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Abstract

The time-dependent Schrödinger equation with time-independent Hamiltonian operator is a linear

homogeneous system that is conservative and purely oscillatory. We investigate whether a classical

system that is itself linear, homogeneous, conservative and purely oscillatory is assured to have a one-

to-one linear mapping into some Schrödinger-format equation. Schrödinger equations are first order in

time and have an even number of real-valued variables because they are complex-valued. Any first-order

in time classical system as well has an even number of real-valued variables. Its Hermitian aspect gives

a Schrödinger equation a more restricted presentation than that of an arbitrary linear, homogeneous,

conservative, purely oscillatory classical system, but general one-to-one linear mappings have enough

parameters to bridge this presentation gap. As two illustrative examples of mapping amenable classical

systems into Schrödinger-format equations, we derive the detailed mapping of the real-valued classical

Klein-Gordon equation into the nonzero-mass free particle’s relativistic scalar Schrödinger equation, and

also the mapping of the source-free Maxwell electric and magnetic field equations into the free photon’s

transverse-vector Schrödinger equation. Once an amenable classical system has been mapped into a

Schrödinger-format equation, that classical system is automatically in canonical Hamiltonian form, and

second quantization of the Schrödinger equation is always the physically most transparent and technically

simplest way to quantize the original classical system.

Introduction

Just as Lagrangian classical systems that are conservative can generally be presented in canonical Hamilto-
nian form, it turns out that oscillatory classical linear systems that are homogeneous and conservative can
generally be presented, via linear isomorphism, in Schrödinger-equation form, which itself is automatically

in canonical Hamiltonian form. Therefore the quantization of such a classical system is, ipso facto, the second

quantization of a Schrödinger equation, an undertaking that is exceptionally physically transparent and tech-
nically straightforward. The consequent tight relationship of the classical wave phenomena of many-body
or continuum versions of such classical systems to the corresponding quanta of their Schrödinger-equation
presentations and second quantizations is obviously the quintessence of classical-quantum complementarity .
We shall in particular point out that the real-valued classical scalar-field Klein-Gordon equation with mass
parameter m is linearly isomorphic to the Schrödinger equation which is characterized by a scalar wave func-
tion and the Hamiltonian operator (|cp̂|2 +m2c4)

1

2 [1]. That Hamiltonian operator is in precise accord with
the natural correspondence-principle mandate for a relativistic free particle of mass m. Also the source-free
Maxwell equations for the electric and magnetic fields are linearly isomorphic to the Schrödinger equation
which is characterized by a transverse-vector wave function and the Hamiltonian operator |cp̂|. That Hamil-
tonian operator is precisely appropriate to the massless free photon [2]. Furthermore, the classical wave
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equation for the electromagnetic radiation-gauge vector potential is linearly isomorphic to this very same

Schrödinger equation [1].
Oscillatory classical linear systems which are homogeneous and conservative are described by equations

of motion that have the form,
ḋ = Wd, (1a)

where d is a real-valued vector of any one-to-one linear transformation of all of this classical system’s coor-
dinates and velocities, and W is a real-valued time-independent (matrix) operator for which the eigenvalues
of W 2 are real, nonpositive and do not all vanish (i.e., the system is oscillatory). Such systems specifically

include those described by the second-order in time equation,

f̈ +Kf = 0, (1b)

where f is a real-valued vector and K is a real-valued time-independent (matrix) operator whose eigenvalues
are real, nonnegative and do not all vanish. This is so because d can consist of both f and an auxiliary
real-valued vector g which is equal to ḟ and satisfies ġ = −Kf . In that instance,

d = (f, g), W =

(
0 I

−K 0

)
. (1c)

Likewise, if the more general second-order in time equation,

f̈ + Cḟ +Kf = 0, (1d)

where C is also a real-valued time-independent (matrix) operator, is oscillatory , it is as well included via,

d = (f, g), W =

(
0 I

−K −C

)
. (1e)

Here it needs to be checked that the eigenvalues of W 2 are real, nonpositive and do not all vanish, i.e., that
the system is in fact oscillatory.

