D vectors. 

 

              

Dynamics 

Schrödinger or Heisenberg picture 
For global rotations around its origin the Hilbert unit sphere acts as an affine space. It does 

not matter whether the eigenvectors of operators or the subspace that represents the item is 

moved. We can take the picture in which the subspace stays fixed, while the vectors move 

and the operators change with them. This is the Heisenberg picture. 

We can also take the picture in which the vectors and operators stay fixed and the subspace 

moves. This is the Schrödinger picture. 

 

We are only interested in the consequences. These are determined by the relative movement, 

not by the absolute movement. For a given physical item, in both pictures the expectation 

values of the operators vary in the same way. 

Unitary transform 
A unitary transform is a bounded normal operator. It has unit sized eigenvalues and to each 

of these eigenvalues correspond one or more eigenvectors that are mutually orthogonal. 

Unitary transforms keep the value of inner products untouched. Unitary transforms are 

completely determined by their vector replacement characteristics, their eigenvectors and the 

(1) 

(2) 
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corresponding eigenvalues. An extra characteristic is for example the smoothness of their 

eigenspace.  

 

A Fourier transform is an example of a unitary transform. However, it does not leave a single 

Hilbert vector untouched. There exist Hilbert functions and Hilbert fields that keep their 

form through Fourier transformation. For that reason they are often called eigenfunctions, 

but they do not correspond to eigenvectors. The Hermite functions are notorious examples of 

Fourier ‚eigenfunctions‛. 

 

When a unitary transformation U is applied to an arbitrary vector |f>, which is not an 

eigenvector, then that vector is transferred into another vector |g> = |U f>, which has the 

same norm. If |f> is an eigenvector of U then |f> is not transferred to a different vector, but it 

is multiplied with the corresponding eigenvalue. Also in this case the norm stays the same. 

 

If a unitary transform is applied to two vectors and one is an eigenvector and the other is not 

an eigenvector, then the inner product stays the same. The non-eigenvector rotates around 

the foot of the eigenvector, but keeps its angle with respect to that eigenvector. 

 

Because multidimensional subspaces usually contain one or more eigenvectors of a given 

unitary transform, the transfer of a multidimensional closed subspace requires a set of 

parallel unitary transforms. If we take a set of vectors {|fs>}s that together span a closed 

subspace, then a set of suitable unitary transforms {Us}s, can in parallel transfer all vectors of 

this set such that after the transform |gs> = |Us fs> the set {|gs>}s spans the new subspace.  

 

When a unitary operator U is applied to the eigenvector |q> of an operator Q with 

eigenvalue q, then the eigenvector is transferred into another vector |U q>. In general |U q> 

is not another eigenvector of Q. The expectation value for |QU q> is no longer q, but  

 

<q U|QU q> = <q|U QU q> 

 
Or, with other words the operator Q is redefined to U QU.  

 

The norm of the expectation value <f U|QU f> for an arbitrary vector |f> does not depend 

on U. It only depends on Q and |f>. 

 

Each of the members    of the set *  +  can be split in a trail. *   +  The situation sketched 

above can be refined for any instant t occurring after t=0. We can treat it more generally by 

chopping the path from *    +  to *     +  into a trail of infinitesimal steps of size Δt that is 

achieved by a set of infinitesimal transforms *   +  , where  

 

       ∏          
 

and 

 

   ≈        
 

(1) 

(2) 

(3) 
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The parameter t acts as the trail progression parameter. It is not identical with our common 

notion of time. The infinitesimal transforms Ust work in parallel as well as in sequence. ΔSst 

represents the current local infinitesimal action step. It is an imaginary operator. 

 

The trail *   +   causes a redefinition of the operators that have eigenvectors in the 

considered subspace. The Heisenberg picture conforms to the description with unitary 

transforms where operators are redefined. When this is done in small steps, then the 

redefined operator becomes a function of progression parameter t. 

Single infinitesimal step 

The success of the path integral formalism gives us guidance. We analyze an arbitrary trail 

consisting of infinitesimal trajectory steps: 

 

            
        ,∏(   

 |           |   )

    

    

-           

 

What happens during a single step when the system moves from position   to  ’        ? 

Let us evaluate                  for a single trajectory. Here     is an infinitesimal 

unitary transform. It is a member of the set of parallel unitary transforms that act on 

a target subspace. In the following text we leave the parallel trajectory index s in     

unspecified. We concentrate on the sequence index t, which represents the 

progression parameter. The infinitesimal sequence step comprises three sub-steps: 
 

1. Goto Fourier space. This is achieved by step       . 

2. Perform the action. This is done by       
   e p(   )    . 

3. Go back to configuration space. This is achieved by      . 

 

The sense behind the first and the last step is a travel to and back from Fourier space, where 

the differential operators appear as simple multiplications. 

 

First we split       . 

 

         e p (
   

 
)  e p4

     

 
5 ≈  e p (
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 e p .
   

 
/    e p . 

   

 
/ 

 

This is a quaternionic rotation of the central term C, which is close to unity. The quaternionic 

rotation manipulators stands for the route to Fourier space and the route back from Fourier 

(1) 

(2) 

(3) 

(4) 
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space. The central term C stands for what is done during a single step by the action in 

Fourier space. 

 

 ≈ (  
     

 
) (      ) ≈   

     

 
           

 

   
     

 
     

 

In configuration space a similar step occurs, but then rotated with the transformation 

 

         e p .
   

 
/           e p . 

   

 
/ 

 

We study the step    somewhat deeper. As in the case of Hilbert fields we will split the 

analysis in a longitudinal part and a transverse part. The longitudinal part treats the part of   
that is parallel to   . The transverse analysis treats the part of   that is perpendicular to    

The longitudinal equation is: 

 

     
〈    〉

 
     

〈    〉

 
       

 

     
  
 
         

 
    
  
 
  
 

 

 
    
  
     

 

 ̇   
   
 
 ̇     

 

The transversal equation is: 

 

     
     

 
     

     

 
      

 

     
   
 
        

 
    
   
 
  
 

 

 
    
  
     

 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 
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 ̇   
   
 
 ̇     

 

The trail corresponds to a sum: 

 

                   ,∏(   
                )

    

    

-           

 

    ∑ {
     

 
    }

    

    

 

 

Depending on environmental conditions, the longitudinal direction   varies with the 

trajectory parameter t. The steps     and     depend on the step Δt of the trajectory 

parameter t that is used to chop the unitary transform       .  

 

Following a trail has much in common with ray tracing in optics. However in optics 

the use of characteristics that have their base in Fourier analysis seems to be more 

fruitful than ray tracing. Ray tracing follows the path of a sharp particle, while 

Fourier analysis is capable of following the life path of a blurred particle and include 

more of the influences of the environment in the analysis. It is sensible to expect that 

the advantages of Fourier analysis also hold for wave mechanics. To a certain extent 

the path integral approach makes also use of Fourier analysis. 

Relativity 

Einstein’s own explanation of the origin of relativity was: "There is no logical way to the 

discovery of these elementary laws. There is only the way of intuition." Read more in: 

http://www.time.com/time/magazine/article/0,9171,878733,00.html#ixzz15NlhpWDu 
 

Thus, Einstein never gave a proper explanation for the existence of special relativity. 

He just provided a set of formulas that work properly. He left us the choice of 

finding the origin of special relativity or otherwise to follow his intuition. Let us give 

it a try: 

 

The position operator   is modified by the unitary operators of the trail into another 

operator    that has different eigenvectors and different eigenvalues. 

 

             
  

 
  ≈       

 

  
 ≈       

 
     ≈    ,      -  

(18) 

(1) 

(2) 

(3) 

(4) 

http://www.time.com/time/magazine/article/0,9171,878733,00.html#ixzz15NlhpWDu


72 

 

 
 〈 〉  〈     〉  〈  〉 ≈ ,      -           

 

This indicates that the step  〈 〉 in the expectation value 〈  〉 of    is perpendicular to 

both    and    . The steps  〈 〉 and     form a right angular triangle with a 

hypotenuse:     , such that: 

 
      〈 〉      

 

With            the Minkowski signature of a new observable spacetime becomes 

visible. 

 

    
 〈 〉

 
    

 

       〈 〉   

 
              〈 〉      

 

Thus, the analysis of what occurs during a single infinitesimal step gives us an 

indication how relativity enters physics. However, it asks for the introduction of a 

local notion of time τ that differs considerably from the (global) progression 

parameter t. This new parameter is the coordinate time   . 

 
          

 

Proper time 

In relativity, proper time    is time measured by a single clock between events that 

occur at the same place as the clock. It depends not only on the events but also on the 

motion of the clock between the events. An accelerated clock will measure a proper 

time between two events that is shorter than the coordinate time measured by a non-

accelerated (inertial) clock between the same events. 

 

|   |
 
         〈 〉      

 
          

 

Thus, proper time is, upon a proportionality factor, identical with our notion of 

progression parameter t. 

Discussion 

We have successfully introduced special relativity into our model. 

By introducing relativity the way we did we played a few tricks.  

 We neglect the real part of the position observable. It plays no part in dynamics. 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(1) 

(2) 

http://en.wikipedia.org/wiki/Spacetime
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 We shift from the global progression parameter t to the local coordinate time   . 
 We shift from Hilbert space via coordinate space to observed space, thereby losing 

one dimension. 

 We combine the resulting observed space with coordinate time into a 

Minkowski/Lorentzian space.  

 

As a consequence  

 We shift from 2n-on/Riemannian space to Minkowski/Lorentzian space. 

 Most physicists will use Clifford, Jordan and Grassmann algebras rather than 2n-on 

algebras. 

 With these algebras they can use complex analysis instead of the more complicated 

2n-on analysis. 

 But if they do so, they are confronted with unintuitive selection features.  

 In the new space the quaternion waltz becomes an odd operation. 

 Spinors can help in order to cope with these changes. 

Can we do without relativity? 

Yes.  

 Skip coordinate time.  

 Use clocks that measure the proper time. 

However, you would have to fight existing conventions. 

 

Speed along the live path 

For the speed υtrail along the action trail measured in coordinate time units holds: 

 
  

   
             √    (         )   

 

Where  

 

                

 

is the speed measured in coordinate time units in the Q space along the observed life path of 

the item. 

Path characteristics 

The Frenet-Serret frame is devised for describing curved paths of particles, but we use it here 

for another purpose.  

 

Let {αqt}t = α(q,t) describe a curved path consisting of infinitesimal steps through a landscape 

{αq}q = α(q) of imaginary quaternions αqt, such that     ̇( ( ))       for all t.  

 

The 3D Frenet-Serret frame for the above path is given by: 

 

 ( ( ))    
  ( ( ))

  
  ( )   ̇( ) 

 

(1) 

(2) 

(1) 
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 ( )       ̇( )   

 

 ( )   ( )     ̇( ) 

 
 ( )     ( )     ( ) 

 
   ( )        ( )        ( )       

 
 ( )  is the tantrix of curve α(q(t)) at instance t. 

 ( ) is the principal normal of curve α(q(t)) at instance t. It is only defined when κ(t) ≠ 0. 

 ( ) is the binormal of curve α(q(t)) at instance t. 

 ( ),  ( )  and  ( )  are imaginary quaternions. 

κ(t)  is the curvature of curve at α(q(t)) at instance t. 

r(t) = 1/ κ(t)  is the radius of curvature at instance t. 

τ(t) is the torsion of curve α(q(t)) at instance t.  

 

*

 ̇( )

 ̇( )

 ̇( )

+   *

  (t)  
  (t)  τ(t)
  τ(t)  

+ *

 ( )
 ( )
 ( )
+ 

 
The Frenet-Serret curves have particular characteristics. The path may be curved and curled. 

The path is completely determined by its tantrix, curvature and torsion given by functions of 

t. Each coordinate of the quaternionic function α(q(t)) has its own set of characteristics. This 

means that for a given quaternionic function these characteristics are quaternions rather than 

real numbers and they are all functions of parameter t. 

