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Gravitation on a Spherically Symmetric Metric Manifold
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The usual interpretations of solutions for Einstein’s gravitational field satisfying
the spherically symmetric condition contain anomalies that are not mathematically
permissible. It is shown herein that the usual solutions must be modified to account
for the intrinsic geometry associated with the relevant line elements.

1 Introduction

The standard interpretation of spherically symmetric line
elements for Einstein’s gravitational field has not taken into
account the fundamental geometrical features of spherical
symmetry about an arbitrary point in a metric manifold. This
has led to numerous misconceptions as to distance and radius
that have spawned erroneous theoretical notions.

The nature of spherical symmetry about an arbitrary point
in a three dimensional metric manifold is explained herein
and applied to Einstein’s gravitational field.

It is plainly evident, res ipsa locquitur, that the standard
claims for black holes and Big Bang cosmology are not con-
sistent with elementary differential geometry and are conse-
quently inconsistent with General Relativity.

2 Spherical symmetry of three-dimensional metrics

Denote ordinary Efcleethean∗ 3-space by E3. Let M3 be
a 3-dimensional metric manifold. Let there be a one-to-one
correspondence between all points of E3 and M3. Let the
point O∈E3 and the corresponding point inM3 be O′. Then
a point transformation T of E3 into itself gives rise to a
corresponding point transformation ofM3 into itself.

A rigid motion in a metric manifold is a motion that
leaves the metric d`′2 unchanged. Thus, a rigid motion
changes geodesics into geodesics. The metric manifold M3

possesses spherical symmetry around any one of its points
O′ if each of the ∞3 rigid rotations in E3 around the corres-
ponding arbitrary point O determines a rigid motion inM3.

The coefficients of d`′2 ofM3 constitute a metric tensor
and are naturally assumed to be regular in the region around
every point inM3, except possibly at an arbitrary point, the
centre of spherical symmetry O′ ∈M3.

Let a ray i emanate from an arbitrary point O∈E3.
There is then a corresponding geodesic i′ ∈M3 issuing from
the corresponding point O′ ∈M3. Let P be any point on
i other than O. There corresponds a point P ′ on i′ ∈M3

different to O′. Let g′ be a geodesic inM3 that is tangential
to i′ at P ′.

Taking i as the axis of ∞1 rotations in E3, there corres-

∗For the geometry due to Efcleethees, usually and abominably rendered
as Euclid.

ponds∞1 rigid motions inM3 that leaves only all the points
on i′ unchanged. If g′ is distinct from i′, then the ∞1 rigid
rotations in E3 about i would cause g′ to occupy an infinity
of positions in M3 wherein g′ has for each position the
property of being tangential to i′ at P ′ in the same direction,
which is impossible. Hence, g′ coincides with i′.

Thus, given a spherically symmetric surface Σ in E3 with
centre of symmetry at some arbitrary point O∈E3, there cor-
responds a spherically symmetric geodesic surface Σ′ inM3

with centre of symmetry at the corresponding point O′∈M3.
Let Q be a point in Σ∈E3 and Q′ the corresponding

point in Σ′ ∈M3. Let dσ be a generic line element in Σ issu-
ing from Q. The corresponding generic line element dσ′ ∈Σ′

issues from the point Q′. Let Σ be described in the usual
spherical-polar coordinates r, θ, ϕ. Then

dσ2 = r2(dθ2 + sin2θ dϕ2), (1)

r = |OQ|.

Clearly, if r, θ, ϕ are known, Q is determined and hence
also Q′ in Σ′. Therefore, θ and ϕ can be considered to be
curvilinear coordinates for Q′ in Σ′ and the line element
dσ′ ∈Σ′ will also be represented by a quadratic form similar
to (1). To determine dσ′, consider two elementary arcs of
equal length, dσ1 and dσ2 in Σ, drawn from the point Q in
different directions. Then the homologous arcs in Σ′ will be
dσ′1 and dσ′2, drawn in different directions from the corres-
ponding point Q′. Now dσ1 and dσ2 can be obtained from
one another by a rotation about the axis OQ in E3, and
so dσ′1 and dσ′2 can be obtained from one another by a
rigid motion in M3, and are therefore also of equal length,
since the metric is unchanged by such a motion. It therefore
follows that the ratio dσ′