Because d is a real-valued vector of any one-to-one linear transformation of all of this classical system’s
coordinates and velocities, it is an even-dimensional vector which, in fact, can always be written as,

d = (f, g), (2a)

where f and g each have half as many dimensions as d—this is true even in the continuum limit, where one
counts field degrees of freedom rather than finite dimensions. Therefore we can also always express W as the
block two-by-two matrix ,

W =

(
Wff Wfg

Wgf Wgg

)
, (2b)

and correspondingly write the equation ḋ = Wd in the block-expanded form,

ḟ = Wfff +Wfgg, ġ = Wgff +Wggg. (2c)

The Schrödinger equation, which is the equation to which we would like to demonstrate the linear
equivalence of ḋ = Wd (presented in block-expanded form in Eq. (2c)), is normally, however, incompatibly
presented in the form,

ih̄ψ̇ = Ĥψ, (3a)

where ψ is a complex-valued vector and Ĥ is a Hermitian time-independent (matrix) operator. Before we
proceed further, we clearly must first recast the Schrödinger equation into the form,

χ̇ψ = Ωχψ, (3b)

where χψ is a real-valued vector and Ω is a real-valued time-independent (matrix) operator, a form which

can be directly compared with the form ḋ = Wd of Eq. (1a) for the classical physics.

The Schrödinger equation as a real-valued canonical system
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The complex-valued Schrödinger wave function ψ has the dimensions of probability density amplitude. From
it we can define two real-valued fields, which each have the dimensions of action density amplitude that is
compatible with these fields being mutually canonically conjugate, as follows,

φψ
def
= (h̄/2)

1

2 (ψ + ψ∗), πψ
def
= −i(h̄/2)

1

2 (ψ − ψ∗), (4a)

which implies that,

ψ = (φψ + iπψ)/(2h̄)
1

2 , ψ∗ = (φψ − iπψ)/(2h̄)
1

2 . (4b)

The Hermitian (matrix) operator Ĥ likewise has a real and and imaginary part, but since it is Hermitian,
we have that,

Ĥ∗ = ĤT . (5a)

For this reason, we can express the real and imaginary parts, HR and HI , of Ĥ in terms of itself and its
transpose ĤT as follows,

HR
def
= (Ĥ + ĤT )/2, HI

def
= −i(Ĥ − ĤT )/2, (5b)

so that,

Ĥ = HR + iHI , ĤT = Ĥ∗ = HR − iHI . (5c)

From Eqs. (5b) and (5a) it is clear that HR is a symmetric real (matrix) operator, and that HI is an
antisymmetric real (matrix) operator.

If we now put the first equations that occur in both Eq. (4b) and in Eq. (5c) into the Schrödinger equation
of Eq. (3a), and then equate the real and imaginary parts that result on the left-hand side to those which
result on the right-hand side, we obtain the two equations,

φ̇ψ = ΩIφψ + ΩRπψ, π̇ψ = −ΩRφψ + ΩIπψ, (6a)

where ΩR
def
= HR/h̄ and ΩI

def
= HI/h̄. Therefore the complex-valued Schrödinger equation of Eq. (3a) is

equivalent to the real-valued equation χ̇ψ = Ωχψ of Eq. (3b) upon making the identifications,

χψ = (φψ, πψ), Ω =

(
ΩI ΩR
−ΩR ΩI

)
. (6b)

We note that χψ has the dimensions of action density amplitude and that Ω has the dimensions of frequency.
In terms of inner products that involve the two real vectors φψ and πψ and the real operators ΩR and ΩI ,
we can also write down a classical Hamiltonian functional which yields the equations of motion of Eq. (6a)
as its two canonical Hamilton’s equations,

H[φψ, πψ] = 1

2
[(φψ,ΩRφψ) + (πψ,ΩRπψ) + 2(πψ,ΩIφψ)] . (6c)

We immediately see from Eq. (6c) that the first canonical Hamilton’s equation,

φ̇ψ = δH[φψ, πψ]/δπψ,

produces the first equation of motion of Eq. (6a), bearing in mind that ΩR is a symmetric real operator. We
also see from Eq. (6c) that the second canonical Hamilton’s equation,