Path equations  

The path equations are given by 

 

 ̇( )   (t)   ( ) 

 

 ̇( )    (t)   ( )  τ(t)   ( )    (t)   ( )  τ(t)   ( )   ( ) 

 

 ̇( )   τ(t)   ( )   ( )   ̇( )   ̇( )   ( ) 

 

 τ(t)   ( )   ( ) 

Curve length 

The curve length  (   ) is defined by: 

 

 (   )   ∫   ̇( ( )) 
   

   

   

 

The integration over the square of the modulus delivers the action S of the curve. 

 

(2) 

(3) 

(4) 

(5) 

(6) 

(1) 

(2) 

(3) 

(1) 

(2) 
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 (   )   ∫   ̇( ( ))  
   

   

   

Reparameterization 

The path characteristics κ(t) and τ(t) together with the curve length and the curve action are 

independent of any reparameterization  ( ) of the progression parameter t. 

A natural reparameterization is given by  ( )   (    ). 

This turns the curve  ( (t)) into a natural curve  ( (s)): 

 

 ( (s))   ( (t)) 

 

Curves on a surface which minimize length between the endpoints are called geodesics. 

The natural curve corresponds to a geodesic. 

The consequence is that in three-dimensional space the corresponding movement obeys the 

geodesic equation. The Lagrangian is an equivalent of this equation.  

Path through field 

A geodesic on a smooth manifold M with an affine connection ∇ is defined as a curve  ( ) 

such that parallel transport along the curve preserves the tangent vector to the curve, so 

∇ ̇ ̇( )    

at each point along the curve, where  ̇ is the derivative with respect to t. More precisely, in 

order to define the covariant derivative of  ̇ it is necessary first to extend  ̇ to a continuously 

differentiable imaginary Hilbert field in an open set. However, the resulting value of the 

equation is independent of the choice of extension. 

Using local coordinates on M, we can write the geodesic equation (using the summation 

convention) as 

 

    

   
      

  
   

  
 
   

  
   

where xμ(t) are the coordinates of the curve  ( ) and    
  are the Christoffel symbols of the 

connection ∇. This is just an ordinary differential equation for the coordinates. It has a unique 

solution, given an initial position and an initial velocity.  

From the point of view of classical mechanics, geodesics can be thought of as trajectories of 

free particles in a manifold. Indeed, the equation ∇ ̇ ̇( )    means that the acceleration of 

the curve has no components in the direction of the surface (and therefore it is perpendicular 

to the tangent plane of the surface at each point of the curve). So, the motion is completely 

determined by the bending of the surface. This is also the idea of the general relativity where 

particles move on geodesics and the bending is caused by the gravity. 

(1) 

(1) 

(2) 

http://en.wikipedia.org/wiki/Geodesic
http://en.wikipedia.org/wiki/Affine_connection
http://en.wikipedia.org/wiki/Parallel_transport
http://en.wikipedia.org/wiki/Open_set
http://en.wikipedia.org/wiki/Local_coordinates
http://en.wikipedia.org/wiki/Summation_convention
http://en.wikipedia.org/wiki/Summation_convention
http://en.wikipedia.org/wiki/Christoffel_symbol
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Christoffel symbols 

If xi, i = 1,2,...,n, is a local coordinate system on a manifold M, then the tangent vectors 

 

     
 

   
             

 

define a basis of the tangent space of M at each point. The Christoffel symbols    
  are defined 

as the unique coefficients such that the equation 

 

           
     

holds, where    is the Levi-Civita connection on M taken in the coordinate direction   . 

The Christoffel symbols can be derived from the vanishing of the covariant derivative of the 

metric tensor gik: 

            
    

   
        

 
          

 
   

By permuting the indices, and re-summing, one can solve explicitly for the Christoffel 

symbols as a function of the metric tensor: 

   
 
         (

    

   
   
    

   
   
    
   
)  

where the matrix (   ) is an inverse of the matrix (   ), defined as (using the Kronecker 

delta, and Einstein notation for summation)  

          
  

Although the Christoffel symbols are written in the same notation as tensors with index 

notation, they are not tensors, since they do not transform like tensors under a change of 

coordinates. 

Under a change of variable from (x1, <., xn) to (y1, <., yn), vectors transform as 

 

   
   
   

   
 
 

   
 

and so 

   
   
   

   
 
   

   
    
  
   

   
 
   

   
 
    

      
 

where the underline denotes the Christoffel symbols in the y coordinate frame. Note that the 

Christoffel symbol does not transform as a tensor, but rather as an object in the jet bundle. 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 
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At each point, there exist coordinate systems in which the Christoffel symbols vanish at the 

point. These are called (geodesic) normal coordinates, and are often used in Riemannian 

geometry. 

The Christoffel symbols are most typically defined in a coordinate basis, which is the 

convention followed here. However, the Christoffel symbols can also be defined in an 

arbitrary basis of tangent vectors    by 

           
     

The action along the live path 
The integrated action Sab is performed over a distance along the action trail or equivalently 

over a period of coordination time 

 

        ∫    
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  ∫     
  

  

 

 

m is the mass of the considered item.  

v is the speed in Q space.  

  is the Lagrangian. 

 

The first line of this formula can be considered as an integral along the trail in coordinate 

space or equivalently over the trail in Hilbert space. The next lines concern integrals over the 

corresponding path in observed space combined with coordinate time. It must be noticed 

that these spaces have different signature. 

 

          
  

  
 + matter terms 

 

In general relativity, the first term generalizes (includes) both the classical kinetic energy and 

interaction with the Newtonian gravitational potential. It becomes: 

 

     
  

  
      √      ̇    ̇  

 

    is the rank 2 symmetric metric tensor which is also the gravitational potential. Notice 

that a factor of c has been absorbed into the square root. 

The matter terms in the Lagrangian   differ from those in the integrated action Sab. 

 

(8) 

(1) 

(2) 

(3) 

(4) 
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               ∫        
 

 

 

 other matter terms 

 

The matter term in the Lagrangian due to the presence of an electromagnetic field is given 

by: 

 

          
  

  
     ̇     + other matter terms 

 

   is the electromagnetic 4-vector potential.  

Redefinition 
If we want to use the Schrödinger picture, rather than the Heisenberg picture, then it is better 

not to use unitary transforms, because they act on the eigenvectors of operators and by doing 

so, they change the operators. Instead the subspace should be redefined. 

 

Let us suppose that there exists a dynamical equivalent of the traditional quantum logic. The 

equivalent of a move of a physical item in the lattice of propositions is a redefinition of a 

subset of the propositions. The redefinition occurs in terms of atomic predicates that describe 

the properties of the physical items. In the Hilbert space this corresponds with a redefinition 

of a relevant part of the Hilbert subspace in terms of the eigenvectors that belong to the new 

eigenvalues.  

 

The redefinition concerns the Hilbert space which represents the current status quo. The step 

transforms the current version of the Hilbert space into a past version of the Hilbert space 

and it transforms a future version of the Hilbert space into the new current version. This is 

interesting in the light that a Hilbert field exists that represent past, current and future 

versions of the Hilbert fields. For that reason we will call this special Hilbert field the 

adventure field. A transform that controls dynamics converts a future Hilbert space into the 

new current Hilbert spaces and it converts the current Hilbert spaces into a past Hilbert 

space. This transform will be called progression transform. The local blurs that characterize 

the adventure field form boundary conditions for the local transfer characteristics of the 

progression transform. Each item type is surrounded by a characteristic blur. 

 

A progression transform that moves Hilbert subspaces without touching the eigenvectors of 

normal operators will be called a redefiner. The effect of the action of the redefiner on 

expectation values of operators must be similar to the effect of the trail of parallel unitary 

transforms treated in the previous paragraphs. While the set of parallel trails of unitary 

transforms act in the Heisenberg picture, the redefiner acts in the Schrödinger picture. As 

indicated earlier, the redefiner has an equivalent in the dynamic version of quantum logic. 

 

In order to achieve the same effect as the Heisenberg picture, the Hilbert subspace redefiner 

must to a large degree have similar properties as the trails of parallel infinitesimal unitary 

transformations that are used to move the subspace in the Heisenberg picture. The 

redefinition keeps the inner products of vectors intact. Where unitary transforms rotate 

vectors around the origin of a Hilbert space, the redefiner takes subspaces of a potential 

(5) 
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future Hilbert space in order to redefine them into subspaces of the new current Hilbert 

space. In contrast to a unitary transform the redefiner does not change the eigenvectors of 

normal operators. Thus, it leaves the operators untouched. Like the trails of unitary 

transforms the redefinition works in infinitesimal steps. These infinitesimal actions also form 

trails. In this way the manipulated subspace can move continuously through Hilbert space. 

Where the redefiners act on subspaces, the trails of unitary transforms redefine operators. 

 

During this process the subspace may change its configuration. This may include a change 

that corresponds to the change of type definitions of atomic predicates. The redefiner steps 

from one stationary situation to the next. The Schrödinger picture conforms to the 

description with a redefiner. The result for the position of the locator must be the same as it 

was under the influence of the set of parallel infinitesimal unitary operators in the 

Heisenberg picture. The redefiner moves the subspace such that the new locator position is 

similar to the value as was established by the redefined position operator. It means that 

during the redefiner step the position of the locator undergoes an infinitesimal number 

transform that is equivalent to the infinitesimal transform that is established by the redefined 

position operator. That redefinition was caused by the parallel infinitesimal unitary 

transforms. 

Trails 
In fact the t step characterizes the redefinition step. The subsequent replacement of vectors 

and the replacement of the corresponding eigenvalues can be interpreted as a rather 

continuous movement of the corresponding characteristic subjects. Here we encountered ten 

different trails.  

1. The trail of subsequent manipulators (infinitesimal unitary transforms or 

infinitesimal redefiners) that each perform an infinitesimal action. 

2. The trail of subspaces, which with respect to the manipulators are characteristic for 

the considered item. 

3. The trail of corresponding ‚action values‛ of the redefiner. 

4. The trails of corresponding ‚action values‛ of the unitary transforms. 

5. The trail of eigenvectors |qt>  

6. The trail of corresponding observables Qt. 

7. The trail of corresponding observed expectation values qt. 

8. The trail of values ψ(qt) of a wave function. 

9. This, on its turn corresponds to a trail of a state in coordinate space  

10. And a trail of that state in Hilbert space. 

Cycles 
It is quite possible that subsequent steps are done in cycles of two or more steps. It is obvious 

that movements inside an item are cyclic. In ideal circumstances these movements are 

harmonic. 

Redefiner 
The concept of dynamic manipulator gives us reason to introduce a new type of actuator: the 

redefiner Ɽ. This actuator moves subspaces, but leaves vectors untouched. It works in 

infinitesimal steps. It is easily interpreted as a function Ɽt of the progression parameter t. Its 

scope spans the Hilbert space. The effect of each step on an item is similar to the effect of a 
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set of parallel infinitesimal unitary transforms {Uts}s. The current ‚action value‛ of the 

redefiner is a number, which is close to unity. It is an ‚average‛ of the ‚actions values‛ of the 

parallel infinitesimal uniforms that are active in the same step. The redefiner accepts 2n-ons 

as ‚action values‛. 

 

The redefiner has an equivalent in a dynamic quantum logic, where it redefines propositions 

that concern the same objects as are represented by the closed subspaces of the Hilbert space 

that are moved by Ɽt. There seems to be no objection against the assumption that Ɽt has a 

global scope. If we take that point of view, then the progression parameter t also has a global 

scope. 

 

With this interpretation, the redefiner is a universe-wide stepper. It transforms the universe 

from one static situation to the next static situation. These static situations are governed both 

by traditional quantum logic and by the Helmholtz/Hodge decomposition theorems. After 

each step the status quo of subspaces and fields is reestablished. However, after the step the 

conditions have been changed. After each step the position of the physical item relative to 

the fields has changed, thus when the fields are not uniformly distributed, the item meets a 

different field configuration. On the other hand the fields represent the blurs of the 

individual items. Thus, when the position or the type of the item has changed, then the local 

configuration of the field has changed. This is the way that macroscopic dynamics takes 

place in quantum physics. 

