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Abstract In Newtonian gravitational physics, as currently understood, the spin of a grav-
itating body has no effect on the nature of the gravitational field emergent from this grav-
itating body. This position has been questioned by the Azimuthally Symmetric Theory
of Gravitation (ASTG). From the ASTG-model – which is a theory resulting from the
consideration of the azimuthally symmetric solutions of the well known and well ac-
cepted Poisson-Laplace equation for gravitation, it has been argued that it is possible to
explain the unexpected perihelion shift of Solar planetary orbits. However, as it stands
in the present, the ASTG-model suffers from the apparent diabolic defect that there are
unknown parameters (λ`) in the theory that up to now have not been able to be adequately
deduced from theory. If this defect is not taken care of, it would consume the theory al-
together, bringing it to a complete standstill, to nothing but an obsolete theory. Effort in
resolving this defect has been made, but we do not feel this is convincing enough. In this
short reading, we present what we believe is a robust and more convincing argument that
leads to the resolution of this problem. If this effort proves itself correct, then the ASTG-
model is set on a sure pedal to make predictions without having to relay on observations
to deduce these unknown parameters. Other than resolving the λ-parameter problem, this
reading is designed to serve as an exposition of the ASTG-model as it currently stands.

Key words: stars: formation – stars: mass-loss – stars: winds, outflows – ISM: jets and
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1 INTRODUCTION

It is bona-fide scientific consensus that Einstein’s General Theory of Relativity (GTR), completed and
published in 1915, is today considered by the majority of researchers as the unquestionable doctrine and
standard paradigm of gravitation. Further, it is a widely held view that Einstein’s theory has so far passed
all the “crucial” experimental tests to which it has been subjected to. Strangly, this vigorously defended,
dominant and prevalent view is held in full view of the fact that the gravitational waves predicted by it
[i.e. the GTR] at its inspection, have up to now, not been positively and directly detected (see e.g. Will
2006). Furthermore, despite the impressive array of experimental success, there is an uncomfortable
side of gravitation that most of the unquestioning GTR-advocates seem to pay little attention to. There
exists puzzling gravitational anomalies in the Solar system such as the secular increase in the Earth-Sun
(Krasinsky & Brumberg 2004; Standish 2005), the Earth-Moon distance (Williams & Boggs 2009), the
Pioneer Anomaly (Anderson et al. 1998; Turyshev & Toth 2010) and the Earth Flyby Anomalies (see
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e.g. Anderson et al. 2008, and references therein). Much to the surprise of the assuming researcher, these
anomalies have forcefully surfaced, and it is prudent to say that they seem to be beyond the abilities of
Einstein’s GTR. That is, in its bare and unmodified form, Einstein’s GTR strongly appears unable to
offer an explanation to these ponderous anomalous observations. From these vexing observations, it
would appear that the time for amendments or replacement of Einstein’s GTR is something whose time
has perhaps arrived or is imminent. The just stated opinion, is nothing but our limited and narrow view
born out of the pine and need for the advancement of our knowledge horizons.

Far from the shores and provinces of astronomy, we learn that when the pre-eminent British physi-
cist Paul A. M. Dirac formulated his theory (Dirac 1928a, 1928b), a theory which predicted the existence
of antimatter, and, a theory which he called the theory of the Electron; its immediate success and crown-
ing achievement was its natural explanation of the existence of quantum spin and as-well (and more
so), the gyromagnetic ratio of the Electron ge. Despite its great success, the (then and only available)
theory of Schrödinger could not explain the existence of spin and the gyromagnetic ratio of the Electron.
Classical theory coupled with Schrödinger’s theory would only give the value ge = 1, and experiment
would give a value that is about twice this. Dirac’s theory readily explained the experimental value of the
Electron gyromagnetic ratio of ge = 2. However, while Dirac’s theory gave a value of exactly ge = 2,
the exact experimental value found is ge = 2.0011596521811±0.00000000000075 (see any good book
on Quantum Electrodynamics). What this meant is that Dirac’s theory had an anomalous gyromagnetic
ratio of 0.0011596521811± 0.00000000000075, which it could not account for. This paltry sum is very
easy to dismiss with the simple remark that it is insignificant.