π̇ψ = −δH[φψ, πψ]/δφψ,

produces the second equation of motion of Eq. (6a), bearing in mind that ΩR is a symmetric real operator
and that ΩI is an antisymmetric real operator. Thus the Schrödinger-equation system is automatically

a classical Hamiltonian one as well , and therefore Schrödinger-equation systems are always amenable to
immediate second quantization. This is, of course, done by the usual method of promoting the real-valued
canonical vectors φψ and πψ to become the Hermitian operators φ̂ψ and π̂ψ that are subject to the usual
canonical commutation rules,

[(φ̂ψ)α, (π̂ψ)β ] = ih̄δαβ , [(φ̂ψ)α, (φ̂ψ)β ] = 0, [(π̂ψ)α, (π̂ψ)β ] = 0. (7)

Therewith the Hamiltonian functional of Eq. (6c) is also promoted to become a Hermitian operator, which
is of course the Hamiltonian operator of the second-quantized system. In the Heisenberg picture that is
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defined by this second-quantized Hamiltonian operator, the equations of motion of Eq. (6a) continue to hold

as operator relations.
It is obvious, of course, that the equations of motion of Eq. (6a), in conjunction with the expression for

φψ and πψ in terms of ψ and ψ∗ that is given by Eq. (4a) and the relation of ΩR and ΩI to Ĥ and ĤT that
is given by Eq. (5b), implies the Schrödinger equation of Eq. (3a). In the same manner it can be seen that
the Hamiltonian functional H[φψ, πψ] of Eq. (6c) is, upon being expressed as a functional of ψ and ψ∗ in
place of φψ and πψ, equal to H[ψ,ψ∗], where,

H[ψ,ψ∗] = (ψ∗, Ĥψ), (8a)

and that the two canonical Hamilton’s equations, φ̇ψ = δH[φψ, πψ]/δπψ and π̇ψ = −δH[φψ, πψ]/δφψ, are
equivalent to the single complex-valued functional derivative equation,

ih̄ψ̇ = δH[ψ,ψ∗]/δψ∗, (8b)

which, in conjunction with Eq. (8a) above, directly produces the Schrödinger equation of Eq. (3a). Fur-
thermore, the canonical commutation rules of Eq. (7) that effect the second quantization can likewise be
expressed in language that pertains exclusively to ψ and ψ∗ and their respective non-Hermitian operator
quantizations ψ̂ and ψ̂†,

[(ψ̂)α, (ψ̂
†)β ] = δαβ , [(ψ̂)α, (ψ̂)β ] = 0, [(ψ̂†)α, (ψ̂

†)β ] = 0. (8c)

The Hermitian Hamiltonian operator of the second quantized regime is, aside from minor operator-ordering
details, H[φ̂ψ, π̂ψ], which is of course equal to (again aside from minor operator-ordering details)H[ψ̂, ψ̂†], i.e.,
it is the second quantization of the Hamiltonian functionalH[ψ,ψ∗] that is explicitly given by Eq. (8a). In the
Heisenberg picture that is defined by this second-quantized Hamiltonian operator, the Schrödinger equation
of Eq. (3a) continues to hold as an operator relation for ψ̂ and ∂ψ̂/∂t. The commutation relations of Eq. (8c)

are interpreted as identifying (ψ̂†)α as the creation operator for the quantum state that is characterized by

the index symbol α, and as identifying (ψ̂)α as the annihilation operator for this state. Therefore the
second-quantized Hilbert space, called Fock space, is a relatively immense one whose individual basis states

consist of arbitrary sets of basis states that can be selected from a basis system for the Hilbert space which
is associated to the first-quantized Schrödinger equation of Eq. (3a). These basis-state sets are selected with

repetition in the case of the commutation rules of Eq. (8c), but are selected without repetition when these
rules are replaced by the anticommutation rules that are appropriate to systems which are subject to the
Pauli exclusion principle.

