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Abstract

A novel (to our knowledge) nonassociative and noncommutative octo-
nionic ternary gauge field theory is explicitly constructed that it is based
on a ternary-bracket structure involving the octonion algebra. The ternary
bracket was defined earlier by Yamazaki. The field strengths Fµν are given
in terms of the 3-bracket [Bµ, Bν , Φ] involving an auxiliary octonionic-
valued scalar field Φ = Φaea which plays the role of a ”coupling” func-
tion. In the concluding remarks a list of relevant future investigations are
briefly outlined.
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1 Introduction

Exceptional, Jordan, Division, Clifford, noncommutative and nonassociative al-
gebras are deeply related and are essential tools in many aspects in Physics, see
[1], [2], [3], [4], [7], [24], [23], for references, among many others. For instance,
the large N limit of Exceptional Jordan Matrix models, advanced by [9], fur-
nished a Chern-Simons membrane action leading to important connections to
M and F theory [10]. It was shown in [22] how one could generalize ordinary
Relativity into an Extended Relativity theory in Clifford spaces, involving poly-
vector valued (Clifford-algebra valued) coordinates and fields, where in addition
to the speed of light there is also an invariant length scale (set equal to the
Planck scale) in the definition of a generalized metric distance in Clifford spaces
encoding, lengths, areas, volumes and hyper-volumes metrics. An overview of
the basic features of the Extended Relativity in Clifford spaces can be found in
[22].
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A Chern-Simons E8 Gauge theory of Gravity was proposed [21] as a unified
field theory of a Lanczos-Lovelock Gravitational theory with a E8 Generalized
Yang-Mills field theory and which is defined in the 15D boundary of a 16D bulk
space. The role of Clifford Cl(16) algebras was essential. It was discussed how
an E8 Yang-Mills in 8D, after a sequence of symmetry breaking processes based
on the non − compact forms of the exceptional groups, as follows E8(−24) →
E7(−5) × SU(2) → E6(−14) × SU(3) → SO(8, 2)× U(1), furnishes a Conformal
gravitational theory in 8D based on gauging the non-compact conformal group
SO(8, 2) in 8D. Upon performing a Kaluza-Klein-Batakis [12] compactification
on CP 2, from 8D to 4D involving a nontrivial torsion, leads to a Conformal
Gravity-Yang-Mills unified theory based on the conformal group SO(4, 2) and
the Standard Model group SU(3)× SU(2)× U(1) in 4D. Other approaches to
unification based on Clifford algebras can be found in [13], [16], [14] and on E8

were proposed long ago by [15].
A Nonassociative Gauge theory based on the Moufang S7 loop product (not

a Lie algebra) has been constructed by [26]. Taking the algebra of octonions
with a unit norm as the Moufang S7-loop, one reproduces a nonassociative
octonionic gauge theory which is a generalization of the Maxwell and Yang-
Mills gauge theories based on Lie algebras. BPST -like instantons solutions
in D = 8 were also found. These solutions represented the physical degrees
of freedom of the transverse 8-dimensions of superstring solitons in D = 10
preserving one and two of the 16 spacetime supersymmetries. Nonassociative
deformations of Yang-Mills Gauge theories involving the left and right bimodules
of the octonionic algebra were presented by [25].

Recently, tremendous activity has been launched by the seminal works of
Bagger, Lambert and Gustavsson (BLG) [33], [34] who proposed a Chern-
Simons type Lagrangian describing the world-volume theory of multiple M2-
branes. The original BLG theory requires the algebraic structures of generalized
Lie 3-algebras and also of nonassociative algebras. Later developments by [35]
provided a 3D Chern-Simons matter theory with N = 6 supersymmetry and
with gauge groups U(N)× U(N), SU(N)× SU(N). The original construction
of [35] did not require generalized Lie 3-algebras, but it was later realized that it
could be understood as a special class of models based on Hermitian 3-algebras
[36], [37]. For more recent developments we refer to [38] and references therein.