Interestingly, the quantum theorist of the time was not at all happy with this seemingly paltry
anomalous gyromagnetic ratio of the Electron – they wanted it explained to “the dot” and to the “bone-
marrow”. The ingenious effort to explain this to “the dot” and to the “bone-marrow” led to great ad-
vances in quantum physics i.e., this lead to the historic construction of Quantum Electro-Dynamics
(QED), which is widely held and admired by the esoteric as the most accurate theory ever invented by
the human-mind. Perhaps, like the great quantum theorists that pioneered QED, the GTR theorists must
take a leaf and follow in the footsteps of these great pioneers and demand that the GTR must explain all
gravitational phenomenon to “the dot” and to the “bone-marrow” so that any deviation and or anomaly
must be taken very seriously, much on the same if not better level than that which led to the ingenious
formulation of QED and the great advances thereof.

This invariably means that all anomalous Solar astrometries must be taken very seriously as “em-
barrassing” holes in the beautiful fabric of the GTR. Actually, to be frank and factual, the experimental
success of the GTR is in the regime of weak gravitational fields (see e.g. Will 2006). This is the same
regime in which anomalous Solar astrometries are observed. That said; in search of furthering its uni-
versal applicability by expanding on the regime on which the GTR has been shown to be valid, the
current quest is to test it in the regime of strong gravitation (see e.g. Will 2006). In the strong gravity
regime, interesting to note is that, every test of the GTR on this level is either a potentially deadly test
that would bring its “authority” to question or further cement it, or perhaps, it is a possible probe for
new physics. This is because the predictions of the GTR are fixed; other than the controversial and deli-
cate cosmological constant, the theory contains little room for adjustable constants, so not much can be
changed.

Further, if the GTR is the correct description of Nature, it is expected to give excellent results in the
strong gravity regime because this is the regime which it is designed1 to deal with. If the GTR passes the
future tests in the strong gravity regime, then, despite the holes due to the anomalous Solar astrometries,
it would be very difficult to think of an alternative to it, therefore, it (possibly) would have to be patched
so that it successfully stands in the face of the anomalous Solar astrometries. Ironically, while we may
seek to test the GTR in this regime of strong gravitation, from the foregoing, it is not entirely correct
to say it has successfully passed the weak gravity regime unless off cause the origins of the measured

1 That is, the GTR is designed to deal with the strong gravity regime but outside the quantum gravity regime. In the quantum
gravity regime, one will need a fully fledged theory of quantum gravity. At present, there is no universally accepted quantum
theory of gravity.
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anomalous Solar astrometries (Pioneer and Flyby anomalies; the secular increase of the Earth-Sun and
Earth-Moon distance) are not gravitational in nature. It appears unlikely that these anomalous Solar
astrometries may in the end turnout not to be gravitational in nature.

Furthermore, we ask; is there a way to explain these anomalous Solar astrometries? Though more
work is under-way, we have hinted that the Azimuthally Symmetric Theory of Gravitation (ASTG)
is in-principle capable of explaining the Flyby anomalies (Nyambuya 2010d, hereafter Paper IV) and
the secular increase of the Earth-Sun and Earth-Moon distance (Nyambuya 2010a, hereafter Paper I).
The ASTG-model is nothing more than the azimuthally symmetric Poisson-Laplace theory applied to
gravitation. Given that the GTR is designed such that in the spherically symmetric case of the weak
field approximation, the theory must reduce to the well known spherically symmetric Poisson-Laplace
theory, it would appear logical to assume that the ASTG-model is a subset of the GTR. This gravitational
Law of Einstein (without the latter modification of the cosmological constant Λgµν term, where Λ is the
controversial cosmological constant and gµν is the metric tensor of spacetime) is:

Rµν − 1
2
Rgµν = κTµν , (1)

where κ = 8πG/c4 is Einstein’s constant of gravitation, G = 6.667 × 10−11 kg−1m3s−2 is Newton’s
universal constant of gravitation, c = 2.99792458 × 108 ms−1 is the speed of light in vacuum, Tµν is
the stress and energy tensor, Rµν is the Ricci tensor, R the Ricci scalar, gµν the metric of spacetime.
As afore-stated, Einstein was able to show that in the spherically symmetric case of weak gravitational
fields, his equation does reduce to the wave equation:

∇2gµν(r)− 1
c2

∂2gµν(r)
∂t2

= κTµν , (2)