dσ is the same for the two different
directions irrespective of dθ and dϕ, and so the foregoing
ratio is a function of position, i.e. of r, θ, ϕ. But Q is an
arbitrary point in Σ, and so dσ′

dσ must have the same ratio

for any corresponding points Q and Q′. Therefore, dσ
′

dσ is a
function of r alone, thus

dσ′

dσ
= H(r),

and so

dσ
′2 = H2(r)dσ2 = H2(r)r2(dθ2 + sin2θ dϕ2), (2)
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where H(r) is a priori unknown. For convenience set Rc=
=Rc(r)=H(r)r, so that (2) becomes

dσ
′2 = R2c(dθ

2 + sin2θ dϕ2), (3)

where Rc is a quantity associated with M3. Comparing (3)
with (1) it is apparent that Rc is to be rightly interpreted in
terms of the Gaussian curvature K at the point Q′, i.e. in
terms of the relation K = 1

R2c
since the Gaussian curvature

of (1) is K = 1
r2 . This is an intrinsic property of all line ele-

ments of the form (3) [1, 2]. Accordingly, Rc can be regarded
as a radius of curvature. Therefore, in (1) the radius of curva-
ture is Rc= r. Moreover, owing to spherical symmetry, all
points in the corresponding surfaces Σ and Σ′ have constant
Gaussian curvature relevant to their respective manifolds
and centres of symmetry, so that all points in the respective
surfaces are umbilic.

Let the element of radial distance from O∈E3 be dr.
Clearly, the radial lines issuing from O cut the surface Σ
orthogonally. Combining this with (1) by the theorem of
Pythagoras gives the line element in E3

d`2 = dr2 + r2(dθ2 + sin2θ dϕ2). (4)

Let the corresponding radial geodesic from the point
O′ ∈M3 be dg. Clearly the radial geodesics issuing from
O′ cut the geodesic surface Σ′ orthogonally. Combining this
with (3) by the theorem of Pythagoras gives the line element
inM3 as,

d`
′2 = dg2 +R2c(dθ

2 + sin2θ dϕ2), (5)

where dg is, by spherical symmetry, also a function only of
Rc. Set dg=

√
B(Rc)dRc, so that (5) becomes

d`
′2 = B(Rc)dR

2
c +R

2
c(dθ

2 + sin2θ dϕ2), (6)

where B(Rc) is an a priori unknown function.
Setting dRp=

√
B(Rc)dRc carries (6) into

d`
′2 = dR2p +R

2
c(dθ

2 + sin2θ dϕ2). (7)

Expression (6) is the most general for a metric manifold
M3 having spherical symmetry about some arbitrary point
O′ ∈M3 [1, 3].

Considering (4), the distance Rp= |OQ| from the point
at the centre of spherical symmetry O to a point Q∈Σ, is
given by

Rp =

∫ r

0

dr = r = Rc .

Call Rp the proper radius. Consequently, in the case of
E3, Rp and Rc are identical, and so the Gaussian curvature
at any point in E3 can be associated with Rp, the radial dis-
tance between the centre of spherical symmetry at the point
O∈E3 and the point Q∈Σ. Thus, in this case, we have
K = 1

R2c
= 1

R2p
= 1

r2 . However, this is not a general relation,

since according to (6) and (7), in the case of M3, the radial
geodesic distance from the centre of spherical symmetry at
the point O′ ∈M3 is not given by the radius of curvature,
but by

Rp =

∫ Rp

0

dRp =

∫ Rc(r)

Rc(0)

√
B(Rc(r)) dRc(r) =

=

∫ r

0

√
B(Rc(r))

dRc(r)

dr
dr ,

where Rc(0) is a priori unknown owing to the fact that
Rc(r) is a priori unknown. One cannot simply assume that
because 06 r <∞ in (4) that it must follow that in (6)
and (7) 06Rc(r)<∞. In other words, one cannot simply
assume that Rc(0)= 0. Furthermore, it is evident from (6)
and (7) that Rp determines the radial geodesic distance from
the centre of spherical symmetry at the arbitrary point O′ in
M3 (and correspondingly so from O in E3) to another point
in M3. Clearly, Rc does not in general render the radial
geodesic length from the centre of spherical symmetry to
some other point in a metric manifold. Only in the particular
case of E3 does Rc render both the Gaussian curvature and
the radial distance from the centre of spherical symmetry,
owing to the fact that Rp and Rc are identical in that special
case.