Optics 
The optical Fourier transform (OTF) is an objective imaging quality characteristic for imaging 

devices in a similar way as the frequency transfer function qualifies the signal transfer 

function of a linearly operating electronic device. The transfer quality of a chain of linear 

signal transforming devices is characterized by the product of the frequency transfer 

functions of the elements of the chain. In a similar way the OTF of a chain of imaging devices 

is given by the product of the OTF’s of the elements of the chain. However, this is a profound 

simplification of reality. The product rule only holds when the transfer characteristics of the 

imaging devices are spatially uniform over the complete input field of the separate imaging 

components. Further, the conditions in which the OTF’s of the components are determined 

must be similar to the conditions in the chain. More in detail, this means that the angular 

distribution, the chromatic distribution and the homogeneity of the radiation must be 

identical. 

 

In optics, the image sided spread function equals the convolution of the object sided spread 

function and the point spread function (PSF, the image of a point). The Fourier transform of 

the image sided spread function is equal to the product of the Fourier transform of the object 

sided spread function and the optical Fourier transforms (OTF’s) of the imaging devices. 

When several imaging devices work in sequence, then the total optical transfer function of 

the imaging system equals the product of the transfer functions of the components.  

 

If we restrict to a static situation and include the ‚depth‛ of the image, the static PSF is a 

three parametric function. Thus the OTF must have the same number of parameters. Like the 

PSF the three dimensional OTF has a longitudinal component and a two dimensional 
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transverse component. In most cases only the transverse component is used as an imaging 

quality characteristic. On-axis the transverse component is rotationally symmetric. Off-axis 

its modulus, the MTF, is symmetric but not rotationally symmetric. On-axis the MTF is 

presented as a one parametric curve in which only the positive axis is given. Off-axis the two 

extremes of the MTF are given. They correspond to radial and tangential directions. 

 

Due to the fact that Hilbert fields are blurred Hilbert distributions, wave mechanics has 

much in common with wave optics. For each compact normal operator the Hilbert subspace 

that represents a physical item corresponds to a spread in Hilbert space and a corresponding 

spread in the eigenspaces of that normal operator. The distribution of this spread is 

represented in a wave function, or more correctly, in a probability distribution. For example 

the wave function that has the position as a variable corresponds to the triple consisting of a 

physical item, its Hilbert subspace representation and the position operator.  

 

After a move of a physical item its position related wave function has much in common with 

the spread function that characterizes the blur of the image sided pictures in a linear 

operating imaging system. The physical fields that influence the physical item have an 

equivalent in the chain of imaging devices that transfers the image. 

 

The product formula for the transfer functions relies on several preconditions. First of all it 

relies on the fulfillment of the requirement for sufficient spatial uniformity of the transfer. At 

all places where information is passed, the transfer characteristics must be sufficiently 

identical. The product formula has only validity in the spatial area where this requirement is 

fulfilled. 

 

The transfer characteristics will be different for each Fourier component. Their quality will 

reduce with higher spatial frequencies. 

 

The final result can be computed in longitudinal direction by multiplication. In lateral 

direction these regions are restricted to areas where the transfer is locally sufficiently 

uniform. In the summation that is used to compute a sensible average the angular and 

chromatic distribution of the transferred information play a role. These distributions 

determine the summation coefficients. The extent of the region in which the considered 

transfer function is considered valid depends on the accuracy that is required for the result of 

the computation. Sign selections inside the radiation determine the polarization. Often in 

optics this feature and its influence is ignored. Coherence plays a role as well, but in practice 

optical imaging uses either nearly completely incoherent light or nearly completely coherent 

light. 

 

In wave mechanics the wave function, which is taken just before the item moves, gets the 

role of the object. After a movement through a region of the fields the wave function has 

been changed. Its Fourier transform then equals the product of the Fourier transform of the 

original wave function and the wave transfer functions (WTF’s) of the fields that influence 

the item. If several steps are taken in sequence, then the transfer functions of the passed field 

pieces must be multiplied in order to get the overall result. This transfer is affected in a 

similar way by spatial non-uniformity as the optical case. 
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In cylindrical imaging systems Seidel aberrations take their toll. When the system is folded 

or when lenses are not perfectly in line, also non-cylindrical influences will influence the 

imaging quality. The measurement and the specification of the OTF must cope with the 

spatial non-uniformity of the imaging characteristics of the imaging devices and with the 

angular and chromatic distribution of the radiation. The OTF also depends on the 

longitudinal location of the object and where the image is detected. This also occurs with the 

WTF of physical fields. Both in optics and in wave mechanics the precise locations of the 

‚object‛ and the ‚image‛ are often not well determined. They are defined by spatial 

distributions in three dimensions. In both cases the angular and chromatic distributions of 

the contributing radiation influence the transfer. The final result is constituted by the 

weighted sum of all contributions. 

 

With inhomogeneous (= incoherent) imaging the phases are ignored. These facts indicate the 

difference between the particle view and the wave view. From optics it is known that the 

modulation transfer function (MTF) is a proper imaging qualifier for inhomogeneous light 

imaging. In inhomogeneous imaging the imaging process can be properly described by ray 

tracing. Ray tracing has much similarities with the application of the path integral. However, 

ray tracing normally does not use arbitrary paths. In inhomogeneous imaging phases are 

scrambled. For holographic imaging the phase transfer function (PTF) or the whole OTF is 

the better measure. With holographic imaging the phases carry the depth information. 

Feynman’s path integral can cover arbitrary paths because, according to Feynman’s claim, 

interference via the phases eliminates the contributions of non-realistic paths. That is why in 

the path integral the angular distribution of the radiation plays no role. 

In optics the image space is often a surface. In optics the OTF depends on the position in the 

object space. Off axis the OTF is not rotationally symmetric. The OTF also depends on the 

angular distribution and the chromatic distribution of the radiation. These dependencies also 

hold for the WTF in wave mechanics.  

A longitudinal displacement of the image spread function with respect to the object spread 

function corresponds to an extra phase term in the longitudinal component of the Fourier 

transform of the image spread function. A lateral displacement corresponds to an extra 

phase term in the transverse component of the Fourier transform. In wave mechanics this 

holds for the respective components of the Fourier transform of the wave function after the 

move. 

The resemblance between optics and wave mechanics becomes striking when the discrete 

lens pack is replaced by a medium with a continuously varying refraction. In optics this 

happens with electron optical lenses that are used in imaging with charged particles. 

When the point spread function is a function of three-dimensional position, then the OTF is 

also a three-parametric function of spatial frequency. The MTF is a symmetric function. 

However, the MTF is not rotationally symmetric (in 2D) or spherical symmetric (in 3D). On 

its vertical axis the MTF indicates the part of the energy of the radiation that is transferred by 

a given spatial frequency.  
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Veiling glare and halo 
Due to reflections on refracting surfaces some of the energy of the radiation loses much of its 

spatial information content. As a consequence the MTF shows a sharp peak near zero spatial 

frequency. This phenomenon is called veiling glare. When the drop is not so fast the 

phenomenon is called halo. 

 

Equivalents of veiling glare and halo can also occur in wave mechanics. In this way spurious 

radiation and a spurious halo can enter space. This can happen in the form of energy or in 

the form of matter. Spurious radiation contains no spatial information. 

Fields 
It is clear that the physical fields play an important role in nature. They form an 

indispensible ingredient in the establishment of dynamics. Each physical item follows a path 

through a set of universe wide fields. The static gravitational field, the electrostatic field and 

the electromagnetic field are all subjected to the Helmholtz decomposition theorem. The 

difference between the gravitational field and the electromagnetic field is that the masses are 

non-negative and the electric charges are, apart from a sign, always the same. When the path 

with respect to a one of these fields corresponds to a unit speed curve then that field executes 

no action onto that item. 

More fields 

It is sensible to expect that the gravitation field and the electromagnetic fields make use of 

the same Hilbert distribution. May be there exist other fields that also share this distribution. 

Each of these fields will have its own kind of blur. It suffices when only one Hilbert 

distribution exists that covers the whole Hilbert space. 

 

There exists a list of fields with shorter ranges than the range of the gravitation field and the 

range of the electromagnetic fields. These are not treated here. If this story is correct, then all 

these fields have a storage place in the eigenvalues of the manipulators.  

The action represented by a complete Lagrangian indicates how fields appear in the 

argument of a manipulator. See Lagrangian of the world for a complete survey of terms. 

Mendel Sachs has found a way to bring all terms under the same hood. 

Thoughts 
The following texts represent collections of thoughts that still have to be brought in proper 

order and in mutual consistency. 

Harmonic oscillating Hilbert field  
Take the ingredients of the complex harmonic oscillator and interpret these as similar 

ingredients of a harmonic oscillating Hilbert field that is based on a Gaussian blur. The blur 

delivers the conditions of the ground state. 
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This means that the ground state corresponds with a Gaussian charge distribution. Higher 

states correspond to a blurred current. We indicate this current as vector potential  . Its time 

derivative  ̇ is perpendicular to  . The other ingredients are P, Q,   and   . 
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The   field and the  ̇ field are mutually perpendicular. If both fields are subjected to a 

synchronized quantum harmonic oscillation, then an oscillating wave results. We take the 

same ground state for each of the fields. These ground states correspond to a spherical 

symmetric Gaussian blur.  

 

When bounds of the cavity are removed or relaxed, then the higher order modes may differ 

in a phase shift. The sign selections set the eigenvalues of the spin operator. The result is an 

elliptically polarized wave that moves in directions along    ̇.  

 

  no longer stands for a single position, but instead for a Gaussian distribution of positions. 

Similarly  ̇ does not stand for a single moving particle, but for a moving Gaussian cloud of 

virtual particles. 
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(3) 

(4) 

(5) 

(6) 

(7) 
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Annihilator and creator 

The annihilator   and the creator    are examples of boson operators. This is a consequence 

of their commutation relations. 
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The corresponding fermion operators are: 
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The fermion operators can be represented by imaginary quaternionic base numbers: 
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Spin 
The spin term is defined by: 
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In free space the charge density ρ0 vanishes and the scalar potential ϕ0 shows no variance. 
Only the vector potential ϕ may vary with q0. Thus: 
 

      ∇  ≈  ∇   
 

      ≈ ∫(∇  ( ))   ( )  

 

 

If 
 ( )

  ( ) 
 can be interpreted as tantrix and 

∇  ( )

 ∇  ( ) 
 can be interpreted as the principle normal, then 

(∇  ( ))  ( )

 (∇  ( ))  ( ) 
 can be interpreted as the binormal. 

 
Depending on the selected field Σfield has two versions that differ in their sign. These versions can 
be combined in a single operator: 

 

        6
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Spin and dyadic product 
As factors of the dyadic product we consider imaginary quaternionic numbers or vectors in 

ℝ3. The product corresponds to a matrix. This matrix acts as an operator. 
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The product of quaternions contains sign selections. For the imaginary parts this selection 

has to do with the handedness of the external product. Dyadic products are well suited to 

store the product such that the sign selections are stored as well. The sign selection plays its 

role in the dyad ij, which consists of two imaginary base numbers. The dyad ij = ji, and k 

can be ± ij. Let us apply this to the definition of Sz. 
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This shows that the definition of Sz via the dyadic product reflects the choice in handedness 

of the external product of ex and ey. 

 

 

Wave package 
The linear momentum is interpretable as a displacement operator. This operator is better 

treated in Fourier space than in configuration space. In Fourier space a particle becomes a 

wave package. The Fourier transforms of the fields describe the wave package. 

Operator P has eigenfunctions  ̃( ) with eigenvalues p: 
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A pure particle can be represented by a single Hilbert vector |f>. Its wave function is given 

by: 

 

 ( )         
 

Or by: 

 

 ̃( )         
 

A mixed particle takes a Hilbert distribution in order to define its presence. 

 

 ( )         
 

A blurred Hilbert distribution is a Hilbert field. 

 

 ( )   ( )   ( )  
 

A different type of blur gives a different type of Hilbert field. 