While the canonical and second quantization properties of Schrödinger-equation systems are definitely
of great interest, our primary concern here is with the issue of one-to-one linear time-independent mapping
of an oscillatory linear classical system described by the homogeneous conservative equation ḋ = Wd into

such a Schrödinger-equation system, which Eq. (6b) tells us is described by χ̇ψ = Ωχψ, where Ω is a time-
independent (matrix) operator which has dimensions of frequency and the block representation,

Ω =

(
ΩI ΩR
−ΩR ΩI

)
, (9a)

where ΩR is a symmetric real (matrix) operator and ΩI is an antisymmetric real (matrix) operator. Now
a completely general one-to-one linear time-independent mapping S of the classical system described by
ḋ = Wd produces χψ = Sd, or d = S−1χψ. The equation of motion of χψ is therefore χ̇ψ = SWS−1χψ,
and thus the Ω which emerges from this mapping is SWS−1. The most general possible form of such an Ω
would be,

Ω =

(
Ωφψφψ Ωφψπψ
Ωπψφψ Ωπψπψ

)
, (9b)

and we read off from Eq. (9a) that this describes a Schrödinger-equation system when it satisfies the four

operator conditions,

Ωφψφψ = Ωπψπψ , Ωφψπψ = −Ωπψφψ , ΩTφψφψ = −Ωφψφψ , ΩTφψπψ = Ωφψπψ .

Now since d = (f, g) and χψ = (φψ, πψ), the mapping S of d into χψ obviously consists of four block matrix
operators,

S =

(
Sφψf Sφψg
Sπψf Sπψg

)
, (9c)
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which should indeed be general enough to be able to fulfill those four operator conditions above that are
required for the mapped matrix SWS−1 = Ω of Eq. (9b) to describe a Schrödinger-equation system.

Hamiltonian operators that apply to practical cases almost always turn out to be purely real and sym-
metric, aside from rather trivial spin one-half exceptions. In any event, there invariably exist unitary
transformations which purge a Hamiltonian of any nonvanishing antisymmetric imaginary part: the unitary
transformation that actually diagonalizes the Hamiltonian is obviously one of those that does this job. In
practice, then, we shall be looking for a one-to-one linear mapping S of our classical system vector d such
that 1) Sd = χψ has the dimensions of action density amplitude and 2) SWS−1 = Ω, where Ω has the simple
form,

Ω =

(
0 ΩR

−ΩR 0

)
, (10a)

ΩR being a nonzero real symmetric (matrix) operator with the dimensions of frequency. In other words, S
maps the general equations of motion of Eq. (2c), namely,

ḟ = Wfff +Wfgg, ġ = Wgff +Wggg,

into,
φ̇ψ = ΩRπψ, π̇ψ = −ΩRφψ, (10b)

where φψ and πψ have the dimensions of action density amplitude and ΩR is a real symmetric (matrix)
operator with dimensions of frequency. Comparing our simple form of Ω in Eq. (10a) with its most general
possible form that is given by Eq. (9b), we again see that we must impose four operator conditions, namely,

Ωφψφψ = 0, Ωπψπψ = 0, Ωφψπψ = −Ωπψφψ , ΩTφψπψ = Ωφψπψ .

Now since Eq. (9c) shows that the general one-to-one transform S is comprised of four operators, it should
clearly be possible to fulfill these four operator requirements on Ω = SWS−1.

Finally, we note from Eq. (10a) that,

Ω2 =

(
−Ω2

R 0
0 −Ω2

R

)
. (10c)

Because ΩR is a nonzero real symmetric (matrix) operator, this implies that Ω2 has nonpositive real eigen-
values which do not all vanish. That is precisely the restriction we have imposed on W 2 to ensure that
ḋ = Wd is an oscillatory system—eigenvalues of the square of a (matrix) operator are, of course, invariant

under one-to-one linear mappings of the type W → SWS−1 = Ω.
Just as there is no cut and dried recipe for diagonalizing a Hermitian operator, neither can we here

provide such a cut and dried recipe for finding the one-to-one linear time-independent mapping S which
converts classical equations of motion of the form ḋ = Wd, where W 2 has only nonpositive real eigenvalues
which do not all vanish, to the Schrödinger-equation presentation form of Eq. (10b), where φψ and πψ
have dimensions of action density amplitude and ΩR is a nonzero real symmetric (matrix) operator with
dimensions of frequency. Merely knowing that such a mapping exists will be sufficient to motivate its explicit

construction in a variety of useful cases. We therefore proceed now to the actual realizations of such mappings
for two interesting classical systems, namely the real-valued scalar-field classical Klein-Gordon equation and
the source-free Maxwell equations [1, 2].