(see e.g. Kenyon 1990, or any good book on the GTR). It is from this equation (2) that gravitational
waves where predicted; they [gravitational waves] are expected to propagate in empty space where
Tµν = 0. When Einstein discovered his equation, the constant κ was an unknown. In order to deduce
this constant, he demanded of his equation that it must reduce to Newtonian gravitation, the invari-
able meaning of which is that to first order approximation, this theory must agree with the Newtonian
phenomenology. For this to be so, it meant that the above equation must reduce to Poisson’s equation.
Further, this meant the 00-component which is associated with mass-energy density distribution, must
give this Poisson equation. Taking a spherically symmetric metric g00(r) = 1 + 2Φ(r)/c2 as deduced
from the Schwarzchild metric (and latter justified by gravitational redshift experiments), Einstein in-
serted this into the above equation and made his posteriori justified simplifying assumptions that led
him to ∇2Φ(r)− Φ̈(r)/c2 = κρ(r)c4/2. He [Einstein] assumed that the time variation of Φ was in the
Newtonian limit (which is the regime of low energy and spacetime curvature), so small that one would
neglect the term Φ̈ entirely. This meant that the resultant equation or theory from his reduction thesis
is given ∇2Φ(r) = κρ(r)c4/2. By comparing this with the spherically symmetric Poisson-Laplace
equation:

∇2Φ(r) = 4πGρ(r), (3)

he [Einstein] was able to deduce that κ = 8πG/c4. In (3), ρ(r) is the density of matter encased in
sphere of radius r and the operator ∇2 written for a spherical coordinate system [see figure (1) for the
coordinate set-up] is given by:

∇2 =
1
r2

∂

∂r

(
r2 ∂

∂r

)
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1
r2 sin2 θ

∂2

∂ϕ2
, (4)

where the symbols have their usual meanings. From the above presentation, it would appear as though
the ASTG-model is nothing but a subset of Einstein’s GTR in the weak field limit. We are going to argue
very soon in section (2) that this is not true, the ASTG-model is a fully-fledged theory whose results are
different from Einstein GTR for a rotating gravitating mass.
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Fig. (1) This figure shows a generic spherical coordinate system, with the radial coordinate denoted by
r, the zenith (the angle from the North Pole; the co-latitude) denoted by θ, and the azimuth (the angle in
the equatorial plane; the longitude) by ϕ.

Now to give a synopsis of this reading: after arguing in section (2) that the ASTG-model is not
a subset of the GTR, we are going to give a brief exposition of the ASTG-model in section (3). In
section (4), two tasks are conducted and these tasks comprise the main thrust of this reading i.e.: (1) we
revise to give a better estimate the λ1-parameter for the Sun obtained on Paper (I); (2) we revise the
suggested expression for λ1, that is λ1 = ζQζ0 . Thereafter in section (5), we give a general discussion
and conclusions drawn thereof (if any).

2 KERR METRIC

Like the Schwarzchild metric, the Kerr metric is an exact vacuum solution of Einstein’s field equation
(1), it is a generalization of the Schwarzschild metric in the case of a rotating massive gravitating body.
It was discovered in 1963 by the New Zealander Roy Kerr. This metric describes the geometry of
spacetime around a rotating massive body. It is often used to describe a rotating black hole. Such a
black hole has a different surface to that of the Schwarzchild black hole because there exists two closed
paraboloid surfaces where the metric exhibits the singular condition; the size and shape of these surfaces
depends on the black hole’s mass and angular momentum. This same metric can also be used to study
slow spinning massive bodies such as the Sun and the stars.

In this section, we are going to use the Kerr metric to study slow spinning massive bodies, the aim of
which is to show that this metric does not give the same results as that obtained from the ASTG-model
were one is able to infer the existence of outflows as a gravitational phenomenon that is inherently and
intrinsically tied to the spin of the star. If the just said is true, then the ASTG-model can not be a subset
of the GTR, but a fully fledged theory in its own right.

To demonstrate our assertion that the Kerr metric and the ASTG-model give different results for a
spinning gravitating star, we have to go to the Kerr metric itself. We direct the reader unfamiliar with
the Kerr metric to any good book on the GTR were a treatment of the Kerr metric is conducted. What is
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important for our purposes in this metric is the 00-component of the Kerr metric. This 00-component is
given by:

g00 = 1− 2GMstar

rc2

(
1 +

ω2
starR4

star cos2 θ

c2r2

)−1

, (5)

whereMstar is the mass of the spinning gravitating star,Rstar is its radius and ωstar is its spin angular
frequency.