The novel (to our knowledge) nonassociative octonionic ternary gauge theory
developed in this work differs from the nonassociative gauge theories of [26],
[25] in many respects, mainly that it is based on a ternary bracket involving the
octonion algebra that was proposed by Yamazaki [28]. It also differs from the
work by [33], [34] in that our octonionic-valued gauge fields Ba

µea; a = 0, 1, 2, ....7
are not, and cannot be represented, in terms of matrices Aµ = Aab

µ f cd
ab =

(Ãµ)cd, defined in terms of f cd
ab which are the structure constants of the 3-Lie

algebra [ta, tb, t
c] = f cd

ab td. This construction is not unlike writing the matrices
Aµ = Aa

µf bc
a = (Aµ)bc of ordinary Yang-Mills gauge theory in terms of the

adjoint representation of the gauge algebra : [ta, tb] = f c
ab tc. Furthermore,

our field strengths Fµν are explicitly defined in terms of a 3-bracket [Bµ, Bν ,Φ]
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involving an auxiliary octonionic-valued scalar field Φ = Φaea which plays the
role of a ”coupling” function. Whereas the definition of Fµν by [33], [34] was
based on the standard commutator of the matrices (Ãµ)a

c (Ãν)c
b − (Ãν)a

c (Ãµ)c
b.

A thorough discussion of the relevance of ternary and nonassociative struc-
tures in Physics has been provided in [27], [5], [6]. The earliest example of
nonassociative structures in Physics can be found in Einstein’s special theory
of relativity. Only colinear velocities are commutative and associative, but
in general, the addition of non-colinear velocities is non-associative and non-
commutative. A putative noncommutative and nonassociative gravity theory for
closed strings probing curved backgrounds with non-vanishing three-form flux
based on a three-bracket structure were recently discussed by [32] . Nonassocia-
tive star product deformations for D-brane world volume in curved backgrounds
were studied by [31]. The construction relied in the Kontsevich noncommutative
and nonassociative star product.

The complexification of ordinary gravity (not to be confused with Hermitian-
Kahler geometry ) has been known for a long time. Complex gravity requires
that gµν = g(µν)+ig[µν] so that now one has gνµ = (gµν)∗, which implies that the
diagonal components of the metric gz1z1 = gz2z2 = gz̃1z̃1 = gz̃2z̃2 must be real. A
treatment of a non-Riemannan geometry based on a complex tangent space and
involving a symmetric g(µν) plus antisymmetric g[µν] metric component was first
proposed by Einstein-Strauss [8] (and later on by [18] ) in their unified theory
of Electromagentism with gravity by identifying the EM field strength Fµν with
the antisymmetric metric g[µν] component.

Borchsenius [17] formulated the quaternionic extension of Einstein-Strauss
unified theory of gravitation with EM by incorporating appropriately the SU(2)
Yang-Mills field strength into the degrees of freedom of a quaternionc-valued
metric. Oliveira and Marques [19] later on provided the Octonionic Gravita-
tional extension of Borchsenius theory involving two interacting SU(2) Yang-
Mills fields and where the exceptional group G2 was realized naturally as the
automorphism group of the octonions.

The Octonionic Gravity developed by [19] was extended to Noncommutative
and Nonassociative Spacetime coordinates associated with octonionic-valued co-
ordinates and momenta by [20]. The octonionic metric Gµν already encompasses
the ordinary spacetime metric gµν , in addition to the Maxwell U(1) and SU(2)
Yang-Mills fields such that implements the Kaluza-Klein Grand Unification pro-
gram without introducing extra spacetime dimensions. The color group SU(3)
is a subgroup of the exceptional G2 group which is the automorphism group
of the octonion algebra. The flux of the SU(2) Yang-Mills field strength ~Fµν

through the area-momentum ~Σµν in the internal isospin space yields correc-
tions O(1/M2

Planck) to the energy-momentum dispersion relations without vio-
lating Lorentz invariance as it occurs with Hopf algebraic deformations of the
Poincare algebra.

