
Indeterminacy in arithmetic, well-known to

logicians but missing from quantum theory

Steve Faulkner

159a, Weedon Road, Northampton, United Kingdom, NN5 5DA.

E-mail: StevieFaulkner@googlemail.com

Abstract. This article is one of a series explaining the nature of mathematical

undecidability discovered within quantum theory. Crucially, a formula's

undecidability certi�es its indeterminacy and vice versa. This paper describes the

algebraic environment in which the undecidability and indeterminacy originate,

provides proof of their existence, and demonstrates the role these play in a 3-valued

logic which is free to permeate mathematical physics via this algebra.

The radical ideas applied in this research are taken from well-known results

in mathematical logic. All scalars engage in the arithmetic of scalars by way of

a single algebra. But in terms of validity, these scalars partition into sets which

are logically distinct: those with valid existence with respect to this algebra, and

those with indeterminate existence. Failure of mathematical physics to notice this

distinction is the reason why quantum theory is logically at odds with quantum

experiments.

AMS classi�cation scheme numbers: 81, 03

Note on language. The material here spans both mathematical logic and

mathematical physics. These do not share the same language; indeed the language

of the former is far smaller. For example, there is no de�nition for the symbol: 4

and so the proper execution of the logic in physics needs all manner of statements

typi�ed by: 4 = 1+1+1+1 up to those such as: expx = 1+x+· · · . In the interest
of accessibility, these are omitted and left to the reader's intuitive understanding.

1. Introduction

Inherent within quantum measurement experiments is a decision process which

current theory fails to express and does not explain. The act of measurement decides

on one resulting value from a spectrum of possibilities. Identical such experiments

are characterised by a dependable pattern of statistics for these decisions, not

deriving from experimental variation or error. In spite of this de�nite spectral

distribution, evidence indicates that prior to any individual measurement, no de�nite

information exists that elects the particular resulting value. Moreover, there is no

involvement of any physical in�uence of which we are in ignorance, encoded in any so

called `hidden variables'. [3][1, 2, 22, 23, 24]. In short, Nature executes the decision

but the mechanism is not one of physical in�uence.
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Looking for alternative explanations, we might be persuaded toward a theory

rooted in some non-classical logic. Indeed the prospect of such a theory has

motivated an extensive history of study scrutinising quantum mathematics for

clues. Even so, the absence of any reference in the physics literature indicates

that this scrutiny has not extended as far as the non-classical logic inherent

within arithmetic beneath quantum theory, upon which the theory rests. Yet most

curiously, mathematical logicians are acquainted with elements of this logic, to the

extent that they regard them as obvious and self-evident.

The discrepancy between quantum experiments and quantum theory is

traceable to a logical detail of arithmetic, generally overlooked, ignored and not

encoded in mathematical physics. The arithmetic in question is that of numbers

called scalars‡. And the logic in question concerns existence of scalars: existence

a�orded (or conferred) by an axiom-set [see Table 1] prescribing this arithmetic.

These axioms are not a contrivance for the purpose of satisfying quantum theory;

they are natural rules of algebra for our everyday arithmetic. They a�ord (or confer)

existence of scalars via a mechanism of some complexity and due to this, di�erent

scalars occur in distinct modes of existence, possessing distinct logical qualities.

These modes are: possible (a�orded) existence and necessary (conferred) existence.

They are illustrated in the following.

The axiom-set in Table 1 consists of the Field Axioms appended with certain

further axioms. I call this axiom-set the In�nite-�eld Axioms . They prescribe

the usual arithmetic with which we are familiar. The appending axioms merely

exclude all modulo addition which the Field Axioms themselves permit, allowing

only in�nite arithmetic. Mathematical objects satisfying the In�nite-�eld Axioms

are scalars whose existence is consistent with them. These scalars are the numbers

in mathematical physics we typically add and multiply, and use as entries in arrays

such as vectors or matrices. In this context of consistency with the In�nite-�eld

Axioms, or otherwise, consider the following four mathematical statements written

as formulae in �rst-order logic. Each is a proposition asserting the existence of some

instance of α, equal to a speci�ed numerical value:

∃α (α× α = 4) ; (1)

∃α (α× α = 2) ; (2)

∃α (α× α = −1) ; (3)

∃α
(
α−1 = 0

)
. (4)

Of these propositions, the In�nite-�eld Axioms disprove only (4) because it is the

only one with which these Axioms are inconsistent; in point of fact, (4) is negated

by axiom FM2. Other than this, the In�nite-�eld Axioms prove only (1). In

consequence, (2) and (3) are neither proved nor negated, and both, as well as their

‡ In physics, a scalar is a mathematical object representing a physical quantity (such as mass)

that is an invariant constant for all inertial frames of reference. More formally, these are zero rank

tensors. But in the arithmetical context of this article, the term scalar is taken from linear algebra

where scalars are mathematical objects whose rules of algebra are the Field Axioms.
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negations, are consistent with the In�nite-�eld Axioms. Proof of these claims is

given in Section 5.