For our purposes, it suffices to take on the 00-component of the Kerr metric and the reason for this is
that we shall assume the weak field case were the gravitating bodies are not nearing their Schwarzchild
limit, and, at the same time, these objects are not fast spinning objects nearing their critical spin state
were the equatorial centrifugal forces are much stronger than the gravitational force so that the star
beings to be torn apart by these centrifugal forces. In this case, the 00-component of the Kerr metric is
a good approximation of the gravitational potential around a spinning gravitating massive body. Clearly
and obviously, from this metric 00-component, the azimuthally symmetric gravitational potential is
given by:

Φ(r, θ) =
GMstar

r

(
1− ω2

starR4
star cos2 θ

c2r2

)−1

. (6)

Now, using the fact that the radial component of the gravitational force is given by Fr(r, θ) =
−dΦ(r, θ)/dr, it follows that:

Fr(r, θ) = −GMstar

r2

[
1− ω2

starR4
star cos2 θ

c2r2

](
1− ω2

starR4
star cos2 θ

c2r2

)−2

, (7)

and now, as in the case of the ASTG-model, we shall ask; when is Fr(r, θ) > 0? that is, ‘‘where in the
gravitational field of the spinning gravitating mass, is the radial component of the gravitational force
repulsive?”. The answer is simple; this will occur when the term in the square bracket in equation (7) is
negative, and this is when:

r <

(
ωstarR2

star

c

)
cos θ = αRstar cos θ where α =

ωstarRstar

c
. (8)

Because αc is a measure of the speed of the particles on the surface of the rotating star α < 1 and, be-
cause of this, what the above invariably means is that the repulsive gravitational field can never protrude
outside of the surface of the spinning star as is the case in the ASTG-model. Obviously, this means that
for a rotating star in general relativity, repulsive polar gravitational fields are not predicted as is the case
in the ASTG-model. Therefore, it follows that the ASTG-model and the GTR do give different results
for spinning gravitating masses, hence the ASTG-model can not be viewed as a subset of the GTR.

For the interested reader that may have the time to go through the reading Nyambuya (2010e)
[hereafter Paper (V)], they will realise that in this reading [Paper (V)], gravity is cast not as a metric
theory as is the case in Einstein’s GTR, but as a scaler theory i.e.:

∇2Φ− 1
c2

∂2Φ
∂t2

= 4πGρ, (9)

where Φ is the scaler gravitational potential. The metric of spacetime (gµν) in Paper (V) describes not
the gravitational field, but the electromagnetic, the weak and the strong nuclear forces. In the light of
the ideas presented in Paper (V), the ASTG-model can be viewed not as a subset of the GTR but as
a fully-fledged theory because the ASTG-model will emerge from (9) as the static solution for the the
azimuthally symmetric case. Whether or not the reader does or does not concur with the ideas presented
in Paper (V), this does not affect the ASTG-model because this model can be viewed as a pure Poisson-
Laplace theory. We should make this clear to the reader, that the ASTG-model is being developed from
the vantage point of the ideas presented in Paper (V).
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3 ASTG-MODEL IN A NUTSHELL

In the present section, we give an overview of the ASTG-model. We shall start from Newton’s Law of
universal gravitation, which can be written in a more general and condensed form as Poisson’s Law i.e.,
∇2Φ = 4πGρ. For a spherically symmetric setting where Φ = Φ(r), the solution to Poisson’s equation
outside the vacuum space (where ρ = 0) of a central gravitating body of mass Mstar is given by the
traditional inverse distance Newtonian gravitational potential which is given by:

Φ(r) = −GMstar

r
, (10)

where r is the radial distance from the center of the gravitating body. The Poisson equation for the case
(ρ = 0) is known as the Laplace equation. The Poisson equation is an extension of the Laplace equation.
Because of this, we have resorted to calling the Poisson equation as the Poisson-Laplace equation.