The relativistic quantum free particle from the classical Klein-Gordon equation

The classical Klein-Gordon equation for the real-valued scalar field φ differs from the classical wave equation
by a simple mass term [3, 1],

φ̈/c2 + (−∇2 + µ2)φ = 0, (11a)

where µ = ((mc)/h̄). We convert this second-order in time equation to two equations that are first-order in
time in the standard way,

φ̇ = ξ, ξ̇ = −c2(−∇2 + µ2)φ. (11b)

To carry out the Schrödinger-equation presentation of such an equation system, we know that we need to
pin down a real symmetric operator ΩR with the dimensions of frequency. This should not be difficult in
the least in this particular case, as the second of our two equations very prominently manifests the real-
valued nonnegative symmetric operator c2(−∇2 + µ2), which has dimensions of frequency squared. It is
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therefore immediately clear that the square-root of this operator will necessarily figure very prominently in
the consequent Schrödinger equation.

The second touchstone of Schrödinger-equation presentation is that its canonical fields φψ and πψ must
have dimensions of action density amplitude. Now the conventional choice of dimensions for the classical
Klein-Gordon field φ is the same as that of the electromagnetic vector potential A [3, 1]. With this choice,
the field ξ/c will have the same dimensions as the electric field, i.e., that of energy density amplitude. To
obtain the desired dimensions of action density amplitude, we must multiply ξ/c by an object which has
the dimensions of the square-root of time. Since the nonnegative symmetric operator c2(−∇2 + µ2) has the
dimensions of frequency squared, we shall take it to negative one quarter power, and multiply that into ξ/c
to obtain a proposed πψ,

πψ = (c3)−
1

2 (−∇2 + µ2)−
1

4 ξ. (11c)

Now ξ is the time derivative of φ, so in order to construct the second proposed canonical field φψ from φ
itself , we require a further factor of frequency, which is readily provided by the square root of the operator
c2(−∇2 + µ2). These considerations lead us to,

φψ = (c)−
1

2 (−∇2 + µ2)
1

4 φ. (11d)

Now applying the equations of motion given by Eq. (11b) to calculate the time derivatives of φψ and πψ
defined by Eqs. (11d) and (11c), we obtain,

φ̇ψ = c(−∇2 + µ2)
1

2 πψ, π̇ψ = −c(−∇2 + µ2)
1

2 φψ. (11e)

Comparing this result to Eq. (10b), we positively identify the real symmetric operator ΩR as c(−∇2 + µ2)
1

2

in this classical Klein-Gordon field case. We know that HR = h̄ΩR, and of course the antisymmetric ΩI
and corresponding HI are entirely absent in this case. Therefore the first-quantized Hamiltonian operator
which corresponds to the classical Klein-Gordon field is h̄c(−∇2 + µ2)

1

2 . Taking account of the facts that
µ = ((mc)/h̄) and that, in configuration representation, p̂ = −ih̄∇, this Hamiltonian operator is equal

to (|cp̂|2 + m2c4)
1

2 , which is identical to the first quantized Hamiltonian operator that is mandated by the

correspondence principle for a free relativistic particle of mass m. We as well, of course, have available
the precise details of the one-to-one linear mapping from the classical Klein-Gordon field φ and its time
derivative ξ = φ̇ into the Schrödinger-equation wave function ψ,

ψ = (φψ + iπψ)/(2h̄)
1

2 = (2h̄c)−
1

2 (−∇2 + µ2)
1

4 φ+ i(2h̄c3)−
1

2 (−∇2 + µ2)−
1

4 φ̇. (11f)

It can be explicitly verified from this result that if φ simply satisfies the second-order in time Klein-Gordon
equation of Eq. (11a), then this ψ definitely satisfies the first-order in time Schrödinger equation with the

correspondence-principle first quantized Hamiltonian operator h̄c(−∇2 +µ2)
1

2 . This ψ has as well, of course,
been painstakingly crafted to have the proper dimensions of probability density amplitude that is appropriate
to a Schrödinger-equation wave function. Second quantization of this ψ along the lines described in the
previous section is, of course, completely straightforward. It is quite stunning that there exists a one-to-one
linear map of the classical Klein-Gordon fields φ and φ̇ which links them in such detail to that theory’s latent

quantum characteristics. What we thus have in front of our eyes in the one-to-one linear map of Eq. (11f)
is a tour de force of classical-quantum complementarity .