The wave functions and particular Hilbert fields represent particles. Their Fourier transforms 

represent wave packages. A very particular Hilbert field is a probability density that is based 

on a probability density operator. 

A single wave mode represents a plane wave. Look at the linear momentum of the field 

contained in a volume V surrounded by surface S: 
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For each temporal Fourier mode of the field in free space (vanishing charge density ρ0, no 

variance of scalar potential ϕ0), where Eϕ falls off rapidly, we can neglect the first and the 

third term. 
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Further: 
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 ∫  〈  ̃ ∇  ̃〉    
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If the function 〈 ̃( )  ̃( )〉 gives the probability density for eigenvalue p. Then, this gives 

reason to interpret  〈 ( )  ( )〉 as probability density for the position q of the particle. 

Fourier mode 

A Fourier mode is a single frequency wave. It can be interpreted as a particle or as a train of 

particles whose charge is blurred by a very wide spread function. The corresponding current 

is blurred by that same spread function. It means that the divergence along the wave reduces 

to zero. 

 

Often waves of the same frequency that belong to different mutually perpendicular fields 

combine to form polarized waves. The waves may differ in their phase shifts. The 

combination then forms a polarized wave. Depending on the phase difference it may be an 

elliptical polarized wave, a circular polarized wave or a linearly polarized wave. 

Systems 
A system is a local assembly of physical items that act as a single physical item. Its state is 

mixed. When a redefinition of physical items in terms of atomic predicates goes together 

with influences between items in the form of fields, then a redefinition of a system in terms 

of its components will certainly also have such effects. The redefinition may take different 

forms. It may be represented by an emission or absorption of a component or it may be a 

reshuffling of the components. The simplest case of reshuffling is a permutation of items that 

belong to the same category. A more complex situation is a periodic movement of one or 

more components within the realm of a system. In addition each sequence of creation and 

annihilation is a form of redefinition. 

 

The system has its own characteristic vectors. The wave function may depend on the 

permutation state of the system. For example for fermions an odd permutation changes the 

sign of the (position related) wave function. For bosons a permutation does not affect the 

wave function. Permutations of different categories of components go together with their 

own type of influence. Thus, there are fermionic fields and there are bosonic fields. Each of 

these fields has its own type of creation and The annihilation. Being fermion or boson relates 

to the spin type of the component. The annihilation and creation operators are closely related 

to the type of components involved and are also closely related to the type of fields involved. 

The annihilation/creation operators of fermions anti-commute and the annihilation/creation 

operators of bosons commute. 
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Entropy 

A system is a local assembly of physical items that act as a single physical item. The Density 

operator ρ relates to the currently considered observable Q. A pure state is a ray spanned by 

an eigenvector of the operator Q.  

 

The von Neumann entropy S(ρ)  of a physical system that is characterized by a state |ψ> is 

given by 
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The entropy S(ρ) describes the departure of the system from a pure state. In other words, it 

measures the degree of mixture (entanglement) of the state |ψ>. 

Some properties of the von Neumann entropy: 

 S(ρ) is only zero for pure states. 

 S(ρ) is maximal and equal to log2N for a maximally mixed state, N being the 

dimension of the Hilbert space. 

 S(ρ) is invariant under changes in the basis of ρ, that is, S(ρ) = S(UρUϯ), with U a 

unitary transformation. 

 S(ρ) is concave, that is, given a collection of positive numbers λq which sum to unity 

(Σqλq= 1) and density operators ρq, we have 

 (∑  
 

  )  ∑  
 

 (  ) 

 S(ρ) is additive. Given two density matrices ρA,ρB describing independent systems A 

and B, then 

 (  ⊗  )   (  )   (  )  
 

Instead, if ρA,ρB are the reduced density operators of the general state ρAB, then 

  (  )   (  )   (   )   (  )   (  ) 
While in Shannon's theory the entropy of a composite system can never be lower than the 

entropy of any of its parts, in quantum theory this is not the case, i.e., it is possible that 

S(ρAB) = 0 while S(ρA) > 0 and S(ρB) > 0. 

(1) 

(2) 

(3) 

(4) 

 (

4

) 

 (

4

) 

(5) 

  

(

4

) 
 (

4

) 

 (

4

) 

(6) 

http://en.wikipedia.org/wiki/Von_Neumann_entropy
http://en.wikipedia.org/wiki/Quantum_entanglement
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Intuitively, this can be understood as follows: In quantum mechanics, the entropy of the joint 

system can be less than the sum of the entropy of its components because the components 

may be entangled. The left-hand inequality can be roughly interpreted as saying that entropy 

can only be canceled by an equal amount of entropy. If system A and system B have different 

amounts of entropy, the lesser can only partially cancel the greater, and some entropy must 

be left over. Likewise, the right-hand inequality can be interpreted as saying that the entropy 

of a composite system is maximized when its components are uncorrelated, in which case the 

total entropy is just a sum of the sub-entropies. 

 The von Neumann entropy is also strongly sub-additive. Given three Hilbert spaces, 

A,B,C, 

 (    )   (  )    (   )   (   ) 

Isolated systems 

With isolated systems we mean systems in a geometrically compound environment where 

influences from the environment compensate each other, possibly including the influences 

on the environment that are caused by the system under consideration. This includes e.g. the 

gravitation field. Internal influences are internally compensated such that they are not felt by 

other systems. For example the sum of the charges, which are related to electromagnetic 

fields is zero. It means that the Fourier transforms of the local fields consist of linear 

combinations of discrete terms. This holds for the electrostatic fields and the magneto-static 

fields. It holds for rectangular components as well as for polar components. These 

components are the germs of quanta and are the source of creations and annihilations. 

For example consider the vector potential A. Its Fourier transform can be written as: 

 

 (   )   
 

 ∑ ∑ {      ( )  e p( (   ))    ̅   ̅  ( )  e p(  (   ))}

      

 

 

 

 

Where eμ are unit sized polarization vectors. They depend on the orthonormal vectors ex and 

ey that represent quaternionic imaginary base numbers. The index μ labels the photon spin. 

The product eμ·aμ represents a quaternionic imaginary number. The number i can be 

interpreted as a base imaginary number in the direction of k. 
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Here the √
 

     
  ( ) are the operator equivalents of the coefficients     and ω = c |k| = ck. 

This results in: 
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  (   ) is an annihilation operator and    (   ) is a creation operator. 

 

   (   )           √    

 

   (   )          

 

  (   )           √  

 
  (   )        

 

[  ( ) ( 
 
 ( ))

 
]  (  ( ))

 
 

 

The Hamiltonian is: 

 

 ( )    ∑{  
 (   )    (   )   }

   

 

 

The number operator Nμ gives the number of quanta: 

 

  (   )     
 (   )    (   ) 

 

The quanta discussed here are bosons. With the electromagnetic field they are photons. 

Photons have integer spin 1. With the dyadic product ⨂ follows: 

 

      (  ⊗     ⊗  ) and cyclically for x → y → z → x 

 

[     ]       
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(8) 
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(14) 
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Fermions have half integer spin. With fermions the creation and annihilation operators a and 

aϯ have different commutation relations. Instead of commuting, these operators anti-

commute. 

Measurement 
We differentiate between a measurement using a piece of equipment and an observation as is 

done between items in universe. In the particle view the measuring equipment scrambles the 

phases. After that scrambling an observation is done. In the wave view the measuring 

equipment takes care that the phases stay intact, while the amplitudes are ignored during the 

next observation. 

 

In measurement terms the scramble of the phases is called de-coherence. In the same sense 

the care to keep phases pure and the neglecting of the amplitudes could be called re-

coherence. Both actions can be related with the Fourier transforms that convert the wave 

view into the particle view or visa versa. 

Measurement preparation 

In a measurement the observation follows after a preparation phase by the measuring 

equipment. Such a preparation may change the shape of the subspace that represents the 

item. For example, a preparation for precise position measurement may squeeze the item’s 

subspace such that its range of covered position eigenvectors becomes very short and that its 

range of covered momentum eigenvectors extends very far. Similarly, when a preparation is 

made for precise momentum measurement then the item’s subspace is squeezed in the other 

direction, such that it covers a huge range of position eigenvectors. A Fourier transform does 

not squeeze the item’s subspace. It changes the state of the item from position based to 

momentum based or vice versa. 

 

Squeezing the item’s subspace such that its range of covered position eigenvectors becomes 

very short and that its range of covered momentum eigenvectors extends very far is called 

decoherence. In case of a system it reduces the entanglement of that system. 

Hamilton-Jacobi 
The Hamilton-Jacobi equation shows how the Hamiltonian relates to the action S of the 

current manipulator. In this section we consider t to be the manipulator time! 

 

            
   
  
  

 

For the eigenvalues holds 

 

   ≈          
 

Thus, we can put 
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For the expectation values st of the action operator St holds  

 

      
   

  
              

   

 
        

  
       

 
  

 

        
  
           
  

    (   ) 

 

This derivation is completely independent from the observation of Q. Thus St has nothing to 

do with the Minkowski metric that appears during observations of position.  

The Lagrangian 
The Lagrangian is equivalent to the local geodesic equation. 

The Lagrangian    is related with the action   . 
 

    ∫     
 

 

 

 

The integral is taken over the trail with the observed path. The index t of the action St is the 

trail progression parameter. The integration parameter stands for the coordinate time. The 

right side of the equation plays in Lorentzian space. 

 

The Euler Lagrange equations explicitly use observations. For that reason the Lagrangian is 

considered to be a function of the observed q, the velocity   ̇  and the coordinate time τ. The 

velocity is measured with the coordinate time. 

 

      (     ̇) 
 

 ̇   
  

  
 

 

The Euler-Lagrange equations are: 

 
   (     ̇)

   
  
 

  

   (     ̇)

  ̇ 
   

 

for i = x, y, z 

 

When the Lagriangian does not vary with one or more of its parameters, then this 

corresponds with a symmetry of the system. By Noether's theorem, such symmetries of the 

(4) 

 (5) (5) 

(1) 

(2) 

(3) 

(4) 

http://en.wikipedia.org/wiki/Noether%27s_theorem
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system correspond to conservation laws. In particular, the invariance of the Lagrangian with 

respect to time τ implies the conservation of energy.) 

By partial differentiation of the above Lagrangian, we find: 

   (     ̇)

   
  
  

   
    

 
   (     ̇)

  ̇ 
    ̇     

 

where the force is F = −∇U (the negative gradient of the potential, by definition of 

conservative force), and p is the momentum. By substituting these into the Euler–Lagrange 

equation, we obtain a system of second-order differential equations for the coordinates on 

the particle's trajectory, 

   
 (  ̇ )

  
     ̈    ̇ 

which is Newton's second law. 

 

The world’s action 
The action St represents the influences that the rest of the world via unitary operator Ut 

release onto the state {|f>s}s. 

  

In his book about quantum gravity Rovelli writes: 

"In the general relativistic parlance 'matter' is anything which is not the gravitational field. 

As far as current physics knows, the world is made up of the gravitational field, Yang Mills 

fields, fermion fields and, presumably, scalar fields." 

(Carlo Rovelli, book: Quantum gravity, 2004, chapter 2, paragraph 2.1.2) 

  

All these fields give a contribution to the action S. 

 

S(e, ω, A, ψ, φ)  

 

= SGR[e, ω] + Smatter[e, ω, A, ψ, φ] = SGR[e, ω] + SYM[e, A] + Sf(e, ω, A, ψ) +Ssc[e, A, φ) 

  

e is the gravitational field. 

A(q) is the electromagnetic field. 

ω(q) is the spin connection. It is a one form in the Lie algebra of the Lorentz group so(3,1) 

ψ(q) is a scalar field, possibly with values in the representation of the Yang Mills group. 

φ(q) is a field in the spinor representation of the Lorenz group. 

A(q) has a non Abelian connection to the Yang Mills group. 

(5) 

(6) 

(7) 

(1) 

http://en.wikipedia.org/wiki/Conservation_law
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The local characteristics of these fields must be represented in the eigenvalue of the current 

manipulator. 

