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Abstract

A class of non-Cartesian physical systems, [7], are those whose com-
posite state spaces are given by significantly extended tensor products.
A more detailed presentation of the way such extended tensor products
are constructed is offered, based on a step by step comparison with the
construction of usual tensor products. This presentation clarifies the
extent to which the extended tensor products are indeed more general
than the usual ones.

”History is written with the feet ...”

Ex-Chairman Mao

”Science in not done scientifically, since

it is mostly done by non-scientists ... ”

Anonymous
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1. Preliminaries

As seen in [7], there is a natural division of physical systems in Carte-
sian and non-Cartesian according to the way their state spaces com-
pose.
Namely, given two Cartesian systems X and Y with the respective
state spaces E and F , then the composite system ”X andY ” has the
state space given by the Cartesian product E × F . Classical physical
systems are in this sense Cartesian.
On the other hand, quantum systems, for instance, have considerably
larger state spaces for their composites. Namely, if X and Y are two
such systems and their state spaces are the complex Hilbert spaces E
and F , respectively, then the state space of the composite quantum
system ”X andY ” is the tensor product E

⊗
F . And indeed, this is a

considerably larger space than the Cartesian product E×F , since we
have the injective mapping, which for convenience we shall consider
to be an embedding

(1.1) E × F 3 (x, y) 7−→ x⊗ y ∈ E
⊗

F

and the difference between the two sets, in this case both complex
Hilbert spaces is clearly illustrated already in the finite dimensional
case when, if m,n are the dimensions of E and F , respectively, then
m+n is the dimension of E×F , while E

⊗
F will have the dimension

mn. Thus in general, the set of entangled elements

(1.2) (E
⊗

F ) \ (E × F )

is considerably larger than the set E × F of non-entangled elements.

An essential difference, therefore, between Cartesian and non-Cartesian
physical systems is that in the state spaces of the composites of two
of the latter there are states which can be seen as entangled in a gen-
eralized sense, namely, those whose state cannot be expressed simply
in terms of a pair of states, with each state in the pair taken from one
of the two component systems. And as is well known in the case of
quantum systems, entangled composite states are most important, for
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instance, in quantum computation, and in general, quantum informa-
tion technology.

For convenience, we shall keep using the simpler traditional term en-
tangled for the states mentioned above as being entangled in a gener-
alized sense.

So far, it appears that the only known non-Cartesian physical systems
are the quantum ones.
In this regard, in [7], the problem was formulated to find physical sys-
tems other than the quantum ones and which are non-Cartesian.
Needless to say, there may be various applicative advantages in such
systems. Among others, they may be used to build computers which
- due to the presence of entangled states - could have advantages over
usual electronic digital computers.

2. Usual Tensor Products

Let E and F be abelian groups. Then their tensor product E
⊗

F is
constructed in the following five steps, [2-6].

Step 1 :

Let G the free monoid generated by the usual Cartesian product E×F .
In other words, the elements of G are all the finite sequences

(2.1) (a1, b1), (a2, b2), (a3, b3), . . . , (an, bn)

where n ≥ 1 and a1, a2, a3, . . . , an ∈ E, b1, b2, b3, . . . , bn ∈ F . We also
include the empty sequence, which thus corresponds to n = 0.

Step 2 :

Now, the composition of these sequences is done simply by their con-
catenation. Furthermore, in order to simplify the notation, the comas
in (2.1) will be omitted. It will be convenient to denote the resulting
monoid by
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(2.2) (G, �)

Clearly, (G, �) is a noncommutative monoid, whenever at least one of
the groups E or F has more than one single element. Further, we have
the injective mapping

(2.3) E × F 3 (a, b) 7−→ (a, b) ∈ G

which in fact is the embedding

(2.4) E × F $ G

Step 3 :

We define an equivalence relation ≈ on G as follows. Given two ele-
ments

g = (a1, b1)(a2, b2)(a3, b3) . . . (an, bn),

h = (c1, d1)(c2, d2)(c3, d3) . . . (cm, dm) ∈ G

they are equivalent, if and only if any of the following three conditions
holds :

(2.5) g = h

or one of the elements can be obtained from the other by a finite num-
ber of applications of any of the following four operations :

(2.6) a permutation of pairs (a, b) in g

(2.7) a permutation of pairs (c, d) in h

(2.8) replacement of a pair ((a ′ + a ′′), b) in g with the pair of pairs
(a ′, b)(a ′′, b), or vice-versa

(2.9) replacement of a pair (a, (b ′ + b ′′)) in h with the pair of pairs
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(a, b ′)(a, b ′′), or vice-versa

where + is the group operation in the respective abelian groups E and
F .

It follows easily that ≈ is an equivalence relation which is compatible
with the monoid (G, �).