The one-to-one linear map of Eq. (11f) can, of course be explicitly inverted ,

φ = ((h̄c)/2)
1

2 (−∇2 + µ2)−
1

4 (ψ + ψ∗), φ̇ = −i((h̄c3)/2)
1

2 (−∇2 + µ2)
1

4 (ψ − ψ∗). (11g)

As we have previously mentioned, the most straightforward and physically transparent route to the quanti-

zation of the classical Klein-Gordon field φ, which is explicitly given by Eq. (11g) above, is via the second

quantization of the first-quantized Schrödinger-equation wave function ψ. This, of course, entails promotion

of that wave function ψ to become the non-Hermitian operator ψ̂ which obeys the canonical commutation
rules,

[ψ̂(r), ψ̂†(r′)] = δ(3)(r − r′), [ψ̂(r), ψ̂(r′)] = 0, [ψ̂†(r), ψ̂†(r′)] = 0. (11h)

The interpretation of Eq. (11h) is of course that ψ̂†(r) is the operator which creates a free Klein-Gordon

scalar quantum of mass m at the point r, and that ψ̂(r) is the operator which annihilates such a quantum
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at the point r. The Hamiltonian functional H[ψ,ψ∗] of Eq. (8a), which for this classical Klein-Gordon case
is explicitly,

H[ψ,ψ∗] = (ψ∗, h̄c(−∇2 + µ2)
1

2 ψ), (11i)

becomes, in the form Ĥ[ψ̂, ψ̂†], the Hamiltonian operator of the second-quantized system. In the Heisenberg
picture which this Hamiltonian operator defines, the time-dependent Schrödinger equation that ψ satisfies
continues to hold for the annihilation operator ψ̂ as an operator relation. Also, upon being transcribed
into second-quantized form, where ψ̂ and ψ̂† respectively replace ψ and ψ∗, Eq. (11g) explicitly yields the

quantized version φ̂ of the classical Klein-Gordon field φ as a Hermitian operator , and it as well does the
same for the quantized version of the time derivative of the classical Klein-Gordon field. It is interesting to
note from the quantized transcription of Eq. (11g) that φ̂, the Hermitian quantized version of the classical
Klein-Gordon field, can both create and annihilate free Klein-Gordon scalar quanta.

Free-photon quantum mechanics from the source-free Maxwell equations

In the source-free case, the Coulomb and Gauss laws tell us that both the electric and magnetic fields are
purely transverse, i.e., ∇ · E = 0 and ∇ · B = 0. The results of Faraday’s law and the Maxwell law in the
source-free case are,

Ḃ = −c∇× E, Ė = c∇× B. (12a)

Both B and E have dimensions of energy density amplitude. We need to multiply them both by the operator
(−c2∇2)−

1

4 , which has the dimensions of the square root of time to convert them to the dimensions of action
density amplitude,

ΦB = (−c2∇2)−
1

4 B, ΠE = −(−c2∇2)−
1

4 E. (12b)

They satisfy the equations of motion,

Φ̇B = c∇× ΠE, Π̇E = −c∇× ΦB, (12c)

which yield ΩI = 0 and the Schrödinger equation with Hermitian Hamiltonian operator Ĥ = h̄ΩR = h̄c curl.
This Hamiltonian operator is odd in parity, which, of course, does not suit elecromagnetism. We can, however,
readily elicit the parity-conserving Schrödinger equation by instead choosing Φ and Π to both be of the same

definite parity , as well as having the dimensions of action density amplitude, e.g.,

Φ
def
= (−∇2)−

1

2 (∇× ΦB) = c−
1

2 (−∇2)−
3

4 (∇× B), Π
def
= ΠE = −c−

1

2 (−∇2)−
1

4 E. (12d)

These two transverse polar vector fields Φ and Π satisfy the equations of motion,