After this brief preamble we proceed with the main results of this work
which is the construction, to our knowledge, of a novel nonassociative octonionic
ternary gauge field theory. We conclude with a few remarks about the plausible
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future avenues of research.

2 Octonionic Ternary Gauge Field Theories

Given an octonion X it can be expanded in a basis (eo, em) as

X = xo eo + xm em, m, n, p = 1, 2, 3, .....7. (2.1)

where eo is the identity element. The Noncommutative and Nonassociative
algebra of octonions is determined from the relations

e2
o = eo, eoei = eieo = ei, eiej = −δijeo + cijkek, i, j, k = 1, 2, 3, ....7. (2.2)

where the fully antisymmetric structure constants cijk are taken to be 1 for the
combinations (123), (516), (624), (435), (471), (673), (672). The octonion conju-
gate is defined by ēo = eo, ēm = −em

X̄ = xo eo − xm em. (2.3)

and the norm is

N(X) = < X X > = Real (X̄ X) = (xo xo + xk xk). (2.4)

The inverse

X−1 =
X̄

N(X)
, X−1X = XX−1 = 1. (2.5)

The non-vanishing associator is defined by

(X,Y,Z) = (XY)Z−X(YZ) (2.6)

In particular, the associator

(ei, ej , ek) = (eiej)ek − ei(ejek) = 2 dijkl el

dijkl =
1
3!

εijklmnp cmnp, i, j, k.... = 1, 2, 3, .....7 (2.7)

The generators of the split-octonionic algebra admit a realization in terms
of the 4× 4 Zorn matrices (in blocks of 2× 2 matrices) by writing

uo =
1
2

(eo + ie7), u∗o =
1
2

(eo − ie7)

ui =
1
2

(ei + iei+3), u∗i =
1
2

(ei − iei+3) (2.8)
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uo =
(

0 0
0 ωo

)
u∗o =

(
ωo 0
0 0

)

ui =
(

0 0
ωi 0

)
u∗i =

(
0 −ωi

0 0

)
(2.9)

The quaternionic generators ωo, ωi, i = 1, 2, 3 obey the algebra ωiωj = εijkωk−
δijωo and are related to the Pauli spin 2× 2 matrices by setting σi = i ωi and
ωo = 12×2.

The ui, u
∗
i behave like fermionic creation and annihilation operators corre-

sponding to an exceptional (non-associative) Grassmannian algebra

{ui, uj} = {u∗i , u∗j} = 0, {ui, u
∗
j} = −δij . (2.10a)

1
2
[ui, uj ] = εijk u∗k,

1
2
[u∗i , u

∗
j ] = εijk uk, u2

o = uo, (u∗o)
2 = u∗o. (2.10b)

Unlike the octonionic algebra, the split-octonionic algebra contains zero divisors
and therefore is not a division algebra.

The automorphism group of the octonionic algebra is the 14-dim excep-
tional G2 group that admits a SU(3) subgroup leaving invariant the idempo-
tents uo, u

∗
o. This SU(3)c was identified as the color group acting on the quarks

and antiquarks triplets [11] Ψα = ui Ψi
α, Ψ̄α = −u∗i Ψ̄i

α, i = 1, 2, 3, respec-
tively. From the split-octonionic algebra multiplication table one learns that
triplet × triplet = anti triplet and triplet × anti triplet = singlet providing a
very natural algebraic interpretation of confinement of 3 quarks.