Representing multiple fields 
Professor Mendel Sachs recently wrote a few books in which he promotes the inclusion of 

more terms in the metric than Einstein did. Sachs uses a four vector with quaternionic 

coefficients in order to specify the metric. Sachs uses all sixteen terms, while Einstein skipped 

six due to symmetry considerations. The argument of Sachs is that the symmetry is broken 

due to the characteristics of the quaternion number space. See: 

http://www.compukol.com/mendel/publications/publications.html.  

 

16-ons contain the required 16 real numbers that can be arranged as a four vector with 

quaternion coefficients. Sachs still uses the Minkowski metric. So, his view concerns 

observed space.  

Discussion 

Macro and micro 
The treatise up to so far confines to macroscopic dynamics. Micro dynamics concerns 

movements that occur inside the representation of small particles. Thus, inside the subspace 

that represent the particle.  

In order to stay inside the item, the internal movements must be periodical. They can be 

combinations of oscillations and rotations. The harmonics oscillator and the spherical 

harmonics are well known examples. 

The current manipulator can be seen as a very complicated (Fourier?) transform. The 

eigenfunctions of quantum harmonic movements seem to be governed by the eigenfunctions 

of this manipulator. Thus micro dynamics occurs via a different process. 

Dynamic logic 
The current trend in quantum logic development is to add axioms that change the static 

character of quantum logic in a more dynamic and operational logic. Logic of quantum 

actions (LQA) adds unitary transforms as the source of dynamics. As we see in this article 

these transforms are not the real fundamental causes of dynamics. The fields that are exerted 

by the items are more fundamental causes of dynamics. They represent potential 

propositions that may be used to redefine the actual propositions. To my knowledge the 

influences of physical fields are not yet covered by any dynamic logic theory. 

Conclusion 
Quantum logic is only a partial description of the fundamentals of quantum physics. It only 

describes the static skeleton in which the quantum dynamics takes place. It does not treat 

physical fields. However, traditional quantum logic can be extended into a wider logic, such 

that fields are also included. When this is done, the fields become representatives of past, 

current and future versions of quantum logics and dynamics can simply be considered as the 

simultaneous step from a future version, to a current version and from the current version to 

a past version. An important ruler of quantum dynamics is the influence that is exposed by 

http://www.compukol.com/mendel/publications/publications.html
http://www.vub.ac.be/CLWF/SS/BethPaper_Final.pdf
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the universe of items in the phenomenon inertia. It indicates the laws that govern the 

exchange of atomic predicates from enveloping propositions. It characterizes the fields as the 

sticky resistance of the universe of quantum logical propositions against unordered 

redefinition of their members. This shapes the dynamics of the logic that describes dynamic 

quantum physics. 

 

The fact that the set of propositions in traditional quantum logic is lattice isomorphic with 

the set of closed subspaces of an infinite dimensional separatable Hilbert space offers the 

possibility to study the fields and the dynamics of the propositions with mathematical 

means. When this study is focused on the infinitesimal steps, the equations of motion are 

revealed. Blurred Hilbert distributions are carriers of Hilbert fields. Different fields 

correspond to different blurs. The blurs can be interpreted as probability distributions and as 

such they are the sources of quantum noise. This means that the blurs also represent the 

probability of the generation, presence and annihilation of actual and virtual elementary 

particles. In this light it must be reckoned that these particles are annihilated and 

(re)generated at each redefinition step. 

 

The dynamics of the life path of an item can be described by a geodesic equation. The live 

environment can be considered as sets of 2n-ons that locally resemble quaternions or in a still 

smaller region resemble complex numbers. These numbers constitute the fields that 

influence the dynamics of the items. The analysis of the local infinitesimal dynamic step also 

reveals the origin of special relativity. 

 

There are strong indications that a universe wide clock exists in our model. This is the 

manipulator time clock. If this is the case, then the redefinitions are universe wide 

synchronized. There are also strong indications that in our model universe is controlled by a 

single dynamic redefiner. However, its actions are locally influenced by fields, which are 

directly connected to the items that are present in this environment. 

 

Microscopic movements are governed by a different process. They are directly controlled by 

the current manipulator and relate to its eigenfunctions. 

 

Trying to implement a complex quantum logical proposition in Hilbert space is indeed an 

elucidating experience. 
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Appendix 

History of quantum logic 

Around 1930 John von Neuman and Garrett Birkhoff were searching for 

an acceptable explanation of the results of experiments that showed that 

the execution of an observation of a very small object can completely 

destroy the validity of an earlier observation of another observable of 

that object. The Schrödinger equation that agreed with the dynamic 

behaviour of the particles already existed. Not much later Heisenberg’s 

matrix formulation became popular as well. Quite soon the conclusion 

was made that something was fundamentally wrong with the logic 

behind the behaviour of small particles. These small objects show 

particle behaviour as well as wave behaviour and they show 

quantization effects. It was found that the distribution axiom of classical 

logic had to be changed. Soon it became apparent that the lattice 

structure of classical logic must be weakened from an 

orthocomplementary modular form to an orthocomplementary weakly 

modular lattice. The quantum logic was born. The next step was to find a 

useful mathematical presentation of this new logic. A historic review of 

what happened can be found in: ‚Quantum Theory: von Neumann‛ vs. 

Dirac; http://www.illc.uva.nl/~seop/entries/qt-nvd/. It includes 

extensions of the concept of Hilbert space and application of these 

concepts to quantum field theory. Another source is: 

http://www.quantonics.com/Foulis_On_Quantum_Logic.html.  

Quantum logic 
Elementary particles behave non-classical. They can present themselves either as a particle or 

as a wave. A measurement of the particle properties of the object destroys the information 

that was obtained from an earlier measurement of the wave properties of that object.  

With elementary particles it becomes clear that that nature obeys a different logic than our 

old trusted classical logic. The difference resides in the modularity axiom. That axiom is 

weakened. The classical logic is congruent to an orthocomplemented modular lattice. The 

quantum logic is congruent to an orthocomplemented weakly modulare lattice. Another 

name for that lattice is orthomodular lattice. 
  

Lattices 

A lattice is a set of elements a, b, c, <that is closed for the connections  and . These 

connections obey: 

  

 The set is partially ordered. With each pair of elements a, b belongs an element c, 

such that a  c and b   c.  

http://www.illc.uva.nl/~seop/entries/qt-nvd/
http://www.quantonics.com/Foulis_On_Quantum_Logic.html
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 The set is a half lattice if with each pair of elements a, b an element c exists, such 

that c = a  b.  
 The set is a half lattice if with each pair of elements a, b an element c exists, such 

that c = a  b.  
 The set is a lattice if it is both a half lattice and a half lattice. 

 

The following relations hold in a lattice:  

 

a  b = b  a 
 

(a  b)  c = a  (b  c) 
 

a  (a  b) = a 

 

a  b = b  a 
 

(a  b)  c = a  (b  c) 
 

a  (a  b) = a 

 

The lattice has a partial order inclusion : 

 

a  b  a  b = a 

 

A complementary lattice contains two elements n and e with each element a an 

complementary element a’ such that: 

 

a  a’= n 
 

a  n = n 
 

a  e = a 

 

a  a’ = e 
 

a  e = e 
 

a  n = a 

 

An orthocomplemented lattice contains two elements n and e and with each element a an 

element a‛ such that: 

 

(A1) 

(A2) 

(A3) 

(A4) 

(A5) 

(A6) 

(A7) 

(A8) 

(A9) 

(A10) 

(A11) 

(A12) 

(A13) 

(A14) 
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a  a‛ = e 
 

a  a‛ = n 
 

(a‛)‛ = a 
 

a  b  b‛  a‛ 

 

e is the unity element; n is the null element of the lattice 

 

A distributive lattice supports the distributive laws: 

 

a  (b  c) = (a  b)  ( a  c) 
 

a  (b  c) = (a  b)  (a  c) 

 

A modular lattice supports: 

 

(a  b)  (a  c) = a  (b  (a  c)) 

 

A weak modular lattice supports instead: 

 

There exists an element d such that 

 

a  c  (a  b)  c = a  (b  c)  (d  c) 

 

where d obeys: 

 

(a  b)  d = d 
 

a  d = n 
 

b  d = n 
 

[(a  g) and (b  g)  d  g 

 

In an atomic lattice holds  

 

p  L x  L {x  p  x = n} 

 

a  L x  L {(a < x < a  p)  (x = a or x = a  p)} 

 

p is an atom 

(A15) 

(A16) 

(A17) 

(A18) 

(A19) 

(A20) 

(A21) 

(A22) 

(A23) 

(A24) 

(A25) 

(A26) 
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Both the set of propositions of quantum logic and the set of subspaces of a separable Hilbert 

space have the structure of an orthomodular lattice. In this respect these sets are congruent. 

In Hilbert space, an atom is a pure state (a ray spanned by a single vector). 

 

Classical logic has the structure of an orthocomplemented distributive modular and atomic 

lattice. 

Quantum logic has the structure of an orthomodular lattice. That is an orthocomplented 

weakly modular and atomic lattice. The set of closed subspaces of a Hilbert space also has 

that structure.  

Proposition 

In Aristotelian logic a proposition is a particular kind of sentence, one which affirms or 

denies a predicate of a subject. Propositions have binary values. They are either true or they 

are false. 

Propositions take forms like "This is a particle or a wave". In quantum logic "This is a particle." is 

not a proposition. 

In mathematical logic, propositions, also called "propositional formulas" or "statement 

forms", are statements that do not contain quantifiers. They are composed of well-formed 

formulas consisting entirely of atomic formulas, the five logical connectives, and symbols of 

grouping (parentheses etc.). Propositional logic is one of the few areas of mathematics that is 

totally solved, in the sense that it has been proven internally consistent, every theorem is 

true, and every true statement can be proved. Predicate logic is an extension of propositional 

logic, which adds variables and quantifiers. 

In Hilbert space a vector is either inside or not inside a closed subspace. A proper quantum 

logical proposition is ‚Vector |f> is inside state s‛. 

In Hilbert space, an atomic predicate corresponds with a subspace that is spanned be a single 

vector. 

Predicates may accept attributes and quantifiers. The predicate logic is also called first order 

logic. A dynamic logic can handle the fact that predicates may influence each other when 

atomic predicates are exchanged. 

Observation 

In physics, particularly in quantum physics, a system observable is a property of the system 

state that can be determined by some sequence of physical operations. This paper 

distinguishes between measurements and observations. 

 

 With an observation the state is considered as a linear combination of eigenvectors of 

the observable. An observation returns the statistical expectation value of the 

eigenvalue of the observable.  

 A measurement transforms the observed state to one of the eigenvectors of the 

observable. What happens depends on the characteristics of the measuring 

http://en.wikipedia.org/wiki/Logical_connective
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equipment. The measurement can be seen as a combination of a transformation and 

an observation. 

 

Depending on the characteristics of the measuring equipment a measurement and a clean 

observation can give the same result. 

 

With this interpretation of the concept of observation it is possible to let states observe other 

states. A state might do a transformation before doing an observation but in general it fails 

the equipment to arrange that transformation. In nature observations are far  more common 

than measurements. 

Quaternion coordinates 
This part of the appendix describes candidates for the coordinates on the coordinate sphere. 

Polar coordinates  

The equivalent to rectangular coordinates in quaternion space is (aτ, ax, ay, az) 

 

a = aτ + i·ax + j·ay ± i·j·az  
 

The equivalent to polar coordinates in quaternion space is  

 

aτ = ||a||·cos(ψ)  

 

ax = ||a||·sin(ψ)·sin(θ)·cos(φ)  

 

ay = ||a||·sin(ψ)·sin(θ)·sin(φ)  

 

az = ||a||·sin(ψ)·cos(θ) 
 

Sin(ψ), where ψ = (0,π), is known as the (imaginary) amplitude of the quaternion. Angle θ = 

(0,π) is the (co-)latitude and angle φ = (0,2π) is the longitude.  

For any fixed value of ψ, θ and φ parameterize a 2-sphere of radius sin(ψ), except for the 

degenerate cases, when ψ equals 0 or π, in which case they describe a point. 