Φ̇ = c(−∇2)
1

2 Π, Π̇ = −c(−∇2)
1

2 Φ, (12e)

which yield ΩI = 0 and the Schrödinger equation with the even-parity Hermitian Hamiltonian operator
Ĥ = h̄ΩR = h̄c(−∇2)

1

2 . Because p̂ = −ih̄∇ in configuration representation, this Hamiltonian operator
equals |cp̂|, which is, of course, appropriate to the free photon. Eq. (12d) thus yields the one-to-one linear
mapping of the source-free electric and magnetic fields into the free photon’s Schrödinger-equation wave
function,

Ψ = (Φ + iΠ)/(2h̄)
1

2 = (2h̄c)−
1

2

[
(−∇2)−

3

4 (∇× B) − i(−∇2)−
1

4 E
]
. (12f)

The inverse of this mapping is given by,

B = ((h̄c)/2)
1

2 (−∇2)−
1

4 (∇× (Ψ + Ψ∗)) , E = i((h̄c)/2)
1

2 (−∇2)
1

4 (Ψ − Ψ∗). (12g)

For source-free electromagnetism, an appropriate gauge for the four-vector potential Aµ is the radiation

gauge, for which A0 = 0 and ∇ · A = 0 [4]. In radiation gauge, E = −Ȧ/c and B = ∇× A, so that we can
reexpress the mapping of Eq. (12f) in terms of the radiation gauge A and Ȧ,

Ψ = (2h̄c)−
1

2 (−∇2)
1

4 A + i(2h̄c3)−
1

2 (−∇2)−
1

4 Ȧ, (12h)

which is highly analogous to Eq. (11f) for the Schrödinger-equation presentation of the wave function that
corresponds to classical Klein-Gordon field theory. Its inverse mapping is consequently highly analogous to
the classical Klein-Gordon field theory inverse of Eq. (11g),

A = ((h̄c)/2)
1

2 (−∇2)−
1

4 (Ψ + Ψ∗), Ȧ = −i((h̄c3)/2)
1

2 (−∇2)
1

4 (Ψ − Ψ∗). (12i)
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Indeed, if we begin with the radiation-gauge vector potential approach rather than the electric and
magnetic field Maxwell equation approach, the steps that are are involved turn out to rigidly parallel those
of classical Klein-Gordon field theory. This is so because the transverse radiation-gauge vector potential
satisfies the classical wave equation, which is simply the special case of the Klein-Gordon equation that has
µ = 0. The transverse part of the vector potential AT always satisfies the equation,

ÄT /c
2 −∇2AT = jT /c, (13a)

where jT is the transverse part of the source current. When there is no transverse source current, Eq. (13a)
reduces to the classical wave equation for AT . When there is no source whatsoever, one can use the radiation
gauge [4], wherein A0 = 0 and ∇·A = 0, which imply that AT is the only nonvanishing part of the four-vector
potential Aµ, and AT of course satisfies the classical wave equation.

One now approaches the classical wave equation for the radiation-gauge vector potential A in rigid parallel

with the approach of Eqs. (11a) through (11g) to the classical Klein-Gordon scalar field φ—these two fields
even have the same dimensions [3, 1]. One merely sets the Klein-Gordon mass parameter m to zero, which
causes µ to also equal zero, and substitutes the transverse vector field A for φ. Thus instead of Eq. (11a)
one has,

Ä/c2 + (−∇2)A = 0. (13b)

In rigid parallel with Eq. (11b), this second-order in time equation is converted to two equations which are
first-order in time,

Ȧ = Ξ, Ξ̇ = −c2(−∇2)A. (13c)

From this point on everything proceeds in perfect analogy with the Klein-Gordon development of Eqs. (11c)
through (11g), which results in the one-to-one linear mapping of Eqs. (12h) and (12i) above, and also the
first-quantized Hamiltonian |cp̂| for the free photon.