It should also be noted that in writing expressions (4) and
(5) it is implicit that O∈E3 is defined as being located at the
origin of the coordinate system of (4), i.e. O is located where
r=0, and by correspondence O′ is defined as being located
at the origin of the coordinate system of (5), i.e. using (7),
O′ ∈M3 is located where Rp=0. Furthermore, since it is
well known that a geometry is completely determined by the
form of the line element describing it [4], expressions (4)
and (6) share the very same fundamental geometry because
they are line elements of the same form.

Expression (6) plays an important rôle in Einstein’s grav-
itational field.

3 The standard solution

The standard solution in the case of the static vacuum field
(i.e. no deformation of the space) of a single gravitating
body, satisfying Einstein’s field equations Rμν =0, is (using
G= c=1),

ds2 =

(

1−
2m

r

)

dt2 −

(

1−
2m

r

)−1
dr2−

− r2(dθ2 + sin2θ dϕ2) ,

(8)

where m is allegedly the mass causing the field, and upon
which it is routinely claimed that 2m<r<∞ is an exterior
region and 0<r< 2m is an interior region. Notwithstanding
the inequalities it is routinely allowed that r=2m and r=0
by which it is also routinely claimed that r=2m marks
a “removable” or “coordinate” singularity and that r=0
marks a “true” or “physical” singularity [5].
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The standard treatment of the foregoing line-element
proceeds from simple inspection of (8) and thereby upon
the following assumptions:

(a) that there is only one radial quantity defined on (8);

(b) that r can approach zero, even though the line-element
(8) is singular at r=2m;

(c) that r is the radial quantity in (8) (r=2m is even routi-
nely called the “Schwarzschild radius” [5]).

With these unstated assumptions, but assumptions none-
theless, it is usual procedure to develop and treat of black
holes. However, all three assumptions are demonstrably false
at an elementary level.

4 That assumption (a) is false

Consider standard Minkowski space (using c=G=1) de-
scribed by

ds2 = dt2 − dr2 − r2dΩ2, (9)

0 6 r <∞ ,

where dΩ2= dθ2+ sin2θ dϕ2. Comparing (9) with (4) it is
easily seen that the spatial components of (9) constitute a
line element of E3, with the point at the centre of spherical
symmetry at r0=0, coincident with the origin of the coordi-
nate system.

In relation to (9) the calculated proper radius Rp of the
sphere in E3 is,

Rp =

∫ r

0

dr = r , (10)

and the radius of curvature Rc is

Rc = r = Rp . (11)

Calculate the surface area of the sphere:

A =

2π∫

0

π∫

0

r2 sin θdθdϕ = 4πr2 = 4πR2p = 4πR
2
c . (12)

Calculate the volume of the sphere:

V=

2π∫

0

π∫

0

r∫

0

r2 sin θdrdθdϕ=
4

3
πr3=

4

3
πR3p=

4

3
πR3c . (13)

Then for (9), according to (10) and (11),

Rp = r = Rc . (14)

Thus, for Minkowski space, Rp and Rc are identical.
This is because Minkowski space is pseudo-Efcleethean.

Now comparing (8) with (6) and (7) is is easily seen
that the spatial components of (8) constitute a spherically
symmetric metric manifoldM3 described by

d`
′2 =

(

1−
2m

r

)−1
dr2 + r2dΩ2,

and which is therefore in one-to-one correspondence with
E3. Then for (8),

Rc = r ,

Rp =

∫ √
r

r − 2m
dr 6= r = Rc .

Hence, RP 6=Rc in (8) in general. This is because (8) is
non-Efcleethean (it is pseudo-Riemannian). Thus, assump-
tion (a) is false.