 
This suggests the following structure of the argument Λ 

 

a = ||a||·exp(ĩ· ψ)  

 

= ||a||·(cos(ψ) + ĩ·sin(ψ)) 

 

= aτ  + ||a||·ĩ·sin(ψ) = aτ  + a 
 

The imaginary number ĩ may take any direction.  

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 
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3 sphere 

A 3-sphere is a compact, connected, 3-dimensional manifold without boundary. It is also 

simply-connected. What this means, loosely speaking, is that any loop, or circular path, on 

the 3-sphere can be continuously shrunk to a point without leaving the 3-sphere. The 

Poincaré conjecture proposes that the 3-sphere is the only three dimensional manifold with 

these properties (up to homeomorphism). 

The round metric on the 3-sphere in these coordinates is given by 

ds2 = dψ2 + sin2(ψ) (dθ2 + sin2(θ).dφ2) 

The volume form is given by 

dV = sin2(ψ)·sin(θ)·dψ ^ dθ ^ dφ 

 

The 3-dimensional volume (or hyperarea) of a 3-sphere of radius r is 

 

2·π2·r3  
 

The 4-dimensional hypervolume (the volume of the 4-dimensional region bounded by the 3-

sphere) is 

½·π2·r4  

The 3-sphere has constant positive sectional curvature equal to 1/r2. 

 

The 3-sphere has a natural Lie group structure SU(2) given by quaternion multiplication. 

The 3-sphere admits nonvanishing vector fields (sections of its tangent bundle). One can 

even find three linearly-independent and nonvanishing vector fields. These may be taken to 

be any left-invariant vector fields forming a basis for the Lie algebra of the 3-sphere. This 

implies that the 3-sphere is parallelizable. It follows that the tangent bundle of the 3-sphere is 

trivial. 

There is an interesting action of the circle group T on S3 giving the 3-sphere the structure of a 

principal circle bundle known as the Hopf bundle. If one thinks of S3 as a subset of C2, the 

action is given by 

(z1, z2)·λ = (z1·λ, z2·λ) λ  T.  

The orbit space of this action is homeomorphic to the two-sphere S2. Since S3 is not 

homeomorphic to S2×S1, the Hopf bundle is nontrivial. 

(1) 

(2) 

(3) 

(4) 

(5) 

http://en.wikipedia.org/wiki/Poincar%C3%A9_conjecture
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Hopf coordinates 

Another choice of hyperspherical coordinates, (η, ξ1, ξ2), makes use of the embedding of S3 

in C2. In complex coordinates (z1, z2)  C2 we write 

 

z1 = exp(ĩ·ξ1)·sin(η) 

 

z2 = exp(ĩ·ξ2)·cos(η) 

 
Here η runs over the range 0 to π/2, and ξ1 and ξ2 can take any values between 0 and 2π. 

These coordinates are useful in the description of the 3-sphere as the Hopf bundle 

 

S1 → S3 → S2 

 

For any fixed value of η between 0 and π/2, the coordinates (ξ1, ξ2) parameterize a 2-

dimensional torus. In the degenerate cases, when η equals 0 or π/2, these coordinates 

describe a circle. 

The round metric on the 3-sphere in these coordinates is given by 

ds2 = dη2 + sin2(η) (dζ12 + cos2(η).d ζ22) 

and the volume form by 

dV = sin(η)·cos(η)·dη ^ dζ1 ^ dζ2 

Stereographic coordinates 

Another convenient set of coordinates can be obtained via stereographic projection of S3 from 

a pole onto the corresponding equatorial R3 hyperplane. For example, if we project from the 

point (−1, 0, 0, 0) we can write a point p in S 3 as 

 

p = ((1−||u||2)/(1+||u||2),  2·u/(1+||u||2)) = (1 + u)/(1 − u) 
 

where u = (u1, u2, u3) is a vector in R3 and ||u||2 = u12 + u22 + u32. In the second equality above 

we have identified p with a unit quaternion and u = u1·i + u2·j + u3·k with a pure (imaginary) 

quaternion. (Note that the numerator and denominator commute here even though 

quaternionic multiplication is generally non-commutative). The inverse of this map takes p = 

(x0, x1, x2, x3) in S 3 to 

 

u = 1/(1 + x0)·(x1, x2, x3) 
 

We could just as well have projected from the point (1, 0, 0, 0) in which case the point p is 

given by 

 

p = ((−1+||v||2)/(1+||v||2), 2·v/(1+||v||2)) = (−1 + v)/(1 − v) 
 

(1) 

(2) 

(3) 

(4) 

(5) 

(1) 

(2) 

(3) 
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where v = (v1, v2, v3) is another vector in R3. The inverse of this map takes p to 

 

v = 1/(1 − x0)·(x1, x2, x3) 
 

Note that the u coordinates are defined everywhere but (−1, 0, 0, 0) and the v coordinates 

everywhere but (1, 0, 0, 0). This defines an atlas on S3 consisting of two coordinate charts or 

"patches", which together cover all of S3. Note that the transition function between these two 

charts on their overlap is given by 

 

v = u/||u||2 
 

and vice-versa. 

Group structure 

Because the set of unit quaternions is closed under multiplication, S3 takes on the structure of 

a group. Moreover, since quaternionic multiplication is smooth, S3 can be regarded as a real 

Lie group. It is a non-abelian, compact Lie group of dimension 3. When thought of as a Lie 

group S3 is often denoted Sp(1) or U(1, H). 

It turns out that the only spheres which admit a Lie group structure are S1, thought of as the 

set of unit complex numbers, and S3, the set of unit quaternions. One might think that S7, the 

set of unit octonions, would form a Lie group, but this fails since octonion multiplication is 

non-associative. The octonionic structure does give S7 one important property: 

parallelizability. It turns out that the only spheres which are parallelizable are S1, S3, and S7. 

By using a matrix representation of the quaternions, H, one obtains a matrix representation 

of S3. One convenient choice is given by the Pauli matrices: 

(                       )  [
                  
                   

] 

This map gives an injective algebra homomorphism from H to the set of 2×2 complex 

matrices. It has the property that the absolute value of a quaternion q is equal to the square 

root of the determinant of the matrix image of q. 

The set of unit quaternions is then given by matrices of the above form with unit 

determinant. This matrix subgroup is precisely the special unitary group SU(2). Thus, S3 as a 

Lie group is isomorphic to SU(2). 

Using our hyperspherical coordinates (η, ξ1, ξ2) we can then write any element of SU(2) in 

the form 

[
e p(    )  sin( ) e p(    )  cos( )
 e p(    )  cos( ) e p(     )  sin( )

] 

(4) 

(5) 

(1) 

(2) 

http://en.wikipedia.org/wiki/Parallelizability
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Another way to state this result is if we express the matrix representation of an element of 

SU(2) as a linear combination of the Pauli matrices. It is seen that an arbitrary element U  

SU(2) can be written as 

U = ατ·1 + ∑n=x,y,z αn·In 

The condition that the determinant of U is +1 implies that the coefficients αn are constrained 

to lie on a 3-sphere. 

Versor 

Any unit quaternion q can be written as a versor: 

 

u = exp(ĩ ·ψ) = cos(ψ) + ĩ ·sin(ψ) 

 

This is the quaternionic analogue of Euler's formula. Now the unit imaginary quaternions all 

lie on the unit 2-sphere in Im H so any such ĩ can be written: 

 

ĩ = i·cos(φ)·sin(θ) + j·sin(φ)·sin(θ) + k·cos(θ)  

Symplectic decomposition 

Quaternions can be written as the combination of two complex numbers and an imaginary 

number k with unit length. 

2n-on construction 
The 2n-ons use the following doubling formula 

 

(a, b) (c, d) = (a·c – (b·d*)*,(b*·c*)* + (b*·(a*·((b-1)*·d*)*)*)*) 

 
Up until the 16-ons the formula can be simplified to 

 
(a, b) (c, d) = (a·c – b·d*, c·b + (a*·b-1)·(b·d)) 

 
Up to the octonions the Cayley Dickson construction delivers the same as the 2n-on 

construction. From n>3 the 2n-ons are ‘nicer’. 

2n-ons 

Table of properties of the 2nons. See www.math.temple.edu/~wds/homepage/nce2.ps.  
Type name Lose 

1ons Reals.    

2ons Complex 

numbers 

z
*
 = z (the * denotes conjugating);   

the ordering properties that both {z > 0, -z > 0, or z = 0}  

and {w > 0, z > 0 implies w + z > 0, wz > 0}. 

4ons Quaternions commutativity ab = ba;  

the algebraic closedness property that every univariate polynomial  equation has a 

root.   

8ons Octonions associativity ab · c = a · bc.  

16ons (not 

Sedenions!) 

rightalternativity x · yy = xy · y;  

rightcancellation x = xy · y
-1

 ;  

flexibility x · yx = xy · x; leftlinearity  (b + c)a = ba + ca;  

antiautomorphism ab = ba, (ab)
-1

 = b
-1

 a
-1

 ;  

(3) 

(1) 

(2) 

(1) 

(2) 

http://www.math.temple.edu/~wds/homepage/nce2.ps
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leftlinearity (b + c)a = ba + ca;  

continuity of the map x → xy;  

Moufang and Bol identities;  

diassociativity  

32ons  generalizedsmoothness of the map x → xy;  

rightdivision properties that xa = b has (generically) a solution x, and the uniqueness 

of such an x;  

the “fundamental theorem of algebra” that every polynomial having a unique 

“asymptotically  dominant monomial” must have a root; Trotter's formula: 

  im   [ 
       ]

 
   im   .  

   

 
/
 

       

 
Type name Retain 

2
n
ons  Unique 2sided multiplicative & additive identity elements 1 & 0; 

Normmultiplicativity |xy|
2
 = |x|

2
·|y|

2
 ;  

Normsubadditivity |a + b| ≤ |a| + |b|; 

2sided inverse a
-1

 = a
*
/|a|

2
 (a # 0);  

a
**

 = a;  

(x ± y)* = x
*
 ± y

*
; 

(a
-1

) 
-1

 = a;  

(a
*
) 

-1
 = (a

-1
)

*
 ;  

|a|
2
 = |a|

2
 = a

*
a;  

Leftalternativity yy · x = y · yx;  

Leftcancellation x = y
-1

 · yx;  

Rightlinearity a(b + c) = ab + ac;  

r
th

 powerassociativity a
n
 a

m
 = a

n+m 
;  

Scaling s · ab = sa · b = as · b = a · sb = a · bs = ab · s (s real); Powerdistributivity  (ra
n
 + 

sa
m
)b = ra

n
 b + sa

m
 b (r, s real);  

Vector product properties of the imaginary part: ab - re(ab) of the product for pureimaginary 

2
n
ons a,b regarded as  (2

n
  - 1)vectors; 

xa,b = a,x*b, xa,xb = |x|2·a,b and x,y = x*,y* 

Numerous weakened associativity, commutativity, distributivity, antiautomorphism, and 

Moufang and Bol  properties including 9coordinate ``niner'' versions of most of those 

properties; contains 2
n-1

ons as subalgebra. 

 

The most important properties of 2n-ons 

If a,b,x,y are 2n-ons, n ≥ 0, and s and t are scalars (i.e. all coordinates are 0 except the real 

coordinate) then 

unit: A unique 2n-on 1 exists, with 1·x = x·1 = x. 

zero: A unique 2n-on 0 exists, with 0 + x = x + 0 = x and 0·x = x·0 = 0. 

additive properties: x+y = y+x, (x+y)+z = x+(y+z); 

 x exists with x + ( x) = x   x = 0. 

norm: |x|2 = xx* = x*x. 

norm-multiplicativity: |x|2·|y|2 = |x·y|2. 

scaling: s · x·y = s·x · y = x·s · y = x · s·y = x · y·s. 

weak-linearity: (x + s)·y = x·y + s·y and x·(y + s) = x·y + x·s. 

right-linearity: x·(y + z) = x·y + x·z. 

inversion: If x ≠ 0 then a unique x-1 exists, obeying x-1·x = x·x-1 = 1. It is x-1 = x·|x|-2. 

left-alternativity: x · xy = x2·y. 

left-cancellation: x · x-1·y = y. 

effect on inner products: x·a,b = a, x*·b, x,y = x*, y*,  x*·a, x-1·b = a,b,  

and x·a,x·b = |x|2·a,b. 