Step 4 :

Finally, one defines the tensor product as the quotient space

(2.10) E
⊗

F = G/ ≈

and in view of (2.3), (2.4), obtains the injective mapping

(2.11) E × F 3 (a, b) 7−→ a⊗ b ∈ E
⊗

F

where a⊗ b denotes the coset, or in other words, the equivalence class
of (a, b) ∈ G, see (2.4), with respect to the equivalence relation≈ on G.

Step 5 :

Since the equivalence ≈ is compatible with the monoid structure of
(G, �), and in view of (2.8), (2-9), it follows that the tensor product
E

⊗
F obtains an abelian group structure.

3. Comparison with Extended Tensor Products

The essential fact to note is that in the above steps 1 and 2, there is
absolutely no need for any structure on the sets E and F , and thus
they can be arbitrary nonvoid sets.

Furthermore, in step 3 above, the only place the structure on the sets E
and F appears is in (2.8), (2.9). And the way this structure is involved
allows for wide ranging generalizations, far beyond any algebra, [2-6].
These two facts are at the basis of the possibility to extend the con-
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struction of tensor products to a surprising extent beyond that familiar
in linear and multi-linear algebra, and in particular, beyond Hilbert
spaces, as customary in quantum mechanics.

Here we illustrate the above in the case of the tensor product of two
arbitrary sets, while in the next section, that will further be extended
to tensor products of infinitely many arbitrary sets.

In order to make the natural way of such an extension easier to
grasp, let us note that a usual algebraic operation on a set E, such
as for instance, addition or multiplication, is given by a mapping
α : E × E 7−→ E. And such a mapping is a particular case of a
ternary relation α̃ ⊆ E × E × E, defined by

(a, b, c) ∈ α̃ ⇐⇒ α(a, b) = c, a, b, c ∈ E

And clearly, in (2.8), one could also ask that

(3.1) a pair (a, b) in g be replaced with the pair of pairs
(a ′, b)(a ′′, b), or vice-versa, where (a ′, a ′′, a) ∈ α̃

and similarly in (2.9).

And then, it is easy to go to the further level of extension of the tensor
products E

⊗
G. Namely, let E and F be two arbitrary nonvoid sets.

Then we proceed with steps 1 and 2 as above. As for step 3, we only
modify (2.8) and (2.9) as follows.

Given any m,n-ary relation α ⊆ Em ×En, together with any p, q-ary
relation β ⊆ F p × F q. As an extension of (3.1), instead of (2.8) we
require

(3.2) replace any sequence of pairs (a ′1, b) . . . (a
′
m, b) with the

sequence of pairs (a ′′1, b) . . . (a
′′
n, b), where

(a ′1, . . . , a
′
m, a

′′
1, . . . , a

′′
n) ∈ α and b ∈ F

while (2.9) becomes
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(3.3) replace any sequence of pairs (a, b ′1) . . . (a, b ′p) with the
sequence of pairs (a, b ′′1) . . . (a, b ′′q), where
a ∈ E and (b ′1, . . . , b

′
p, b

′′
1, . . . , b

′′
q) ∈ β

However, the extension of the tensor products E
⊗

G. Indeed, instead
of a single multi-arity relation α on E, we can take an arbitrary finite
or infinite family of them, say, αi, with i ∈ I. And similarly, we can
take an arbitrary finite or infinite family βj, with j ∈ J , of multi-arity
relations on F . And then, instead of (3.2) we can ask a similar oper-
ation for each αi, with i ∈ I. And we can do likewise instead of (3.3).

Remarkably, the resulting equivalence relation ≈ on G will again be
compatible with the monoid (G, �), thus the quotient

(3.4) E
⊗

F = G/ ≈

will, in view of (2.6), be a commutative monoid as well.

We note that, even if the sets E and F have no any kind of structure
assumed on them, the tensor product (3.4) results from the multi-arity
relations αi, with i ∈ I on E, respectively, βj, with j ∈ J , on F .

4. Infinite Tensor Products

The above can obviously be further extended to tensor products finite
or infinite families of arbitrary nonvoid sets Eλ, with λ ∈ Λ, namely

(4.1)
⊗

λ∈Λ Eλ

with the preservation of the injective mapping

(4.2)
∏

λ∈Λ Eλ 3 (aλ)λ∈Λ 7−→ ⊗λ∈Λ aλ ∈
⊗

λ∈Λ Eλ

and thus the motivation for considering the embedding

(4.3)
∏

λ∈Λ Eλ ⊆
⊗

λ∈Λ Eλ
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with the resulting set

(4.4)
⊗

λ∈Λ Eλ \
∏

λ∈Λ Eλ

of entangled elements in the composite system whose components are
Eλ, with λ ∈ Λ.

Of course, the way these components are composed is given by the
multi-arity relations assumed on each of them, as seen in the particu-
lar cases in section 3 above.

5. Non-Cartesian Systems

Needless to say, to the extent that non-cartesian physical systems other
than the quantum ones may indeed exist, their composite state spaces
may be obtained by constructions other than even the most general
tensor products above.
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