In the case where there is material surrounding this central mass, we must take this into account by
considering all the mass encased in the sphere of radius r i.e., M = M(r). In more general terms:

M(r) =
∫ r

0

∫ 2π

0

∫ 2π

0

r2ρ(r, θ, ϕ) sin θdθdϕdr. (11)

To take the circumstellar mass into account, we must, in (10), make the replacement:Mstar 7−→M(r).
As already argued in Paper I, if the gravitating body in question is spinning, we ought to consider an
Azimuthally Symmetric Gravitational Field (ASGF). For this ASGF, we need to take into account the
distribution of matter for the non-empty space scenario. We did solve in Paper (III) the azimuthally
symmetric setting of (3) for both cases of empty and non-empty space. We shall present these in the
subsequent subsections.

3.1 Empty Space Solutions

The Poisson-Laplace equation for empty space has been “solved” for a spinning gravitating system and
the solution to it is:

Φ(r, θ;λ`) = −
∞∑

`=0

[
λ`c

2

(
GMstar

rc2

)`+1

P`(cos θ)

]
, (12)

where λ` is an infinite set of dimensionless parameters with λ0 = 1 and the rest of the parameters λ` for
(` > 1), generally take values different from unity. Notice that unlike in Papers (I) and (II), we have not
written the gravitational potential as Φ(r, θ; λ`) but as Φ(r, θ), why? This is to express the fact that the
λ’s are not mere constants but significant and important parameters of the theory: λ = λ(Rstar, ωstar).
In the normal Poisson-Laplace theory the λ’s are pure constants, they are un-changing. In the ASTG-
model, the λ’s are not constants but dynamic variables dependent on the angular frequency and the
radius of the rotating gravitating body. This is a significant difference which sets apart the ASTG-model
from pure Poisson-Laplace theory.

Also, this fact the λ’s are in the ASTG-model dynamic variables dependent on the angular frequency
and the radius of the rotating gravitating body, set the ASTG-model apart from any other known theory
of gravitation. At the inspection of the ASTG-model, we were prudent so as to distance ourself from the
thinking that the ASTG-model is a new theory of gravitation. With the new light gained that the λ’s are
significant and very important dynamic variables, this view has changed: the ASTG-model is indeed a
new theory of gravitation and must be viewed as such.

3.2 Non-Empty Space Solutions

We have argued in Paper (III) that the Poisson-Laplace equation for non-empty space for a spinning
gravitating system is:
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Φ(r, θ;λ`) = −
∞∑

`=0

λ`c
2

(
GM(r)

rc2

)`+1

P`(cos θ). (13)

To arrive at the non-empty space solution, one simply has to replace Mstar in (12) with M(r). It is
a straight forward replacement but comes along with the constraint that the mass distribution must be
dependent on the gravitational potential by the relation:

ρ(r, θ; λ`) = − 1
4πG

[
2
r

∂

∂r
− 1

r2

]
∂Φ(r, θ)

∂θ
. (14)

From the above, clearly; it is implied that the spin of the gravitating body affects the distribution of
matter around the nascent star. In a nutshell, we have presented the ASTG-model for the empty and
non-empty space cases. In the subsequent section, we shall present the main task of this reading, namely,
the revision of the λ- parameters. This revision we hope places the ASTG-model on a sure pedestal to
become a fully fledged theory capable of making independent and testable predictions. It is important to
mention that in non-empty space case, there are two scenarios to consider and these are the case where
the spinning star co-rotates with the core in which it is embedded and the second is when the core and
the star have different rotational angular frequencies.

4 THE λ-PARAMETERS

In this section, first, we improve on the Solar value λ¯1 calculated in Paper (I) and; thereafter, we proceed
to make a revision of this parameter to give what we feel is a more satisfying proposal of this parameter
in general. That is, not only for the Solar value but any general spinning gravitating body.

4.1 An Improvement on the Solar Value λ¯1

In Papers (I), (III) and (IV), it has already been over emphasised that one of the draw backs of the
ASTG-model is that it is heavily dependent on observations for the values of λ` have to be determined
from observations. Without knowledge of the λ′`s, one is unable to produce the hard numbers required to
make any numerical quantifications. Clearly, a theory incapable of making any numerical quantifications
is, useless; to be more polite, it is of no use since true science is about measurements and not ideas that
are beyond the realm of measurement. In Paper (I), it has been proposed that:

λ` =
(

(−1)`+1

(``)! (``)