5 That assumption (b) is false

On (8),

Rp = Rp(r) =

∫ √
r

r − 2m
dr =

=
√
r (r − 2m) + 2m ln

∣
∣
∣
√
r +

√
r − 2m

∣
∣
∣+K,

(15)

where K is a constant of integration.
For some r0, Rp(r0)= 0, where r0 is the corresponding

point at the centre of spherical symmetry in E3 to be deter-
mined from (15). According to (15), Rp(r0)= 0 when r=
= r0=2m and K =−m ln 2m. Hence,

Rp(r) =
√
r (r − 2m)+2m ln

(√
r +

√
r − 2m

√
2m

)

. (16)

Therefore, 2m<r<∞⇒ 0<Rp<∞, where Rc= r.
The inequality is required to maintain Lorentz signature,
since the line-element is undefined at r0=2m, which is the
only possible singularity on the line element. Thus, assump-
tion (b) is false.

It follows that the centre of spherical symmetry of E3,
in relation to (8), is located not at the point r0=0 in E3 as
usually assumed according to (9), but at the point r0=2m,
which corresponds to the point Rp(r0=2m)= 0 in the met-
ric manifold M3 that is described by the spatial part of (8).
In other words, the point at the centre of spherical symmetry
in E3 in relation to (8) is located at any point Q in the
spherical surface Σ for which the radial distance from the
centre of the coordinate system at r=0 is r=2m, owing
to the one-to-one correspondence between all points of E3

and M3. It follows that (8) is not a generalisation of (9),
as usually claimed. The manifold E3 of Minkowski space
corresponding to the metric manifold M3 of (8) is not de-
scribed by (9), because the point at the centre of spherical
symmetry of (9), r0=0, does not coincide with that required
by (15) and (16), namely r0=2m.

In consequence of the foregoing it is plain that the ex-
pression (8) is not general in relation to (9) and the line
element (8) is not general in relation to the form (6). This is
due to the incorrect way in which (8) is usually derived from
(9), as pointed out in [6, 7, 8]. The standard derivation of (8)
from (9) unwittingly shifts the point at the centre of spheri-
caly symmetry for the E3 of Minkowski space from r0=0
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to r0=2m, with the consequence that the resulting line
element (8) is misinterpreted in relation to r=0 in the E3

of Minkowski space as described by (9). This unrecognised
shift actually associates the point r0=2m∈E3 with the
point Rp(2m)= 0 in the M3 of the gravitational field. The
usual analysis then incorrectly associates Rp=0 with r0=0
instead of with the correct r0=2m, thereby conjuring up a
so-called “interior”, as typically alleged in [5], that actually
has no relevance to the problem — a completely meaningless
manifold that has nothing to do with the gravitational field
and so is disjoint from the latter, as also noted in [6, 9,
10, 11]. The point at the centre of spherical symmetry for
Einstein’s gravitational field is Rp=0 and is also the origin
of the coordinate system for the gravitational field. Thus the
notion of an “interior” manifold under some other coordinate
patch (such as the Kruskal-Szekeres coordinates) is patently
false. This is clarified in the next section.

6 That assumption (c) is false

Generalise (9) so that the centre of a sphere can be located
anywhere in Minkowski space, relative to the origin of the
coordinate system at r=0, thus

ds2 = dt2 − (d |r − r0|)
2 − |r − r0|

2
dΩ2 =

= dt2 −
(r − r0)

2

|r − r0|
2 dr

2 − |r − r0|
2
dΩ2 =

= dt2 − dr2 − |r − r0|
2
dΩ2,

(17)