Conjugate of inverse: (x-1)* = (x*)-1. 
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Near-anticommutativity of unequal basis elements: ek2 =  1 and ek·el* =  el·ek*  if k ≠ l.  

(Note: the case k; l > 0 shows that unequal pure-imaginary basis elements anticommute.) 

Alternative basis elements: ek·el · ek = ek · el·ek, el·ek · ek = el · ek·ek, and ek·ek ·el = ek · ek·el. 

(However, when n ≥ 4 the 2n-ons are not flexible i.e. it is not generally true that x·y · x = x · y·x 

if x and y are 16-ons that are not basis elements. They also are not right-alternative.) 

Quadratic identity: If x is a 2n-on (over any field F with charF ≠ 2), then x2 + |x|2 = 2·x re x 

Squares of imaginaries: If x is a 2n-on with re x = 0 (‚pure imaginary‛) then x2 =  |x|2 is 

nonpositive pure-real. 

Powering preserves imx direction 

Niners 

Niners are 2n-ons whose coordinates with index > 8 are zero. The index starts with 0. 

9-flexibility xp · x = x · px, px · p = p · xp. 

9-similitude unambiguity xp · x-1 = x · px-1, px · p-1 = p · xp-1. 

9-right-alternativity xp · p = x · p2, px · x = p · x2. 

9-right-cancellation xp-1 · p = x, px-1 · x = p. 

9-effect on inner products x, yp = xp, y, xp, yp = |p|2x, y. 

9-left-linearity (x + y)p = xp + yp, (p + q)x = px + qx. 

9-Jordan-identity xp · xx = x(p · xx), py · pp = p(y · pp). 

9-coordinate-distributivity ([x + y]z)0;:::;8 = (xz + yz)0;:::;8. 

9-coordinate-Jordan-identity [xy · xx]0;:::;8 = [x(y · xx)]0;:::;8. 

9-anticommutativity for orthogonal imaginary 2n-ons 

If p, x = re p = re x = 0 then px =  xp. 

9-reflection If |a| = 1 and the geometric reflection operator is defined below then 

 (refl[a](y))0;:::;8 = (a · y*a)0;:::;8, and  {refl[a](y)}*0;:::;8 = (a*y · a*)0;:::;8, and 

if either a or y is a niner then  refl[a](y) = a · y*a and  refl[a](y) = a*y · a*. 

 

ref , ⃗-( ⃗)     ⃗   
 〈 ⃗  ⃗〉

  ⃗  
 ⃗ 

What holds for the niners, also holds for the octonions. 

 

The separable Hilbert space Ң 

Notations and naming conventions 

{fx}x means ordered set of fx . It is a way to define functions. 

  

The use of bras and kets differs slightly from the way Dirac uses them. 

  

|f> is a ket vector, f> is the same ket 

<f| is a bra vector, <f is the same bra 

  

A is an operator. |A is the same operator 

A† is the adjoint operator of operator A. A| is the same operator 

| on its own, is a nil operator 

|A| is a self-adjoint (Hermitian) operator 

  

(3) 
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We will use capitals for operators and lower case for quaternions, eigenvalues, ket vectors, 

bra vectors and eigenvectors. Quaternions and eigenvalues will be indicated with italic 

characters. Imaginary and anti-Hermitian objects are often underlined and/or indicated in 

bold text. 

  

∑k means: sum over all items with index k. 

∫x means: integral over all items with parameter x. 

Quaternionic Hilbert space 

The Hilbert space is a linear space. That means for the elements |f>, |g> and |h> and 

numbers a and b: 

Ket vectors 

For ket vectors hold 

 

|f> + |g> = |g> + |f> = |g + f> 

 

(|f> + |g>) + |h> = |f> + (|g> + |h>) 

 

|(a + b) f > = |f>·a + |f>·b 
 

(|f> + |g>)·a = |f>·a + |g>·a 

 

|f>·0 = |0> 

 

|f>·1 = |f> 

 
Depending on the number field that the Hilbert space supports, a and b can be real numbers, 

complex numbers or (real) quaternions. 

Bra vectors 

The bra vectors form the dual Hilbert space Ң† of Ң . 

  

<f| + <g| = <g| + <f| = |g + f> 

 

 (<f| + <g|) + <h| = <f| + (<g| + <h|) 

 

<f (a + b)> = <f|·a + <f|·b = a*·<f| + b*·<f| 

 

 (<f| + <g|)·a = <f|·a + <g|·a = a*·<f| + a*·<g| 

 
0·<f| = <0| 

 

1·<f| = <f| 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 
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Scalar product 

The Hilbert space contains a scalar product <f|g> that combines Ң and Ң† in a direct product 

that we also indicate with Ң. 

The scalar product <f|g> satisfies: 

 

<f|g + h> = <f|g> + <f|h> 

 

<f|{|g>·a}g = {<f|g>}g·a 
  

With each ket vector |g> in Ң belongs a bra vector <g| in Ң† such that for all bra vectors <f| 

in Ң† 

 

<f|g> = <g|f>* 

 

<f|f> = 0 when |f> = |0> 

 

<f|a g> = <f|g>·a = <g|f>*·a = <g a|f>* = (a*·<g|f>)* = <f|g>·a 
 

In general is <f|a g> ≠ <f a|g>. However for real numbers r holds <f|r g> = <f r|g> 

 

Remember that when the number field consists of quaternions, then also <f|g> is a 

quaternion and a quaternion q and <f|g> do in general not commute. 

 

The scalar product defines a norm: 

 

||f|| = √(<f|f>) 
 

And a distance: 

 

D(f,g) = ||f – g|| 
 

The Hilbert space Ң is closed under its norm. Each converging row of elements of converges 

to an element of this space. 

Separable 

 In mathematics a topological space is called separable if it contains a countable dense subset; 

that is, there exists a sequence *  +   
  of elements of the space such that every nonempty 

open subset of the space contains at least one element of the sequence. 

Every continuous function on the separable space Ң is determined by its values on this 

countable dense subset. 

Base vectors 

The Hilbert space Ң is separable. That means that there exist a countable row of elements 

{fn>} that spans the whole space. 

  

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/Topological_space
http://en.wikipedia.org/wiki/Countable_set
http://en.wikipedia.org/wiki/Dense_(topology)
http://en.wikipedia.org/wiki/Sequence
http://en.wikipedia.org/wiki/Open_subset
http://en.wikipedia.org/wiki/Continuous_function
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If <fn|fm> = δ(m,n) = [1 when n = m; 0 otherwise]  

then {|fn>} forms an orthonormal base of the Hilbert space. 

A ket base {|k>}of Ң is a minimal set of ket vectors |k> that together span the Hilbert space 

Ң. 

Any ket vector |f> in Ң can be written as a linear combination of elements of {|k>}. 

  

|f> = ∑k (|k>·<k|f>) 
  

A bra base {<b|}of Ң† is a minimal set of bra vectors <b| that together span the Hilbert space 

Ң†. 

Any bra vector <f| in Ң† can be written as a linear combination of elements of {<b|}. 

  

<f| = ∑b (<f|b>·<b|) 
  

Usually base vectors are taken such that their norm equals 1. Such a base is called an 

othonormal base. 

 

Operators 

Operators act on a subset of the elements of the Hilbert space.  

Linear operators 

An operator Q is linear when for all vectors |f> and |g> for which Q is defined and for all 

quaternionic numbers a and b: 

 

|Q·a f> + |Q·b g> = |a·Q f> + |b·Q g> = |Q f>·a + |Q g>·b = 

  
Q (|f>·a + |g>·b) = Q (|a f> + |b g>) 

 

B is colinear when for all vectors |f> for which B is defined and for all quaternionic numbers 

a there exists a quaternionic number c such that: 

 

|B·a f> = |a·B f> = |B f> c·a·c-1 

If |f> is an eigenvector of operator A with quaternionic eigenvalue a, then is |b f> an 

eigenvector of A with quaternionic eigenvalue b·a·b-1. 

A| = A† is the adjoint of the normal operator A. |A is the same as A. 

  

<f A| g> = <fA†|g>* 

 

A† † = A 
 

(A·B) † = B†·A† 
  

|B| is a self adjoint operator. 

(1) 

(2) 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 
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| is a nil operator.  

 

The construct |f><g| acts as a linear operator. |g><f| is its adjoint operator. 

 

∑n {|fn>·an·<fn|}, 
 

 where a n is real and acts as a density function. 

 

The set of eigenvectors of a normal operator form an orthonormal base of the Hilbert space. 

A self adjoint operator has real numbers as eigenvalues. 

 

{<q|f>}q is a function f(q) of parameter q.  

{<g|q>}q is a function g(q) of parameter q. 

  

When possible, we use the same letter for identifying eigenvalues, eigenvalues and the 

corresponding operator. 

So, usually |q> is an eigenvector of a normal operator Q with eigenvalues q.  

  

{q} is the set of eigenvalues of Q.  

{q}q is the ordered field of eigenvalues of q. 

{|q>}q  is the ordered set of eigenvectors of Q. 

{<q|f>}q is the Q view of |f>. 

Normal operators 

The most common definition of continuous operators is: 

  

A continuous operator is an operator that creates images such that the inverse images 

of open sets are open.  

  

Similarly, a continuous operator creates images such that the inverse images of 

closed sets are closed. 

  

A normal operator is a continuous linear operator. 

A normal operator in Ң creates an image of Ң onto Ң. It transfers closed subspaces of Ң into 

closed subspaces of Ң.  

  

Normal operators represent continuous quantum logical observables.  

  

The normal operators N have the following property. 

  

N: Ң  Ң 
  

N commutes with its (Hermitian) adjoint N† 

  

N·N† = N†·N 
  

Normal operators are important because the spectral theorem holds for them.  

(7) 

(1) 

(2) 
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Examples of normal operators are 

  

 unitary operators: U† = U−1 , unitary operators are bounded; 

 Hermitian operators (i.e., self-adjoint operators): N† = N;  

 Anti-Hermitian or anti-self-adjoint operators: N† = −N;  

 Anti-unitary operators: I† = −I = I−1 , anti-unitary operators are bounded;  

 positive operators: N = MM†  

 orthogonal projection operators: N = N† = N2  

Spectral theorem 

For every compact self-adjoint operator T on a real, complex or quaternionic Hilbert space Ң, 

there exists an orthonormal basis of Ң consisting of eigenvectors of T. More specifically, the 

orthogonal complement of the kernel (null space) of T admits, either a finite orthonormal 

basis of eigenvectors of T, or a countable infinite orthonormal basis {en} of eigenvectors of T, 

with corresponding eigenvalues {λn} ⊂ R, such that λn → 0. Due to the fact that Ң is 

separable the set of eigenvectors of T can be extended with a base of the kernel in order to 

form a complete orthonormal base of Ң. 

 

If T is compact on an infinite dimensional Hilbert space Ң, then T is not invertible, hence 

σ(T), the spectrum of T, always contains 0. The spectral theorem shows that σ(T) consists of 

the eigenvalues {λn} of T, and of 0 (if 0 is not already an eigenvalue). The set σ(T) is a compact 

subset of the real line, and the eigenvalues are dense in σ(T). 

 

 A normal operator has a set of eigenvectors that spans the whole Hilbert space Ң.  

In quaternionic Hilbert space a normal operator has quaternions as eigenvalues.  

 

The set of eigenvalues of a normal operator is NOT compact. This is due to the fact that Ң is 

separable. Therefore the set of eigenvectors is countable. As a consequence the set of 

eigenvalues is countable. Further, the eigenspace of normal operators has no finite diameter.  

 

A continuous bounded linear operator on Ң has a compact eigenspace. The set of 

eigenvalues has a closure and it has a finite diameter.  