In accordance, we reject the instance of α in (4) as a necessarily non-existent

scalar. We accept α in (1) as a scalar proved to necessarily exist. And we accept α

in (2) and (3) as instances of scalars whose existences are possible, in the sense that

they can neither be con�rmed nor denied. Both (2) and (3) are propositions known

as logically independent [11, 17, 20] of the In�nite-�eld Axioms. This independence

is virtually synonymous with mathematical undecidability and logical indeterminacy.

In summary, (1) furnishes a scalar that necessarily exists because the In�nite-

�eld Axioms prove it, while (2) and (3) furnish scalars whose existences are

possible because they satisfy the In�nite-�eld Axioms. Therefore, there are two

distinct modes of existence for scalars; yet strikingly, notwithstanding their logical

distinction, the square roots of 4, 2 and −1 are all scalars that engage in the

arithmetic without distinction.

This existential modality derives from two remarkably intuitive theorems of

model theory , a branch of mathematical logic. These are the theorems of Soundness

and Completeness. I show in this paper, good reason to believe that the logical

behaviour of quantum mechanics lies profoundly in these theorems. This claim is

corroborated by the separate evidence of the illustrious work of Hans Reichenbach,

who very successfully resolved the anomalies of quantum mechanics by inventing

The Infinite-field Axioms

Additive Group

FA0 ∀α∀β∃γ (γ = α+ β) Closure

FA1 ∃0∀α (0 + α = α) Identity 0

FA2 ∀α∃β (α+ β = 0) Inverses

FA3 ∀α∀β∀γ ((α+ β) + γ = α+ (β + γ)) Associativity

FA4 ∀α∀β (α+ β = β + α) Commutativity

Multiplicative Group

FM0 ∀α∀β∃γ (γ = α× β) Closure

FM1 ∃1∀α (1× α = α× 1 = α ∧ 0 6= 1) Identity 1

FM2 ∀α∃β (α× β = 1 ∧ α 6= 0) Inverses

FM3 ∀α∀β∀γ ((α× β)× γ = α× (β × γ)) Associativity

FM4 ∀α∀β (α× β = β × α) Commutativity

FAM ∀α∀β∀γ (α× (β + γ) = (α× β) + (α× γ)) Distributivity

Exclusion of all modulo addition

1 + 1 6= 0 ; 1 + 1 + 1 6= 0 ; . . . . . . 1 + · · ·+ 1 6= 0

Table 1. The the In�nite-�eld Axioms written as sentences in �rst-order logic.

These are an appended version of the Field Axioms which excludes modulo

addition. Variables: α, β, γ, 0, 1 represent mathematical objects complying with

this axiom-set. The semantic interpretations of these objects are known as scalars.
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a 3-valued quantum logic [19], with which the logic presented in this article,

hidden within arithmetic, happily coincides, isomorphically. And so consequently,

arithmetic provides the foundation for Reichenbach's logic, which up to this point

has been missing, and substantiates his work.

So what new approach toward mathematical physics is needed in order that

quantum theory should manifest this logic? The answer lies in the assumptions made

when the concept of scalars is originally adopted into the theory. Conventionally,

mathematical physics assumes the a priori existence of scalars. In this new

approach, apriority is transferred from the scalars to the the In�nite-�eld Axioms

themselves. The crucial point is: the new theory is set up by formally installing the

set of rules rather than installing objects obeying those rules . This singular initiative

strategically separates this theory from convention. It promotes mathematical

physics from a semantic theory to a logical theory where validity has greater

complexity which encompasses indeterminacy.

In order to grasp the practicalities of recognising scalars whose existences satisfy

the In�nite-�eld Axioms and di�erentiating these from scalars whose existences are

proved by these same Axioms, while understanding how these occupy formulae; and

furthermore, in order to accept that Soundness and Completeness are profoundly

fundamental to quantum physics, it is necessary to provide the reader with a

background and minimal working knowledge of model theory.

2. Background

Model theory proves that independent propositions are mathematically undecidable

and logically indeterminate. These are complementary features seen in a logical

condition present in certain axiomatised mathematical theories [6, 7, 17]. In such

theories, indeterminacy describes the state of validity of propositions that are neither

valid nor invalid. Undecidability refers to the provability of these indeterminate

propositions, being neither provable nor disprovable.