0 6 |r − r0| <∞ ,

which is well-defined for all real r. The value of r0 is
arbitrary. The spatial components of (17) describe a sphere of
radius D= |r− r0| centred at some point r0 on a common
radial line through r and the origin of coordinates at r=0
(i.e. centred at the point of orthogonal intersection of the
common radial line with the spherical surface r= r0). Thus,
the arbitrary point r0 is the centre of spherical symmetry in
E3 for (17) in relation to the problem of Einstein’s gravita-
tional field, the spatial components of which is a spherically
symmetric metric manifold M3 with line element of the
form (6) and corresponding centre of spherical symmetry
at the point Rp(r0)= 0 ∀ r0. If r0=0, (9) is recovered from
(17). One does not need to make r0=0 so that the centre
of spherical symmetry in E3, associated with the metric
manifoldM3 of Einstein’s gravitational field, coincides with
the origin of the coordinate system itself, at r=0. Any
point in E3, relative to the coordinate system attached to
the arbitrary point at which r=0, can be regarded as a point
at the centre of spherical symmetry in relation to Einstein’s
gravitational field. Although it is perhaps desirable to make
the point r0=0 the centre of spherical symmetry of E3

correspond to the point Rp=0 at the centre of symmetry of
M3 of the gravitational field, to simplify matters somewhat,

this has not been done in the usual analysis of Einstein’s
gravitational field, despite appearances, and in consequence
thereof false conclusions have been drawn owing to this fact
going unrecognised in the main.

Now on (17),

Rc = |r − r0| ,

Rp =

|r−r0|∫

0

d |r−r0| =

r∫

r0

(r−r0)
|r−r0|

dr = |r−r0| ≡ Rc,
(18)

and so Rp≡Rc on (17), since (17) is pseudo-Efcleethean.
Setting D= |r− r0| for convenience, generalise (17) thus,

ds2=A
(
C(D)

)
dt2−B

(
C(D)

)
d
√
C(D)

2
−C(D)dΩ2, (19)

where A
(
C(D)

)
, B
(
C(D)

)
, C (D)> 0. Then for Rμν =0,

metric (19) has the solution,

ds2 =

(

1−
α

√
C(D)

)

dt2−

−
1

1− α√
C(D)

d
√
C(D)

2
− C (D)dΩ2,

(20)

where α is a function of the mass generating the gravitational
field [3, 6, 7, 9]. Then for (20),

Rc = Rc(D) =
√
C(D),

Rp = Rp(D) =

∫ √ √
C(D)

√
C(D)− α

d
√
C(D) =

=

∫ √
Rc(D)

Rc(D)−α
dRc(D)=

√
Rc(D)

(
Rc(D)−α

)
+

+α ln

(√
Rc(D) +

√
Rc(D)− α√
α

)

,

(21)

where Rc(D)≡Rc (|r− r0|)=Rc(r). Clearly r is a para-
meter, located in Minkowski space according to (17).

Now r= r0⇒D=0, and so by (21), Rc(D=0)=α
and Rp(D=0)=0. One must ascertain the admissible form
of Rc(D) subject to the conditions Rc(D=0)=α and
Rp(D=0)=0 and dRc(D)/dD> 0 [6, 7], along with the
requirements that Rc(D) must produce (8) from (20) at will,
must yield Schwarzschild’s [12] original solution at will
(which is not the line element (8) with r down to zero),
must produce Brillouin’s [13] solution at will, must produce
Droste’s [14] solution at will, and must yield an infinite
number of equivalent metrics [3]. The only admissible form
satisfying these conditions is [7],

Rc=Rc(D)= (D
n+αn)

1
n ≡

(
|r−r0|

n
+αn

)1
n =Rc(r), (22)

D > 0, r ∈ <, n ∈ <+, r 6= r0,

where r0 and n are entirely arbitrary constants.

S. J. Crothers. Gravitation on a Spherically Symmetric Metric Manifold 71



Volume 2 PROGRESS IN PHYSICS April, 2007

Choosing r0=0, r > 0, n=3,

Rc(r) =
(
r3 + α3

) 1
3 , (23)

and putting (23) into (20) gives Schwarzschild’s original
solution, defined on 0 < r <∞.

Choosing r0=0, r > 0, n=1,

Rc(r) = r + α, (24)

and putting (24) into (20) gives Marcel Brillouin’s solution,
defined on 0 < r <∞.

Choosing r0=α, r >α, n=1,

Rc(r) = (r − α) + α = r, (25)

and putting (25) into (20) gives line element (8), but defined
on α<r<∞, as found by Johannes Droste in May 1916.
Note that according to (25), and in general by (22), r is not
a radial quantity in the gravitational field, because Rc(r)=
= (r−α)+α=D+α is really the radius of curvature in (8),
defined for 0<D<∞.