Eigenspace 

The set of eigenvalues {q} of the operator Q form the eigenspace of Q 

Eigenvectors and eigenvalues 

For the eigenvector |q> of normal operator Q holds  

 

|Q q> = |q q> = |q>·q 
 

<q Q†| = <q q*| = q*·<q| 
 

(|f>   Ң)  
 

[{<f|Q q>}q = {<f| q>·q}q = {<q Q†|f>*}q = {q*·<q |f>*}q] 
 

The eigenvalues of 2n-on normal operator are 2n-ons  

(1) 

(2) 

(3) 

http://en.wikipedia.org/wiki/Orthonormal_basis
http://en.wikipedia.org/wiki/Countable_set
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   ∑      

   

   

 

 

The Qj are self-adjoint operators. 

Generalized Trotter formula 

For bounded operators {Aj} hold: 

 

 im
   
(∏     
 

   

)

 

  e p(∑  

 

   

)    im
   
4  
∑   
 
   

 
5

 

 

In general  

 

e p(∑  

 

   

)    ∏   

 

   

 

Unitary operators 

For unitary operators holds: 

  

U† = U−1 
Thus 

  

U·U† = U†·U =1 
 

Suppose U = I + C where U is unitary and C is compact. The equations U U* = U*U = I and C = 

U − I show that C is normal. The spectrum of C contains 0, and possibly, a finite set or a 

sequence tending to 0. Since U = I + C, the spectrum of U is obtained by shifting the spectrum 

of C by 1. 

The unitary transform can be expressed as: 

 

U = exp(Ĩ·Φ/ħ) 

 

ħ = h/(2·π) 
 

Φ is Hermitian. The constant h refers to the granularity of the eigenspace. 

Unitary operators have eigenvalues that are located in the unity sphere of the 2n-ons field.  

The eigenvalues have the form: 

  

u = exp(i·φ/ħ) 

 

φ is real. i is a unit length imaginary number in 2n-on space. It represents a direction.  

(4) 

(1) 

(2) 

(1) 

(2) 

(3) 

(4) 

(5) 
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u spans a sphere in 2n-on space. For constant i, u spans a circle in a complex subspace.  

Polar decomposition 

Normal operators N can be split into a real operator A and a unitary operator U. U and A 

have the same set of eigenvectors as N. 

  

N = ||N||·U = A·U 

 

N = A·U = U·A  

 

= A· exp(Ĩ·Φ)/ħ) 

 

= exp (Φr+ Ĩ·Φ)/ħ)  

 

Φr is a positive normal operator. 

Ladder operator 

General formulation 

Suppose that two operators X and N have the commutation relation: 

 [N, X] = c·X 

for some scalar c. If |n> is an eigenstate of N with eigenvalue equation, 

 

|N n> = |n>·n 
 

then the operator X acts on |n> in such a way as to shift the eigenvalue by c: 

 

|N·X n> = |(X·N + [N, X]) n> 

= |(X·N + c·X) n> 

= |X·N n> + |X n>·c 

= |X n>·n + |X n>·c 

= |X n>·(n+c) 

 
In other words, if |n> is an eigenstate of N with eigenvalue n then |X n> is an eigenstate of N 

with eigenvalue n + c.  

The operator X is a raising operator for N if c is real and positive, and a lowering operator for N 

if c is real and negative. 

If N is a Hermitian operator then c must be real and the Hermitian adjoint of X obeys the 

commutation relation: 

[N, X†] = - c·X† 

(1) 

(2) 

(1) 

(2) 

(3) 

(4) 
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In particular, if X is a lowering operator for N then X† is a raising operator for N and vice-

versa. 

Unit sphere of Ң 

The ket vectors in Ң that have their norm equal to one form together the unit sphere  of Ң. 

Base vectors are all member of the unit sphere. The eigenvectors of a normal operator are all 

member of the unit sphere.  

The end points of the eigenvectors of a normal operator form a grid on the unit sphere of 

Ң. 

 Closure 

The closure of Ң means that converging rows of vectors converge to a vector of Ң. 

  

In general converging rows of eigenvalues of Q do not converge to an eigenvalue of Q. 

Thus, the set of eigenvalues of Q is open.  

At best the density of the coverage of the set of eigenvalues is comparable with the set of 2n-

ons that have rational numbers as coordinate values. 

With other words, compared to the set of real numbers the eigenvalue spectrum of Q has 

holes. 

The set of eigenvalues of operator Q includes 0. This means that Q does not have an inverse. 

  

The rigged Hilbert space Ħ can offer a solution, but then the direct relation with quantum 

logic is lost. 

 

Canonical conjugate operator P and quaternionic Fourier transform 

The existence of a canonical conjugate represents a stronger requirement on the continuity of 

the eigenvalues of canonical eigenvalues.  

Q has eigenvectors {|q>}q and eigenvalues q. 

P has eigenvectors {|p>}p and eigenvalues p. 

For each eigenvector |q> of Q we define an eigenvector |p> and eigenvalues p of P such that: 

  

<q|p> = <p|q>* = exp (ȋ·p·q/ħ) 
  

ħ = h/(2·π) is a scaling factor. <q|p> is a quaternion. ȋ is a unit length imaginary quaternion. 

  

This specification also defines a Fourier transform in the complex subspace spanned by ȋ and 

the real axis. This is a unitary transform with eigenvalues that are equal to the value of the 

inner product <q|p>. The inverse Fourier transform has eigenvalues that equal <p|q>. The 

Fourier transform Uqp  converts the base {|q>}q into the base {|p>}p. The inverse Fourier 

transform Upq does the reverse. 

 

<q|f> = ∑p (<q|p>·<p|f>)  

 

= ∑p <p (<p|q>)|f>)  
 

= ∑p <p Upq|f>)  

(1) 

(30) (2) 
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= ∑p <p|Uqp f>) 

 

<p|f> = ∑q (<p|q>·<q|f>) 

 

= ∑q <q|Upq f>) 

 
Due to its specification, the operator P can be interpreted as a displacement generator for Q. 

 

         
 

  
 

 

The Fourier transform is the source of the existence of the Heisenberg uncertainty relation. 

This is also shown in the commutator: 

 

 ,   -                
 

In the rigged Hilbert space Ħ 

 

<q|f> = ∫p (<q|p>·<p|f>)·dp 

 

<p|f> = ∫q (<p|q>·<q|f>)·dq 
  

Through the definition of the canonical conjugate do P and Q possess a fixed relation. The 

Fourier transform can be interpreted as the local  

Displacement generators 

Variance of the scalar product gives: 

 

i·ħ·δ<q|p> = −p·<q|p>·δq 

 

i·ħ·δ<p|q> = −q·<p|q>·δp 
 

In the rigged Hilbert space Ħ the variance can be replaced by differentiation.  

Partial differentiation of the function <q|p> gives: 

 

i·ħ·∂/∂qs <q|p> = −ps·<q|p> 

 

i·ħ·∂∂ps <p|q> = −qs·<p|q> 

Zak transform 
(See also http://eom.springer.de/Z/z130030.htm) 

Definition 

The Weil-Brezin-Zak transform   ( ) of a function f is defined by  

(31) (3) 

(32) (4) 

(33) (5) 

(6) 

(7) 

(1) 

(2) 

(3) 

(4) 

(1) 

http://eom.springer.de/Z/z130030.htm
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  , -(   )     (   )  √ ∑  (        ) e p(      )

 

    

 

Where α > 0 and t and ω are real. When α =1, one denotes     by   . 

If f represents a signal, then its Zak transform can be considered as a mixed time-frequency 

representation of f , and it can also be considered as a generalization of the discrete Fourier 

transform of f in which an infinite sequence of samples in the form  (        ), k = 0, ±1, 

±2,<, is used  

Elementary properties. 

1)  (linearity): for any complex numbers α and β, 

 
 ,   ( )     ( )-(   )     ,  ( )-(   )     ,  ( )-(   ) 

 

2)  (translation): for any integer m,  

 
                  ,  (   )-(   )   e p(         )  ,  -(   ) 

 

in particular,  

 
                  (   )(     )  e p(        )   (   ) 

3)  (modulation):  

 
                     ,e p(         ) -(   )   e p(         )(   )(   ) 

 

4)  (periodicity): The Zak transform is periodic in with period one, that is,  

 
                    (   )(     )  (   )(   ) 

 

5)  (translation and modulation): By combining 2) and 3) one obtains 

 
        ,e p(         ) (   )-(   )  e p(         )e p(         )(   )(   ) 

 

6)  (conjugation):  

 

                  (   ̅)(   )  (   )̅̅ ̅̅ ̅̅ ̅(    ) 

 

7)  (symmetry): If f is even, then  

 
                    (   )(   )  (   )(     ) 

 

and if f is odd, then  

 
                    (   )(   )   (   )(     ) 

 

(2) 

(3,4) 

(5) 

(6) 

(7) 

(8) 

(9,10) 
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From 6) and 7) it follows that if f is real-valued and even, then  

 

(   )(   )  (   )̅̅ ̅̅ ̅̅ ̅(    )  (   )(     )  

 

Because of 2) and 4), the Zak transform is completely determined by its values on the unit 

square   ,   -  ,   -. 

8)  (convolution): Let  

 

                     ( )  ∫  (   )  ( )  
 

  
 

then  

 

                    (   )(   )  ∫ (   )(     ) (   )(   )
 

 
    

Analytic properties. 

If f is a continuous function such that 

 
 ( )   ((     )    ) as     for some     

 

Then     is continuous on Q. A rather peculiar property of the Zak transform is that if     is 

continuous, it must have a zero in Q. The Zak transform is a unitary transformation from 

  (ℝ) onto   ( ). 

Inversion formulas. 

The following inversion formulas for the Zak transform follow easily from the definition, 

provided that the series defining the Zak transform converges uniformly:  

 

 ( )  ∫ (   )(   )   
 

 

        

 ̃(      )  
 

√   
∫    (          ) (   )(   )   
 

 

 

 

and  

 

 (     )  
 

√   
∫    (          ) (   ̃)(   )   
 

 

 

 

where  ̃ is the Fourier transform of f, given by  

 

 ̃( )  
 

√   
∫   ( ) e p(     )   
 

  

 

Applications. 

The Gabor representation problem can be stated as follows: Given  ∈   (ℝ) and two real 

numbers, α, β, different from zero, is it possible to represent any function  ∈   (ℝ) by a 

series of the form  

 

  ∑ ∑    
 
           

 
     , 

(11) 

(12,13) 

(1) 

(1) 

(2) 

(3) 

(1) 
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where        are the Gabor functions, defined by: 

 
      ( )  e p(       )  (    ) 

 

and     are constants? And under what conditions is the representation unique? 

 
Fix a coordinate x in a line ℝ; the family of functions in ℝ 

 

   ( )    √ 
 
 e p  (   (     )             ) 

 

are called Gabor functions. Here λ = (p, θ) is a point in the phase space Φ = ℝ ⊗ℝ ′ 

 

The operators 

 

    
 

   
 
 

  
     

 

      
 

   
 
 

  
     

 

in    are adjoint one to another. They are called the annihilation and the creation 

operators. 

 

Any Gabor function is an eigenvector of the annihilation operator: 

 
           

 

where  

 
    (   ) 

 

and  

 
         

 

For any φ in the domain of the operator a we have 
 

  (  )        
 

    
 

   
   (
 

  
  
 

  
)      

More stuff 

More useful stuff is collected in the toolkit 

 

References: 

Axiomatic Quantum Theory,W. Lücke, http://arxiv.org/PS_cache/quant-

ph/pdf/9510/9510024v2.pdf  

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

http://www.scitech.nl/English/Science/Toolkit.pdf
http://arxiv.org/PS_cache/quant-ph/pdf/9510/9510024v2.pdf
http://arxiv.org/PS_cache/quant-ph/pdf/9510/9510024v2.pdf
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An overview of gravity theories: http://arxiv.org/PS_cache/arxiv/pdf/0909/0909.4672v2.pdf.  

http://arxiv.org/PS_cache/arxiv/pdf/0909/0909.4672v2.pdf