In 1931 Kurt Gödel published his First Incompleteness Theorem. This proves

that mathematical undecidability necessarily exists in arithmetic [6, 8, 9, 21]. This

is not the kind of undecidability forced upon us through ignorance of information;

the distinction is that information necessary for decision does not exist. Chaitin

takes this informational approach to Gödel's Theorem. He argues: `if a theorem

[proposition] contains more information than a given set of axioms, then it is

impossible for the theorem [proposition] to be derived from the axioms' [8]. Svozil

uses Turing's proof of Gödel's Theorem to argue that undecidability exists in Physics

[21].

In 1944, Hans Reichenbach proposed a quantum logic consisting of values: true,

false and indeterminate. This was in response to `causal anomalies' evident in the

results of quantum experiments. His logic is an adaptation of the 3-valued logic of

Jan �ukasiewicz [10, 15], which Reichenbach gives certain truth tables, conjunctions,

disjunctions, tautology etc,. During its formation, Reichenbach arrived at the

particular qualities of his indeterminate middle through detailed, reasoned analysis

of results of quantum experiments.
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He found that his 3-valued logic `suppresses' the causal anomalies [10, 18, 19].

It furnishes a consistent epistemology for prepared and measured states: typically

the question of what we may know about the state of a photon immediately before

measurement. It derives complimentary propositions: if statement A is either true

or false, statement B is indeterminate, and vice versa. Such statements correspond

to measurements of complimentary pairs such as momentum and position. And his

logic also overcomes the problem of action at a distance, a paradox identi�ed by

Einstein, Podolsky & Rosen [14].

Though his results are compelling, Reichenbach's logic is hypothetically based

and is not in simple agreement with mainstream quantum logics based on the

quantum postulates, originating with Birkho� and von Neumann [4]. Acceptance

of these would tend to imply the unacceptability of Reichenbach's logic. That said,

Hardegree argues that these logics are not in opposition but describe di�erent things

[13]. While the mainstream logics are based on Hilbert space quantum theory,

Reichenbach's logic is a framework for an alternative but yet unknown formulation.

This article provides mathematical base for this alternative formulation.

3. Algebraic and logical environment

Model theory is a branch of mathematical logic that evaluates validity of propositions

by considering associated mathematical structures. In the context of the Field

Axioms these associated structures are �elds (not to be confused with �elds in

quantum �eld theory). Some �elds are of �nite dimension containing a �nite

number of elements. Examples are the sets {0, 1}, {0, 1, 2}, {0, 1, 2, 3, 4}, all of
prime dimension. These satisfy a modulo arithmetic interpretation of the operators

+ and ×. In contrast, the normal, non-modulo interpretation of + and × excludes

the �nite �elds.

The appended Field Axioms in Table 1 are an adaptation which restricts �elds

to those which are in�nite. I call this appended version the In�nite-Field Axioms.

The three familiar in�nite �elds are: the complex plane C, the real line R and

the smallest in�nite �eld, the rational �eld Q. Each is a closed structure; but

jointly they form a �eld-sub�eld hierarchical nesting where the most deeply nested

(smallest) in�nite-�eld is special because it is a sub�eld of every in�nite �eld. This

fact has critical in�uence on which propositions are valid and provable, and which

are indeterminate and undecidable.

The radical observation of this paper came while noticing the distinction

between necessary existence, entailing derivation from the In�nite-Field Axioms,

and possible existence that entails satisfying these Axioms. This distinction spurns

two related logics. One is notionally causal where necessary and possible, together

with necessarily-not constitute a modal logic [10]. The other is notionally existential,

consisting of logically valid, logically invalid and logically indeterminate; identi�able

with Reichenbach. The environment in which this second logic emerges from the

In�nite-�eld Axioms is now discussed.

From the perspective of applied mathematics, the In�nite-�eld Axioms are

seen as a selection of combination rules for addition and multiplication, to be
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applied ad hoc, in our most familiar arithmetic. These rules of combination are

regarded as properties belonging to scalars and so signi�cance, meaning and `reality'

is placed on scalars, with Axioms taking an incidental, appended or background

role. In this applied mathematical scenario, scalars are the semantic interpretations

of the objects: α, β, γ, 0, 1, . . . in Table 1. Such interpretation arises when the

mathematician designates α, β, γ, 0, 1, . . . to the real line or complex plane, whichever

suits the application. This interpretational approach deals in semantic information.

And the act of such designation irreversibly discards logical information imparted

by the In�nite-�eld Axioms.