Thus, assumption (c) is false.
It is clear from this that the usual line element (8) is

a restricted form of (22), and by (22), with r0=α=2m,
n=1 gives Rc= |r− 2m|+2m, which is well defined on
−∞<r<∞, i.e. on 06D<∞, so that when r=0,
Rc(0)= 4m and RP (0)> 0. In the limiting case of r=2m,
then Rc(2m)= 2m and Rp(2m)= 0. The latter two rela-
tionships hold for any value of r0.

Thus, if one insists that r0=0 to match (9), it follows
from (22) that,

Rc =
(
|r|n + αn

) 1
n ,

and if one also insists that r > 0, then

Rc = (r
n + αn)

1
n , (26)

and for n=1,
Rc = r + α,

which is the simplest expression for Rc in (20) [6, 7, 13].
Expression (26) has the centre of spherical symmetry

of E3 located at the point r0=0 ∀n∈<+, corresponding
to the centre of spherical symmetry of M3 for Einstein’s
gravitational field at the point Rp(0)= 0 ∀ n∈<+. Then
taking α=2m it follows that Rp(0)=0 and Rc(0)=α=2m
for all values of n.

There is no such thing as an interior solution for the line
element (20) and consequently there is no such thing as an
interior solution on (8), and so there can be no black holes.

7 That the manifold is inextendable

That the singularity at Rp(r0) ≡ 0 is insurmountable is clear
by the following ratio,

lim
r→r±0

2πRc(r)

Rp(r)
= lim

r→r±0

2π
(
|r − r0|

n
+ αn

) 1
n

Rp(r)
=∞,

since Rp(r0)= 0 and Rc(r0)=α are invariant.
Hagihara [15] has shown that all radial geodesics that do

not run into the boundary at Rc(r0)=α (i.e. that do not run
into the boundary at Rp(r0)= 0) are geodesically complete.

Doughty [16] has shown that the acceleration a of a
test particle approaching the centre of mass at Rp(r0)= 0
is given by,

a =

√
−g00

(
−g11

)
|g00,1|

2g00
.

By (20) and (22), this gives,

a =
α

2R
3
2
c

√
Rc(r)− α

.

Then clearly as r→ r±0 , a→∞, independently of the
value of r0.

J. Smoller and B. Temple [10] have shown that the
Oppenheimer-Volkoff equations do not permit gravitational
collapse to form a black hole and that the alleged interior of
the Schwarzschild spacetime (i.e. 06Rc(r)6α) is therefore
disconnected from Schwarzschild spacetime and so does not
form part of the solution space.

N. Stavroulakis [17, 18, 19, 20] has shown that an object
cannot undergo gravitational collapse into a singularity, or to
form a black hole.

Suppose 06
√
C(D(r))<α. Then (20) becomes

ds2 = −

(
α
√
C
− 1

)

dt2 +

(
α
√
C
− 1

)−1
d
√
C
2
−

−C (dθ2 + sin2θ dϕ2),

which shows that there is an interchange of time and length.
To amplify this set r= t̄ and t= r̄. Then

ds2 =

(
α
√
C
− 1

)−1
Ċ2

4C
dt̄2 −

(
α
√
C
− 1

)

dr̄2−

−C (dθ2 + sin2θ dϕ2),

where C =C(t̄) and the dot denotes d/dt̄. This is a time
dependent metric and therefore bears no relation to the prob-
lem of a static gravitational field.

Thus, the Schwarzschild manifold described by (20) with
(22) (and hence (8)) is inextendable.

8 That the Riemann tensor scalar curvature invariant
is everywhere finite

The Riemann tensor scalar curvature invariant (the Kretsch-
mann scalar) is given by f =RμνρσRμνρσ . In the general
case of (20) with (22) this is

f =
12α2

R6c(r)
=

12α2

(
|r − r0|

n
+ αn

)6
n

.