In addition to its zero mass parameter, a second special feature of electromagnetic theory vis-à-vis
classical Klein-Gordon theory is, of course, the free photon’s always transverse polarization (spin) states.
This signature free-photon characteristic does not cause much in the way of complications, but there is one
formula concerning second quantization which it notationally impacts, albeit no substantive physical effect

is involved . The canonical commutation rule for second quantization of the free photon’s transverse vector
wave function might naively be expected to read,

[(Ψ̂(r))i, (Ψ̂
†(r′))j ] = δijδ

(3)(r − r′), (14a)

but this is not mathematically consistent with the transverse character of the second-quantized photon wave-
functions, i.e., it is mathematically inconsistent with the fact that ∇ · Ψ̂ = 0. The nature of the right-hand
of Eq. (14a) is one of completeness, but the transverse wave function creation and annihilation operators are
incomplete in that they do not pertain to vector fields which are the gradients of scalar fields, i.e., they do
not pertain to vector fields which fail to be transverse. Now the ij components of the projection operator

onto the subspace of such purely gradient vector fields is given by,

Pij = −∂i(−∇2)−1∂j . (14b)

We note that Pij is Hermitian, and that its contraction with itself yields itself, which are the two essential
properties of the ij components of projection operators. Of course its contraction with the components of
any transverse vector field vanishes. Thus (δij − Pij) are the ij components of the projection operator onto

the subspace of transverse vector fields, and therefore,

[(Ψ̂(r))i, (Ψ̂
†(r′))j ] = 〈r|(δij − Pij)|r

′〉 = (2π)−3
∫
eik·(r−r

′)
(
δij − kikj |k|

−2
)
d3k. (14c)

Notwithstanding these fancy maneuvers with projection operators, the only issue which is involved here is
the simple fact that free-photon creation and annihilation operators (and as well free photon wave functions
in the first quantized regime) are purely transverse, and therefore any expression involving these operators,
e.g., the expression which describes their canonical commutation relation, must, of course, correctly reflect

this fact . There is obviously no physics implication which flows from this requirement of mere notational

correctness.

Conclusion
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It is a remarkable fact that any oscillatory classical linear system which is homogeneous and conservative is
effectively already first quantized; one merely needs to uncover the one-to-one linear transformation which
brings it to explicit time-dependent Schrödinger-equation form. Thus Michael Faraday and James Clerk
Maxwell were actually the first to fully elucidate a quantum system, namely the very important and not
exactly elementary one of the massless, transverse-vector free photon.

Any complex-valued solution wave function of a time-dependent Schrödinger-equation has the familiar
characteristic expansion in terms of the complete set of mutually orthogonal eigenfunctions of that equation’s
Hamiltonian operator. The one-to-one linear mapping of any oscillatory linear classical system that is
homogeneous and conservative into a Schrödinger equation thus implies a characteristic two-component

eigenfunction expansion of such a classical system’s solutions. For the case of certain wave equations that
fall into the class of Eq. (1b), precisely such a solution expansion has been described in detail by Leung,
Tong and Young [5].

The natural correspondence-principle version of the relativistic free-particle Schrödinger equation was
iterated by Klein, Gordon and Schrödinger for no physically motivated reason, but merely in an effort to rid

it of its calculationally unpalatable square-root Hamiltonian operator [6, 1, 7]. If this iterated equation is
still regarded as a complex-valued quantum-mechanical entity , a large class of completely extraneous, highly

unphysical unbounded-below negative-energy solutions are injected by that iteration. These also destroy its
probability interpretation, and the fact that it depends on only the square of a Hamiltonian cuts it adrift
from the Heisenberg picture and Ehrenfest theorem. However, if this iterated equation is regarded as the
description of a classical, real-valued field, it thereupon becomes strongly analogous to the classical wave

equation, and has an eminently sensible nonnegative conserved energy [3, 1]. This classical Klein-Gordon
equation is as well one of those classical equation systems which is linearly equivalent to a Schrödinger
equation: it quite marvelously chooses to be equivalent to precisely the Schrödinger equation with the
natural correspondence-principle square-root Hamiltonian operator which Klein, Gordon and Schrödinger
had tried to escape by concocting it .

It is a pity that Klein, Gordon and Schrödinger had no idea of the theorem presented by this paper,
and thus were not equipped to unearth this astonishing fact themselves. If they had but grasped the
full consequences of the real-valued classical Klein-Gordon equation, they might well have abandoned their
physically unmotivated flight from the correspondence-principle mandated relativistic free-particle square-
root Hamiltonian operator (|cp̂|2 +m2c4)

1

2 [7, 1].
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