In contrast to emphasis on the existence of scalars, conventional in applied

mathematics, �rst-order theory places precedence on axioms. The �rst-order theory

under the In�nite-�eld Axioms, I call the Theory of In�nite-�elds (not to be confused

with any connotation in quantum �eld theory). This poses a quite di�erent scenario

in which the In�nite-�eld Axioms de�ne and generate the objects α, β, γ, 0, 1, . . .

along with their arithmetical behaviour.

First-order theory is a stricter and stronger system of derivation than applied

mathematics. It takes full account of all logical information imparted by

axioms, including information that is indeterminate. That said, no indeterminate

information, independent of axioms, can be proved to exist, from the axioms

themselves. Proof that (1) is a theorem may indeed be established by direct

derivation from the In�nite-�eld Axioms. But direct proof that (2) and (3) are,

or are not theorems is impossible because no information in these Axioms proves or

negates them.

Model theory deals in structures and furnishes an environment where the

indeterminate information is decidedly identi�able. In order to con�rm the existence

of any indeterminate information, theorems of model theory are applied generally

to the in�nite �elds. Information underpinning the indeterminacy is held in these

Figure 1. Validity under the In�nite-�eld Axioms. Due to theorems of Model

Theory, sentences (small circles) such as ∃α (αα = 4), whose semantic validities

agree are logically valid and are theorems. Sentences such as ∃α (αα = −1 ), whose

semantic validities disagree are logically indeterminate and are mathematically

undecidable. These exhaust all possibilities.
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structures, not in the axioms. Every in�nite �eld is a mathematical structure

satisfying the In�nite-�eld Axioms. But despite the simplicity of this relationship

between �elds and their axioms, the logical relationship between these is not so

simple but involves a certain complexity. This is illustrated in the fact that the

smallest, innermost nested, in�nite �eld is the only one that necessarily exists while

others possibly exist.

Model Theory demands that any given proposition derives by proof from the

In�nite-�eld Axioms, if and only if, it is true in every in�nite �eld. All indeterminate

propositions, which are therefore independent of the In�nite-�eld Axioms, always

have mixed true/ false values, with disagreement somewhere between the individual

in�nite �elds. For existential propositions such as (1), (2), or (3), the condition of

entire agreement on a value of true, is satis�ed only for scalars in the innermost

nested �eld: the rational �eld. Therefore, only (1) is a theorem because it is the

only case where α is rational. Figure 1 gives a preview of how the nesting of �elds

brings this about. A consequence is that In�nite-�eld Axioms prove the existence

of all rational scalars; existence of other scalars is undecidable. These are surprising

facts considering nothing in the arithmetic distinguishes the rational scalars.

All non-rational scalars are logically independent of the In�nite-�eld Axioms.

That is to say: scalars of the non-rational in�nite-�elds express extraneous

information, absent in these Axioms. The rational scalars, whose existence can

be proved, contain no such extraneous information; they contain only information

already in the In�nite-�eld Axioms. In short, the In�nite-�eld Axioms are unable

to prove or disprove the existence of logically independent scalars.

4. Notes and Concepts

True is a semantical reference, synonymous with semantically valid. A

proposition modelled by a given mathematical structure is true when interpreted

in that structure.

Valid is a logical reference. It is more fully referred to as logically valid.

A proposition is logically valid if: purely symbolically, independent of

interpretation, by following rules of inference, Axioms imply the proposition.

Connectives: ∧ ∨ ¬ ⇒ ⇔ (conjunction, disjunction, negation, implication, bi-

implication)

Quanti�ers: ∀ ∃ (for all, there exists)

Turnstile symbols: ` |= (derives, models)

First-order theories comprise formulae written as propositions in �rst-order t is

not reference to approximation. Any �rst-order theory is speci�ed in a set of

axiom sentences, drawn up for the purpose. A crucial feature that distinguishes

�rst-order theories from applied mathematics is their strict accounting of

logical information. Variables satisfy all axiom sentences but are attributed

with nothing more. They are purely abstract and meaningless. If this is

misunderstood, the integrity of any derivation is at risk. In particular, the

mathematician may not introduce new information, logically independent of
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Axioms, without recording the fact in an account of assumed dependencies.

She may not, for example, assign a variable to the real line, simply by saying

so, as is done in applied mathematics. E�ectively, a �rst-order theory is a

computational machine that runs according to a programme of axiom sentences.

Output from this machine exhibits richer conceptualisations of theorem and

validity than does applied mathematics. In absence of any logically independent

input, output of the machine consists solely of theorems. In cases when there

is logically independent input, output relying on that independency is always

undecidable and indeterminate.