)
λ1, (15)

and using this proposal, it was found that for the Sun λ¯1 = 24.00 ± 7.00. Our first task on the λ-
parameters is to improve on this value. This value was determined by means of a not so robust mathe-
matical calculation in Paper (I). It is possible to use graphical means. Using a graph is more powerful
and give one feeling especially if one were to obtain a well behaved graph. To begin on this task, we
direct the reader to equation (47) in Paper (I), that is:

Pp = Apλ
¯
1 + Bpλ

¯
2 , (16)

where the symbols are defined there-in Paper (I). Now, from (15), it follows that λ¯2 = λ¯1 /96 and
substituting this into the above, one is led to:

Pp = λ¯1 (Ap −Bp/96) . (17)

Setting Xp = (Ap −Bp/96), implies Pp = λ¯1 Xp and since Pp and Xp are known and λ¯1 is unknown,
a plot of Pp vs Xp should produce a straight line whose slope is λ¯1 . The values Ap, Bp, Pp and Xp are
tabled in table (I) and the corresponding graph is plotted in figure (2). From the graph, we get:
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λ¯1 = 21.00± 4.00. (18)

Table (I) Column (1) gives the planet while columns (3 to 5) give values of Ap, Bp, Pp and Xp for the
corresponding planets respectively. The values of A and B are adapted from table (1) in Paper (I).

Planet A B P X

Mercury 3.50× 100 1.72× 102 43.1000± 0.5000 1.71× 100

Venus 5.19× 10−1 2.88× 101 8.0000± 5.0000 4.89× 10−1

Earth 1.57× 10−1 3.80× 10−1 5.0000± 1.0000 1.53× 10−1

Mars 7.02× 10−2 2.43× 10−2 1.3624± 0.0005 7.00× 10−2

Jupiter 3.02× 10−3 1.00× 10−5 0.0700± 0.0040 3.32× 10−3

Saturn 7.59× 10−4 1.72× 10−7 0.0140± 0.0020 7.93× 10−4

Fig. (2) A plot of the perihelion shift data points of solar planetary orbits. This graph is (in our opinion
and view) the most convincing piece of evidence yet, that the choice of the λ’s me in 2010a, may very
well be a correct one.

Obviously, by inspection of the graph in figure (2), it is clear that this value λ¯1 = 21.00 ± 4.00 is
more accurate than our earlier value λ¯1 = 24.00 ± 7.00, hence we now adopt the former i.e. λ¯1 =
21.00 ± 4.00. The fact that we are able to obtain a very good linear graph as shown in figure (2), this
points to the fact that our choice of the λ’s is a good one. More than just pointing to a good choice,
it points to the ASTG-model containing in it, a grain of truth. This exercise, to demonstrate that our
choice of the parameter λ is a good one, is one of the main aims of the present reading. We believe that
demonstrating this fact using a well behaved graph as that in figure (2) gives impetus to our choice of
the λ-parameters and the ASTG-model.
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4.2 An Improved Choice of λ1

Contrary to conventional wisdom, in Paper (III), it has been argued that the ASTG-model is able to
explain outflows as a gravitational phenomenon. Pertaining to their association with star formation ac-
tivity, it is believed that molecular outflows are a necessary part of the star formation process because
their existence may explain the apparent angular momentum imbalance. It is well known that the amount
of initial angular momentum in a typical star-forming cloud core is several orders of magnitude too
large to account for the observed angular momentum found in formed or forming stars (see e.g. Larson
2003a, 2003b). The sacrosanct Law of Conservation of angular momentum informs us that this angular
momentum can not just disappear into the oblivion of interstellar spacetime. So, the question is where
does this angular momentum go to? It is here that outflows are thought to come to the rescue as they can
act as a possible agent that carries away the excess angular momentum.

Additionally and perhaps more importantly, this angular momentum, if it where to remain as part
of the nascent star, it would, via the strong centrifugal forces (the centrifugal acceleration is given by:
ac = ω2

starRstar: ω = 2π/τ is the spin angular frequency and τ is the period of the spin), tear the star
apart. This however does not explain, why they [outflows] exist and how they come to exist but simple
posits them as a vehicle needed to explain the mystery of “The Missing Angular Momentum Problem”
in star forming systems and the existence of stars in their intact and compact form as firery balls of gas.
At the equator of the spinning star, once the gravitational acceleration gstar = GM/R2

star, becomes
less than centrifugal acceleration (i.e. gstar ≤ ac). This condition will commence once the spin of the
star:

τ =
3
2

√
R3

star

GMstar
=

√
3π

Gρstar
= τon, (19)

where ρstar is the density of the spinning star. In Paper (III), we draw from the tacit thesis “that outflows
possibly save the star from the detrimental centrifugal forces”, the suggestion that λ1 = ζ(ac/gstar)ζ0

where ζ0 and ζ where assumed to be pure constants. In this way, we moved a step closer to resolving
the λ-parameter problem.