The multiplication product of the split-octonions generators uo, u
∗
o, ui, u

∗
i is

reproduced in this Zorn matrix realization. The Zorn matrix product of

A =
(

Ao ωo −Ai ωi

Bi ωi Bo ωo

)
B =

(
Co ωo −Ci ωi

Di ωi Do ωo

)
(2.11)

is defined by

A•B =
(

(AoCo + AiDi) ωo −(AoCk + DoAk + εijkBiDj) ωk

(CoBk + BoDk + εijkAiCj) ωk (BoDo + BiCi) ωo

)
(2.12)

where we have used

ωi ωj = εijkωk − δijωo ⇒ ωi ωi = −ωo, for each i = 1, 2, 3 ⇒

~x.~y = (xiωi) (yiωi) = −xiyi ωo. (2.13)
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In this section we shall focus entirely in the octonion algebra. Yamazaki [28]
constructed a realization of a generalized Lie ternary-algebra using the Octo-
nions by defining a three-bracket. It requires using the left and right operators
Luv = uv, Ruv = vu and the derivative operator constructed by Nambu [27]

Du,v x = ( [Lu, Lv] + [Ru, Rv] + [Lu, Rv] ) x. (2.14)

The operator Du,v obeys the analog of Liebnitz rule

Du,v (xy) = (Du,vx)y + x(Du,vy). (2.15)

and allows to define the three-bracket as

[ u, v, x ] ≡ Du,v x =
1
2

( u(vx)− v(ux) + (xv)u − (xu)v + u(xv) − (ux)v ) .

(2.16a)
For the octonionic algebra one has after a straightforward calculation

[ ea, eb, eo ] = 0; [ ea, eb, ec ] = fabcd ed = [ dabcd − δac δbd + δbc δad ] ed

(2.16b)
where the totally antisymmetric associator structure constants dabcd are the 7-
dim ”duals” to the cabc structure constants as shown by eq-(2.7) (the identity
element eo is excluded due to the triviality [ea, eb, eo] = 0). Yamazaki [28] has
shown that the 3-brackets (2.16a) obey the fundamental identity (2.20) below.
This follows from the algebraic properties of derivations based on the analog of
Liebnitz rules of differentiation. One should notice that

[ u, v, x ] 6= 1
2

( [ [ u, v ], x ] − (u, x, v) ) (2.17)

where (u, x, v) = (ux)v − u(xv) is the nonvanishing associator. For nonasso-
ciative algebras, the Jacobi identity is not obeyed and the Jacobiator is not
zero

J(x, y, z) ≡ [ [ x, y ], z ] + [ [ y, z ], x ] + [ [ z, x ], y ] 6= 0 (2.18)

In particular, the Jacobiator associated with the octonion algebra is proportional
to the associator J(ea, eb, ec) ∼ (ea, eb, ec) = 2dabcded. The octonion algebra is
also a Malcev algebra [30].

The commutator of two generalized derivative operators acting on z is

[ Du,v, Dx,y ] z = Du,v Dx,y z − Dx,y Du,v z =

D[u,v,x],y z + Dx,[u,v,y] z = [ [u, v, x], y, z ] + [ x, [u, v, y], z ]. (2.19)

The result in (2.19) is a direct consequences of the fundamental identity

[ [x, u, v], y, z ] + [ x, [y, u, v], z ] + [ x, y, [z, u, v] ] = [ [x, y, z], u, v ]
(2.20)
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which is obeyed by the 3-bracket (2.16) [28]. A bilinear positive symmetric prod-
uct < u, v >=< v, u > is required such that that the ternary bracket/derivation
obeys what is called the metric compatibility condition

< [u, v, x], y > = − < [u, v, y], x > = − < x, [u, v, y] > ⇒

Du,v < x, y > = 0 (2.21a)

The symmetric product remains invariant under derivations. There is also the
additional symmetry condition required by [28]

< [u, v, x], y > = < [x, y, u], y > (2.21b)

Okubo [4] constructed an octonionic triple product which is totally antisym-
metric in all of its entries and is given by

[ x, y, z ]Okubo =
1
2

( (x, y, z) + < x, eo > [y, z] + < y, eo > [z, x] ) +

1
2

( < z, eo > [x, y] − < z, [x, y] > eo ) . (2.22)

where eo is the Octonion unit element and (x, y, z) = (xy)z − x(yz) is the
nonvanishing associator for nonassociative algebras.