Bound variable: when we write the equation:

α+ β = β + α , (5)

this is an informal use of bound variables. Notice this relation speci�es

something about the algebraic behaviour of the objects α and β rather than

suggesting the performance of some arithmetic. Bound variables occur where

there is speci�cation. When writing the formal version of (5), quanti�ers ∀ are

shown. These explicitly state the logic but also do the job of highlighting the

fact that speci�cation is intended rather than arithmetic. Thus:

∀α∀β (α+ β = β + α) . (6)

The format of parenthesisation is typical of formulae in �rst-order logic.

Quanti�ers ∀α and ∀β apply to every occurrence of α and β within the brackets.

Sentence: formulae such as (6), where every variable is bound, are known as

sentences. (6) happens to be the sentence adopted as axiom FA4 in Table

1. An example of a formula which is not a sentence is the formula:

∀β∃α (α = β + ϑ) . (7)

In this ϑ is not bound.

Free variable: In (7), ϑ is a free variable as opposed to a bound variable. It is free

to be substituted by a particular value; thus inviting the performance of some

arithmetic rather than speci�cation.

The Field Axioms comprise a set of axiom sentences formed by the union of

axioms for the Additive Group and the Multiplicative Group. In addition

to these, there is one axiom for distributivity. In these Axioms, di�erent

possibilities of interpretation exist for the symbols + and ×. For example,

modulo arithmetics are options, but these are not under consideration here.

In this paper, + and × are interpreted in the usual way, as symbols of an

unbounded (in�nite) arithmetic.

Model: This is a mathematical structure that satis�es a sentence. It is usual to

say that such a structure models the sentence. As an illustration, consider the

axiom sentence FA4 from Table 1, specifying additive commutativity. This is

modelled by any of the sets: N, Z, Q, R, C, {1}, {1,−1}, {1, 2, 3}, {all 4 × 3

matrices}, etc.. As well as individual sentences, sets of sentences also have

models. To illustrate, take two sentences. As before, take axiom FA4 from

Table 1, but now model axiom FM4 also. Together these two sentences specify
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both additive and multiplicative commutativity. The addition of this second

sentence eliminates the former inclusion of 4×3 matrices from the set of models.

Semantic interpretation: Bound variables, such as the objects α, β, γ, 0, 1, . . .

complying with Axioms in Table 1, convey no more meaning than the properties

bestowed upon them by those Axioms. That said, they may be interpreted as

elements of a particular model of the Axioms. For instance, these objects

might be interpreted as members of the real line R. This would be a semantic

interpretation of α, β, γ, 0, 1, . . ., and would involve an injection of information

originating not from the Axioms but from elsewhere.

In�nite-�eld: This is the general name for mathematical structures that model

the In�nite-�eld Axioms. There are at least three in�nite-�elds. These are the

complex plane C, the real line R and the rational �eld Q. The term �eld is

likely to cause confusion. In quantum �eld theory, �elds are entities associated

with the mechanics of elementary particles. This meaning is not intended here.

In this paper, de�nition is taken from Linear Algebra.

Scalar: An element of a �eld. Semantic interpretation of the objects α, β, γ, 0, 1, . . .

in Table 1 are scalars : either complex scalars, real scalars or rational scalars,

depending on the �eld elected. The term scalar is likely to cause confusion.

In relativity, a scalar is a zero rank tensor: under change of inertial reference

frame, an object that transforms as a constant number. In this paper, de�nition

is taken from Linear Algebra.

5. Model Theory

Our speci�c interest in Model Theory is the Soundness Theorem and its converse,

the Completeness Theorem. These are two standard theorems in model theory

which apply to all �rst-order theories [6, 7]. We shall see that jointly, they isolate an

excluded middle of mathematically undecidable sentences, from the set of all other

sentences which are theorems.

5.1. Standard theorems

The Soundness Theorem:

Σ ` S ⇒ ∀MΣ
(
MΣ |= S

)
. (8)

If structure MΣ models axiom-set Σ, and Σ derives sentence S, then every

structure MΣmodels S.
Alternatively: If a sentence is a theorem, provable under an axiom-set, then

that sentence is true for every model of that axiom-set.

The Completeness Theorem:

Σ ` S ⇐ ∀MΣ
(
MΣ |= S

)
. (9)

If structure MΣ models axiom-set Σ, and every structure MΣ models sentence

S, then Σ derives sentence S.
Alternatively: If a sentence is true for every model of an axiom-set, then that

sentence is a theorem, provable under that axiom-set.
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5.2. Proofs

We now proceed to prove further theorems of model theory. Jointly, (8) and (9)

result in the 2-way implication:

Validity Theorem:

Σ ` S ⇔ ∀MΣ
(
MΣ |= S

)
. (10)

If structure MΣ models axiom-set Σ, then axiom-set Σ derives sentence S , if

and only if, all structures MΣ model sentence S.
Alternatively: A sentence is provable under an axiom-set, if and only if, that

sentence is true for all models of that axiom-set.