Now, for a co-rotating star embedded in a core of radiusRcore, massMcore which a density profile
ρ(r) ∝ r−αρ where αρ : (0 ≤ αρ ≤ 3) is the density index, outflows will occur in the region described
by the cone θ : [125.3 < θ < 54.7] & [234.7 < θ < 305.3] and this cone has a cap described by:

r <

[
λ1

(
2GMcore

c2Rcore

)
Rcore

]
|cos θ| 1

2−αρ = λ1Rs
core |cos θ| 1

2−αρ , (20)

where Rs
core is the Schwarzchild radius of the core. For a star in empty space, the region of repulsive

gravitational field (for a star whose the Schwarzchild radius is Rs
star) is given described by the cone

θ : [125.3 < θ < 54.7] & [234.7 < θ < 305.3] and this cone has a cap described by:

r < λ1Rs
star cos θ. (21)

If outflows are there to save the nascent star from the wrath and ruthlessness of the centrifugal forces,
we argued in Paper (III) that, it is logical to imagine that at the moment the centrifugal forces are about
to rip the star apart, outflows will switch-on, thus shedding off this excess spin angular momentum. The
centrifugal forces have their maximum toll on the equatorial surface of the star hence if the centrifugal
forces are to rip the nascent star apart, this would start at the equator of the nascent star. The centrifugal
force on the surface of the star acting on a particle of mass m is Fc = mω2

starRstar = mac and the
gravitational force on the same particle is Fg = GMm/R2

star = mgstar. Now lets define the quotient
Q = Fc/Fg = ac/gstar. If the particle where to stay put on the surface of the star, then we will have
Fc − Fg < 0 ⇒ Q < 1; and if the particle where to fly off the surface, we will have Fc − Fg > 0 ⇒
Q > 1. The critical condition before the star begins to be torn apart is Fc − Fg = 0 ⇒ Q = 1. All the
above can be summarized as:
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Q :=





< 1 No Outflow Activity
= 1 Critical Condition
> 1 Outflow Activity

. (22)

We have dumbed the parameter Q, the Outflow Control Quotient (OCQ). The OCQ determines the
necessary conditions for outflows to switch on.

Let λon
1 be the λ1-value when the polar repulsive gravitational field switches on. SinceQ = 1 at the

time when the polar repulsive gravitational field switches on, it follows that λon
1 = ζ. Now, considering

the non-empty space case, i.e. (21), if polar repulsive gravitational field should switch-on when Q = 1,
then, at that moment of switching-on, we must have λon

1 Rs
star = ζRs

star = Rstar. From this, it follows
that:

ζ =
Rstar

Rs
star

. (23)

We see that in this case, ζ is not a constant as initially supposed in Paper (III). If ζ where a constant,
it is not difficult for one to deduce that the polar repulsive gravitational field would not switch on in
immediately when Q = 1. This means that star will have to first be torn apart until the radius of the
star reaches the appropriate size for outflows to switch on. However, if we demand that once Q = 1,
the polar repulsive gravitational field should switch-on in immediately, then we have no choice but to
accept that ζ is given as in (23). The new proposal (23) is a very important revision of the ASTG-model.