The ternary product that we shall be using in this work is the one provided
by Yamazaki (2.16) which obeys the key fundamental identity (2.20) and leads
to the structure constants fabcd that are pairwise antisymmetric but are not
totally antisymmetric in all of their indices : fabcd = −fbacd = −fabdc = fcdab;
however : fabcd 6= fcabd; and fabcd 6= − fdbca. The associator ternary operation
for octonions (x, y, z) = (xy)z − x(yz) does not obey the fundamental identity
(2.20) as emphasized by [28]. For this reason we cannot use the associator to
construct the 3-bracket.

Equipped with the above definition of the 3-bracket eq-(2.16) one may now
proceed with the explicit construction of a nonassociative and noncommutative
ternary gauge field theory based on the octonions. The building elements are the
octonionic-valued gauge field Bµ = Ba

µ ea and an auxiliary octonionic-valued
scalar field Φ = Φaea. The ternary infinitesimal gauge transformations for the
fields Bµ,Φ are defined respectively in terms of the parameters Λab = −Λba and
Λa as

δ (Bm
µ em) = − ∂µ (Λm em) + Λab [ea , eb, Bc

µ ec] =

− ∂µ (Λm em) + Λab Bc
µ fabcm em (2.23a)

δ (Φm em) = Λab [ea, eb, Φc ec] = Λab Φc fabcm em (2.23b)

No distinction is made between fabcmem and f m
abc em since the metric that

raises/lowers indices is Euclidean δab. The second rank field strength tensor
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based on the ternary algebra (3-brackets) is defined differently from the Yang-
Mills case (based on 2-brackets) as follows

Fµν = ∂µBν − ∂νBµ + [Bµ, Bν , Φ]. (2.24)

where Φ = Φaea is the auxiliary octonionic-valued scalar field without dy-
namical degrees of freedom and which plays the role of an effective octonionic
”coupling” function. By recurring to the infinitesimal transformations (2.23a)
one has

δ(Fµν) = ∂µ(δBν) − ∂ν(δBµ) + δ ([Bµ, Bν , Φ]) (2.25)

The inhomogeneous terms in the infinitesimal gauge transformations δFµν of
(2.25) cancel if

(∂µΛab) Bc
ν fabcm em − (∂νΛab) Bc

µ fabcm em −

(∂µΛa) Bb
ν Φc fabcm em − (∂νΛb) Ba

µ Φc fabcm em = 0 (2.26)

Because the expression in eq-(2.31) is not explicitly anti-symmetric under the
exchange of the indices µ ↔ ν, one must perform a series of three steps. Ex-
changing the b ↔ c indices in the third term −(∂µΛa)Bb

νΦcfabcmem allows to
rewrite it as

− (∂µΛa) Bb
ν Φc fabcm em → − (∂µΛa) Bc

ν Φb facbm em. (2.27)

Exchanging the a ↔ c indices in the fourth term of (2.26) −(∂µΛb)Ba
νΦcfabcmem

allows to rewrite it as

− (∂νΛb) Bc
µ Φa fcbam em = (∂νΛb) Bc

µ Φa fbcam em. (2.28)

due to the antisymmetry under the exchange of a pair of indices fcbam = −fbcam.
Exchanging the b → a indices in (2.28) yields

(∂νΛa) Bc
µ Φb facbm em (2.29)

Therefore the third and fourth terms of (2.26) can be re-expressed in a manifestly
antisymmetric expression under the exchange of the µ ↔ ν indices, as it should

− (∂µΛa) Bc
ν Φb facbm em + (∂νΛa) Bc

µ Φb facbm em. (2.30)

Finally, by recurring to (2.30) one can rewrite (2.26) as

[ (∂µΛab) fabcm − (∂µΛa) Φb facbm ] Bc
ν em −

[ (∂νΛab) fabcm − (∂νΛa) Φb facbm ] Bc
µ em = 0 (2.31)

The expression in eq-(2.31) is now explicitly anti-symmetric under the exchange
of the indices µ ↔ ν. A solution expressing the gauge parameters Λab,Λa in
terms of the Φc components can be found by setting