Furthermore, for every sentence S there is a sentence ¬S; hence, jointly, (8) and
(9) also guarantee a second 2-way implication:

Invalidity Theorem:

Σ ` ¬S ⇔ ∀MΣ
(
MΣ |= ¬S

)
. (11)

If structure MΣ models axiom-set Σ, then axiom-set Σ derives the negation of

sentence S, if and only if, all structures MΣ model the negation of S.
Alternatively: A sentence is disprovable under an axiom-set, if and only if, that

sentence is false for all models of that axiom-set.

Each of (10) and (11) excludes the sentences of the other. And moreover, together

they isolate sentences excluded by both. In the left hand sides of (10) and (11), there

is no indication of other sentences existing which satisfy neither, that is: sentences

that are neither provable nor disprovable. And so, it is of particular interest that

the right hand sides of (10) and (11) do indeed imply the existence of sentences that

correspond precisely to this condition. These are the sentences excluded by the right

hand sides of (10) and (11) and so satisfy the following condition on modelling:

¬∀MΣ
(
MΣ |= S

)
∧ ¬∀MΣ

(
MΣ |= ¬S

)
. (12)

The aim now is to �nd the status of provability for sentences excluded by (12). We

�rstly deduce (13) and (14), the negations of (10) and (11):

¬ (Σ ` S) ⇔ ¬∀MΣ
(
MΣ |= S

)
; (13)

¬ (Σ ` ¬S) ⇔ ¬∀MΣ
(
MΣ |= ¬S

)
; (14)

and combine these, so as to construct:

¬ (Σ ` S) ∧ ¬ (Σ ` ¬S) ⇔ ¬∀MΣ
(
MΣ |= S

)
∧ ¬∀MΣ

(
MΣ |= ¬S

)
. (15)

This limits sentences that are neither provable nor negatable, to those that are

neither true nor false across all structures that model the Axioms. For theories

whose axioms are modelled by more than one single structure, where MΣ
1 and MΣ

2

are distinct, we can assert (16):

Indeterminacy Theorem:

¬ (Σ ` S) ∧ ¬ (Σ ` ¬S) ⇔ ∃MΣ
1

(
MΣ

1 |= S
)
∧ ∃MΣ

2

(
MΣ

2 |= ¬S
)
. (16)
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Axiom-set Σ derives neither sentence S nor its negation, if and only if, there

exist structures MΣ
1 and MΣ

2 which each model axiom-set Σ, such that MΣ
1

models S, and MΣ
2 models the negation of S.

Alternatively: A sentence is true for some but not all models of an axiom-set,

if and only if, that sentence is undecidable under that axiom-set.

6. Application

The above theorems apply to �rst-order theories generally; and the Theory of

In�nite-�elds is a �rst-order theory. We may therefore adapt those theorems to

the speci�c context of the Theory of In�nite-�elds and construct practical tests

that establish whether any given �rst-order sentence is indeterminate, or is valid,

with respect to this Theory. All that is necessary for this is the appointment of the

in�nite-�elds to the models mentioned in the theorems. The following test procedure

results.

Indeterminacy Test: For any given sentence: interpret its variables as scalars of

the complex plane C, the real line R, the rational �eld Q, in turn. Then, the

In�nite-�eld Axioms neither prove nor disprove this sentence, if and only if, it

is true in at least one in�nite-�eld and false in at least one in�nite-�eld. This

reduces to a simple check for disagreement within truth-tables.

This particular test con�rms certain indeterminate sentences in the Theory of

In�nite-�elds. But note that it is not exhaustively comprehensive because it samples

only three in�nite-�elds and may not �nd every indeterminacy. An analogous

adaptation of the Validity Theorem, nevertheless, yields a validity test that is a

totally impractical prospect since using it would require building a truth table that

samples every in�nite-�eld, no matter how obscure.

For a realistic test of validity we resort to direct derivation from the In�nite-

�eld Axioms and embrace the model theory that characterises this. When a formula

asserts the existence of some particular number, and is provable directly from the

In�nite-�eld Axioms, that number will be rational. This follows because the span

of all numbers deriving from the In�nite-�eld Axioms, is restricted to arithmetical

combinations of the numbers 0 and 1, originating in sentences FA1 and FM1 of

Table 1. Therefore, numbers are limited in form to p/q, where p and q are integers.