If we accept the new proposal (23), then, there remains one unknown in the parameter λ1 and this
unknown is ζ0. From all the data that we have, it follows that:

λ1 =
(

τ2
starGMstar

4π2R3
star

)−ζ0 ( Rstar

2GMstar/c2

)
=

(
τstar

τon

)−2ζ0
(Rstar

RS

)
. (24)

Now, using the values for the Sun M¯ and R¯, one finds that ζ0 = 0.92. It does not look nor feel
natural to have such a un-natural index. In close proximity to this un-natural index, the most natural
would be ζ0 = 1. If we are going to take ζ0 = 1, then, we are going to be forced to add a factor 12/5 to
λ1 in (24) so that the resultant expression gives the correct Solar value for λ1, that is:

λ1 =
12
5

(
τon

τstar

)2 (Rstar

RS

)
. (25)

In the foreseeable event that one is un-happy with the approach leading to (25), they can stick to (24)
and use the value ζ0 = 0.92. Whatever choice one make i.e. (24) with ζ0 = 0.92 or (25), one thing is
clear, the ASTG-model is set on a sure pedestal to make independent testable predictions. In the end,
the correct expression for λ1 will be decided by observations.

5 DISCUSSION AND CONCLUSION

We have given an exposition of the ASTG-model. This exposition is meant to give the reader a current
wholesome picture of the model. Second, we have revised the Solar value λ¯1 , from 24.00 ± 7.00 to
21.00± 4.00; this is a 10% improvement in the error margin. The revised value is much more accurate
as it has been obtained from a superior method compared to that used to determine the old value. The
graphical method used to determine the new value gave (in our view) a well behaved linear graph which
strongly suggest a correlation, the invariable implication of which is that, the ASTG-model strongly
appears to contains in it, an element of truth; otherwise the question naturally arises, how does it come
about that such a reasonable linear fit arises?

Other than revising the Solar value λ¯1 , we have revised the general expression for the λ1-parameter.
Previously, we proposed that λ1 be equal to ζQζ0 (see Paper III) where ζ was assumed to be a fixed
constant, but now we have ζ as a variable; to be specific ζ = Rstar/Rs. This revised expression of the
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λ1-parameter is well designed such that when the centrifugal forces begin their toll at the equator of the
spinning gravitating body, the polar repulsive gravitational force switches on, in which process it sheds
off the excess spin angular momentum. In this previous case where ζ was fixed, the polar repulsive
gravitational force would not switch on immediately when the star begins to be torn apart at the equator.
In this case, the polar repulsive gravitational force would switch on when Rstar = ζRs, that is, the
radius of the star would have to be re-adjust and comply with this relation before the polar repulsive
gravitational field is switched on.

Surely, from the standpoint that the repulsive polar gravitational field solemnly exists so as to shed
off the excess spin angular momentum, it would not sound correct that the star switches on the repulsive
polar gravitational field much latter when the centrifugal forces have already started their crusade to rip
apart the star. We believe the improvement made in the present version, does, logically sound good and
reasonable. On the deeper side of things, what this all means is that, the long held supposition that:

Outflows possibly exist as a vehicle or a means by which accreting stars shed off excess an-
gular momentum so as to save themselves from the detriment, wrath and ruthlessness of the
centrifugal forces2 . . . (see e.g. Larson 2003b);

may very well be correct. To verify this, we will need to study outflows under the proposed ASTG-model
of outflows and see if we get reasonable agreement with observations.

Given that the spherically symmetric Poisson-Laplace equation emerges out of Einstein’s GTR in
the weak field approximation may lead one to think that the ASTG-model is a subset of Einstein’s GTR.
We have argued that this is not the case. We have argued that the ASGT-model must be viewed a fully-
fledge theory on its own right. Yes, in the spherically symmetric case, it shares a common ground with
Einsteain’s GTR but this common ground diverges when we consider the azimuthally symmetric case.
We have argued that Einstein’s GTR give different result to those predicted by the ASTG-model. This
is interesting in that this can be used as testing grounds of Einstein’s GTR and the ASTG-model. For
the interested reader, we have pointed out that our approach to the Poisson-Laplace theory is guided
by the Unified Field Theory proposed in Paper (V). Importantly, the ASTG-model as it stands does not
depend on the correctness of the theory proposed in Paper (V). In this theory, gravitation is no longer a
metric theory but a scaler theory and the electromagnetic, weak and the strong nuclear force emerge in
the metric description of spacetime.

In-closing, allow us to say that, we believe that the ASTG-model is now set on a sure and interesting
pedestal to make testable predictions without the need to resort to observations in-order to deduce the
(dynamic) λ-parameters. The chronic and diabolic problem of the λ-parameters appears to have been
resolved (at least for now). We are now going to focus our energy on finding grounds to test this theory
further and as-well compare and contrast the theory with Einstein’s GTR.
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