[ (∂µΛab) fabcm − (∂µΛa) Φb facbm ] Bc
ν em = 0 (2.32a)
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[ (∂νΛab) fabcm − (∂νΛa) Φb facbm ] Bc
µ em = 0 (2.32b)

Eq-(2.32a) is equivalent to eq-(2.32b) since the latter is obtained from the former
by a simple exchange of the µ, ν indices. Therefore, by setting the expression
inside the parenthesis of (2.32a) to zero one arrives at the desired relation among
the gauge parameters and the auxiliary field Φc components

(∂µΛab) fabcm − (∂µΛa) Φb facbm = 0 (2.33)

The equivalent eq-(2.32b) yields the same functional relation as (2.33) by a
simple exchange of the µ, ν indices. The field components Bc

ν have decoupled
from eq-(2.33) as it should since one does not wish to impose any constraints
among Bc

ν and the gauge parameters. One may follow the ansatz and define
the parameters Λab in terms of the octonion structure constants fab

k = 2cab
k as

Λab = fab
kΛk so that (2.33) becomes

fab
k (∂µΛk) fabcm = (∂µΛa) Φb facbm (2.34)

Because the left hand side of (2.34) contains terms which are explicitly antisym-
metric in the a, b and c,m indices one must decompose the right hand side into
a symmetric and antisymmetric pieces leading then to

fab
k (∂µΛk) fabcm =

1
2

[ (∂µΛa) Φb − (∂µΛb) Φa ] [ dacbm + δc[b δa]m ] ⇒

− 12 ckcm (∂µΛk) =
1
2

[ (∂µΛa) Φb − (∂µΛb) Φa ] [ dacbm + δc[b δa]m ] (2.35a)

after using the identity [29] fab
k fabcm = − 6 fkcm = − 12 ckcm. Since

the associator structure constants dacbm are totally antisymmetric under the
exchange of any pair of indices, the right hand side (2.35a) is antisymmetric
under the exchange of the c,m indices. While the symmetric components yield
the following zero contribution

1
2

[ (∂µΛa) Φb + (∂µΛb) Φa ] [ − δab δcm + δc(b δa)m ] = 0 (2.35b)

with

δc(b δa)m =
1
2

(δcb δam + δca δbm); δc[b δa]m =
1
2

(δcb δam − δca δbm) (2.36)

To conclude, one can ensure that the ternary field strength Fµν defined
in terms of the 3-brackets (2.24) transforms properly (homogeneously) under
the ternary gauge transformations if eqs-(2.35a, 2.35b) are obeyed in order to
ensure a cancelation of the inhomogeneous pieces under infinitesimal ternary
gauge transformations. Eqs-(2.35a, 2.35b), in conjunction with the definition
Λab = 2cab

kΛk, furnish the relationship among the gauge parameters and the
auxiliary field Φc components; i.e. one has then that Λab[Φ], Λa[Φ] are auxiliary-
field dependent gauge parameters. This is permissible because Φ = Φcec is not
endowed with any dynamics, it is just another variable parameter that one can
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interpret as an octonionic-valued ”coupling” function and whose components
can rotate into each other. The real (scalar) part Φ0 remains invariant under
the transformations δ(Φmem) = Λab[ea, eb,Φcec] because [ea, eb, e0] = 0.

If eqs-(2.35a, 2.35b) do not provide a consistent set of solutions then one
must abandon the ansatz Λab = fab

kΛk and use eq-(2.33), after a proper sym-
metrization and antisymmetrization procedure is made in the right hand side,
as the equation which establishes the required constraint among Λab,Λa and Φ.