Crucially, the set of numbers whose existences are provable from the In�nite-

�eld Axioms is identical with the set of all rational numbers. Hence, every formula

asserting existence of a rational number, is provable. And so consequently, by the

Soundness Theorem, every such formula is true in every in�nite-�eld. In summary,

any provable formulae is true independent of interpretation, and is thereby valid, by

de�nition. In short:

Validity Test: Any existential proposition is valid, if and only if, it is true in the

rational �eld Q.
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6.1. Examples

α ∈ C α ∈ R α ∈ Q

∃α (α× α = 4) T T T

α ∈ C α ∈ R α ∈ Q

∃α (α× α = 2) T T F

α ∈ C α ∈ R α ∈ Q

∃α (α× α = −1) T F F

α ∈ C α ∈ R α ∈ Q

∃α (α−1 = 0) F F F

Table 2. Truth-tables for propositions: ∃α (α× α = 4), ∃α (α× α = 2),

∃α (α× α = −1) and ∃α
(
α−1 = 0

)
. In these T and F denote true and false.

Existence of scalars Formulae (1), (2), (3) and (4) on page 2, each proposes the

existence of a particular scalar. In the context of the Theory of In�nite-�elds, each

of these propositions poses the question: do the In�nite-�eld Axioms derive this

formula? These questions are answered in the four truth-tables of Table 2. In the

�rst, proposition (1) is seen to be true in the rational �eld, so by the Validity Test,

(1) is a theorem. The second two truth-tables show disagreeing truth values; hence,

by the Indeterminacy Test, (2) and (3) are undecidable. In the last of these truth

tables, proposition (4) is seen to be false in the rational �eld and so its negation is

true in the rational �eld, and by the Validity Test, its negation is a theorem.

α ∈ C α ∈ R α ∈ Q

∃α
(
α = ξQ

)
T T T

α ∈ C α ∈ R α ∈ Q

∃α
(
α = ζR

)
T T F

α ∈ C α ∈ R α ∈ Q

∃α
(
α = ηC

)
T F F

Table 3. Truth-tables for propositions ∃α
(
α = ξQ

)
, ∃α

(
α = ζR

)
and

∃α
(
α = ηC

)
.
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x, y ∈ C x, y ∈ R x, y ∈ Q

∀x∃y (y = x2) T T T

x, y ∈ C x, y ∈ R x, y ∈ Q

∀x∃y (y = x2) T F F

Table 4. Truth-tables concerning the function y = x2
.

Existence of rational scalars The rational �eld is a sub�eld of all in�nite-�elds.

Consequently, propositions of existence that are true in this, innermost nested,

smallest in�nite-�eld are necessarily true in all in�nite-�elds. See Figure 1. This

means that rational scalars exist by theorem. Table 3 illustrates the provability of

the general rational scalar ξQ, the undecidability of the general real scalar ζR and

the undecidability of the general complex scalar ηC.

Existence of functions A function in applied mathematics can spurn di�erent �rst-

order propositions; some of which might be theorems and some which might

be undecidable. Propositions: ∀x∃y (y = x2) and ∀y∃x (y = x2) have quanti�ers

reversed. This makes an important logical di�erence. Table 4 shows the �rst of

these two propositions is a theorem, yet the second is undecidable.

Existence of �nite polynomials versus transcendental functions Table 5 compares

formulae proposing the existence of a �nite polynomial with an example of

transcendental function: the exponential. The �rst truth-table in Table 5 is for

the proposition: ∀x∃y (y = p (x)). In this, p is a �nite polynomial, so if x is rational

then so also is any �nite sum of terms p (x). Corresponding reasoning applies to

real or complex x. In contrast, in the proposition ∀x∃y (y = exp (x)) where

exp (x) ≡ lim
n→∞

[
1 + x+

x2

2
+ · · ·+ xn

n!

]
,

rational x is not necessarily mapped to a rational point by the exponential function.

Hence, p (x) exists by theorem but exp (x) exists undecidably.

x, y ∈ C x, y ∈ R x, y ∈ Q

∀x∃y (y = p (x)) T T T

x, y ∈ C x, y ∈ R x, y ∈ Q

∀x∃y (y = exp (x)) T T F

Table 5. Truth-table for �nite polynomial: ∀x∃y (y = p (x)) and the

transcendental function: ∀x∃y (y = exp (x)).
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6.2. Theorems from undecidability

Arithmetical combination Scalars that exist undecidably can be combined to yield

scalars that exist by theorem. Consider the two propositions: ∃α (α = 3 + 4i) and

∃α∗ (α∗ = 3− 4i). These are undecidable, but the product of these scalars is the

rational scalar: 25, which is logically valid and so exists by theorem. See Table 6.