A routine attempt to justify the standard assumptions on
(8) is the a posteriori claim that the Kretschmann scalar
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must be unbounded at a singularity [5, 21]. Nobody has ever
offered a proof that General Relativity necessarily requires
this. That this additional ad hoc assumption is false is clear
from the following ratio,

f(r0) =
12α2

(
|r0 − r0|

n
+ αn

)6
n

=
12

α4
∀ r0 .

In addition,

lim
r→±∞

12α2

(
|r − r0|

n
+ αn

)6
n

= 0 ,

and so the Kretschmann scalar is finite everywhere.

9 That the Gaussian curvature is everywhere finite

The Gaussian curvature K of (20) is,

K = K
(
Rc(r)

)
=

1

R2c(r)
,

where Rc(r) is given by (22). Then,

K(r0) =
1

α2
∀ r0 ,

and
lim

r→±∞
K(r) = 0 ,

and so the Gaussian curvature is everywhere finite.
Furthermore,

lim
α→0

1

α2
=∞,

since when α=0 there is no gravitational field and empty
Minkowski space is recovered, wherein Rp and Rc are ident-
ical and 06Rp<∞. A centre of spherical symmetry in
Minkowski space has an infinite Gaussian curvature because
Minkowski space is pseudo-Efcleethean.

10 Conclusions

Using the spherical-polar coordinates, the general solution to
Rμν =0 is (20) with (22), which is well-defined on

−∞ < r0 <∞,

where r0 is entirely arbitrary, and corresponds to

0 < Rp(r) <∞, α < Rc(r) <∞,

for the gravitational field. The only singularity that is possib-
le occurs at g00=0. It is impossible to get g11=0 because
there is no value of the parameter r by which this can be
attained. No interior exists in relation to (20) with (22),
which contain the usual metric (8) as a particular case.

The radius of curvature Rc(r) does not in general deter-
mine the radial geodesic distance to the centre of spherical
symmetry of Einstein’s gravitational field and is only to
be interpreted in relation to the Gaussian curvature by the
equation K =1/R2c(r). The radial geodesic distance from

the point at the centre of spherical symmetry to the spherical
geodesic surface with Gaussian curvature K =1/R2c(r) is
given by the proper radius, Rp(Rc(r)). The centre of spher-
ical symmetry in the gravitational field is invariantly located
at the point Rp(r0)= 0.

Expression (20) with (22), and hence (8) describes only
a centre of mass located at Rp(r0)= 0 in the gravitational
field, ∀ r0. As such it does not take into account the distribu-
tion of matter and energy in a gravitating body, since α(M)
is indeterminable in this limited situation. One cannot gener-
ally just utilise a potential function in comparison with the
Newtonian potential to determine α by the weak field limit
because α is subject to the distribution of the matter of the
source of the gravitational field. The value of α must be
calculated from a line-element describing the interior of the
gravitating body, satisfying Rμν − 1

2Rgμν =κTμν 6=0. The
interior line element is necessarily different to the exterior
line element of an object such as a star. A full description
of the gravitational field of a star therefore requires two line
elements [22, 23], not one as is routinely assumed, and when
this is done, there are no singularities anywhere. The stand-
ard assumption that one line element is sufficient is false.
Outside a star, (20) with (22) describes the gravitational
field in relation to the centre of mass of the star, but α
is nonetheless determined by the interior metric, which, in
the case of the usual treatment of (8), has gone entirely
unrecognised, so that the value of α is instead determined
by a comparison with the Newtonian potential in a weak
field limit.

Black holes are not predicted by General Relativity. The
Kruskal-Szekeres coordinates do not describe a coordinate
patch that covers a part of the gravitational manifold that is
not otherwise covered - they describe a completely different
pseudo-Riemannian manifold that has nothing to do with
Einstein’s gravitational field [6, 9, 11]. The manifold of
Kruskal-Szekeres is not contained in the fundamental one-
to-one correspondence between the E3 of Minkowski space
and theM3 of Einstein’s gravitational field, and is therefore
a spurious augmentation.

It follows in similar fashion that expansion of the Uni-
verse and the Big Bang cosmology are inconsistent with
General Relativity, as is easily demonstrated [24, 25].
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