α ∈ C α ∈ R α ∈ Q

∃α (α = 3 + 4i) T F F

α∗ ∈ C α∗ ∈ R α∗ ∈ Q

∃α∗ (α∗ = 3− 4i) T F F

β ∈ C β ∈ R β ∈ Q

∃β (β = αα∗) T T T

Table 6. Truth-tables for the proposition ∃α (α = 3 + 4i), ∃α∗ (α∗ = 3− 4i) and

∃β (β = αα∗).

Limiting Theorems The limit of an undecidable scalar can exist by theorem. The

proposition ∃y (y2 = −x2) is undecidable. Nevertheless, it has a limiting case:

∃y (limx→0 [y
2 = −x2]) which is a theorem. See Table 7.

y ∈ C y ∈ R y ∈ Q

∃y (y2 = −x2) T F F

y ∈ C y ∈ R y ∈ Q

∃y (limx→0 [y
2 = −x2]) T T T

Table 7. Truth-table for proposition ∃y
(
y2 = −x2

)
and its limiting case:

∃y
(
limx→0

[
y2 = −x2

])
.

Conclusion

The arithmetic of scalars embodies a well-known non-classical logic. This paper

examines its logical intricacies and discusses them in the context of quantum

theory. Study is motivated by the elemental position this arithmetic occupies in

mathematical physics along with the doubtless implication that the logic must enter

quantum theory. Findings show, via the work of Hans Reichenbach, this logic

is isomorphic to logic exhibited in quantum experiments. Reasons why the logic

goes unnoticed in classical physics stem from an absolute scale existing in Nature,
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against which indeterminate information is sensitive. When related to macroscopic

reference systems, indeterminate information vanishes and manifests paradoxically.

In classical experiments, logic of the quantum world is not related to the macroscopic;

no vanishing occurs and no paradox is manifest.

The logic is revealed when the concept of scalars is installed unconventionally,

as follows. Rather than installing scalars by way of adopting mathematical objects

whose algebraic rules are those of scalars; instead we install: the algebraic rules of

scalars, themselves. The logical theory that results implies foundations for quantum

theory in the In�nite-�eld Axioms, and the Soundness and Completeness Theorems

of mathematical logic.

We commonly understand formulae in algebra to be either true or false,

depending on whether they are derived correctly or erroneously and we expect no

alternative to these possibilities. But the Soundness and Completeness Theorems

show there does exist another alternative: that of indeterminate or mathematically

undecidable. Such logical information is not picked up by the standard algebraic

formalism but it does perpetuate unnoticed throughout applied mathematics and

into quantum mechanics where �nally its absence becomes conspicuous by paradox.

And unfortunately, mathematical physics in its current formalism, denies physical

theory any possibility of linking these theoretical indeterminacies from the arithmetic

with indeterminacies we observe in Nature.

The said non-classical logic of scalars is founded within their existence. Scalars

exist in two distinct qualities or modes. By de�nition, all scalars satisfy the In�nite-

�eld Axioms and so, in the context of these Axioms, existence of all scalars is possible.

On top of this, the existence of a subset of scalars, the rationals, is proved by these

Axioms, hence the rational scalars necessarily exist. Satisfying and being proved

are seen as causally distinct: a distinction not noted in applied mathematics.

The above claims rest centrally on a proof, given in this paper, deriving

from Soundness and Completeness. This con�rms the existence of indeterminacy

under the In�nite-�eld Axioms: indeterminacy that cannot be derived directly.

Application of this and other closely related theorems in model theory furnish two

simple tests identifying those formulae which Axioms render logically indeterminate

and those they render logically valid theorems in the Theory of In�nite-�elds. The

said theorems in model theory strictly identify undecidable propositions as those

with truth values that do not concur across all semantic interpretations, but disagree.

That is: they are not consistently true, or false, when interpreted in turn as members

of the complex plane C, the real line R, and the rational �eld Q. This result is used
in various examples of interest, checking truth-tables for agreement or disagreement.

Rational scalars are shown to exist by theorem while strictly imaginary or irrational

scalars are undecidable. This ultimately follows from the fact that only the rational

�eld is a sub�eld of all in�nite-�elds.

An important �nding of this research is this: generally, undecidable formulae,

convey with them their undecidability during the performance of algebraic

operations. This seems reasonable and to be expected. However, certain algebraic

operations spurn formulae that are not undecidable but are theorems. This has

rami�cations for our understanding of the mechanism for measurement in quantum
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mechanics and will be explored in greater detail in a subsequent paper.
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