To conclude finally, due to a cancelation of the inhomogeneous pieces, under
infinitesimal ternary gauge transformations, one can infer that Fµν does trans-
form homogeneously under the infinitesimal ternary gauge transformations as

δ(Fm
µν em) = Λab [ ea, eb, F c

µν ec ] = Λab F c
µν f m

abc em ⇒ δFm
µν = Λab F c

µν f m
abc

(2.37)
The results (2.37) is a direct consequence of the fundamental identity because
the 3-bracket (2.16a) is defined as a derivation

[ [ea, eb, Bµ], Bν , Φ ] + [ Bµ, [ea, eb, Bν ], Φ ] + [ Bµ, Bν , [ea, eb, Φ] ] =

[ ea, eb, [Bµ, Bν , Φ] ] (2.38)

Similar findings as those obtained in eqs-(2.35a, 2.35b) among the gauge pa-
rameters and the octonionic-valued auxiliary field Φ can be found such that
the ternary covariant derivative of an octonionic-valued scalar field Θ(xµ) =
Θa(xµ)ea defined as

DµΘ = ∂µΘ + [ Bµ, Θ, Φ ] (2.39)

transforms homogeneously under the transformations

δΘ = Λab[ea, eb,Θ] ⇒ δ (DµΘ) = Λab [ ea, eb, (DµΘ) ] (2.40)

The same relations as those in (2.35a, 2.35b) can also be found for the octonionic-
valued third rank antisymmetric field strength

Fµνρ = ∂ρ Bµν + ∂µ Bνρ + ∂ν Bρµ − [Bµν , Bρ, Φ]− [Bνρ, Bµ, Φ]− [Bρµ, Bν , Φ].
(2.41a)

such that under ternary infinitesimal gauge transformations of the form δBµν =
Λab[ea, eb, Bµν ], it transforms as

δ(Fm
µνρ em) = Λab [ ea, eb, F c

µνρ ec ] (2.41b)

Similar results follow for the octonionic-valued fourth-rank antisymmetric tensor

Fµνρτ = ∂τ Bµνρ − ∂µ Bνρτ + ∂ν Bρτµ − ∂ρ Bτµν −

[Bµνρ, Bτ , Φ] + [Bνρτ , Bµ, Φ] − [Bρτµ, Bν , Φ] + [Bτµν , Bρ, Φ] ⇒ (2.42a)

δ(Fm
µνρτ em) = Λab [ ea, eb, F c

µνρτ ec ] (2.42b)
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and so forth.
Given the octonionic valued field strength Fµν = F a

µν ea , with real valued

components F 0
µν , F i

µν ; i = 1, 2, 3, ....., 7, a gauge invariant action under ternary
infinitesimal gauge transformations in D-dim is

S = − 1
4κ2

∫
dDx < Fµν Fµν > (2.43)

κ is a numerical parameter introduced to make the action dimensionless and
it can be set to unity for convenience. The < > operation is defined as
< XY >= Real(X̄Y ) =< Y X >= Real(Ȳ X). Under infinitesimal ternary
gauge transformations of the action one has

δ S = − 1
4

∫
dDx < Fµν (δFµν) + (δFµν) Fµν > =

− 1
4

∫
dDx < F c

µν ec Λab [ea, eb, Fµν n en] > +

− 1
4

∫
dDx < Λab [ea, eb, F c

µν ec] Fµν n en > =

−1
4

∫
dDx Λab F c

µν Fµν n ( < ec fabnk ek > + < fabck ek en > ) = 0.

(2.44)
since

< ec fabnk ek > + < fabck ek en > = fabnk δck + fabck δkn = fabnc + fabcn =

[ dabnc − δan δbc + δbn δac ] + [ dabcn − δac δbn + δbc δan ] = 0 (2.45a)

because dnabc + dcabn = 0, due to the total antisymmetry of the associator
structure constant dnabc under the exchange of any pair of indices. Invariance
δS = 0, only occurs if, and only if, δF = Λab[ea, eb, F

cec] 6= Λab[F cec, ea, eb].
The ordering inside the 3-bracket is crucial. One can check that if one sets
δF = Λab[F cec, ea, eb], the variation δS leads to a term in the integral which is
not zero

fnabc + fcabn = [ dnabc − δnb δac + δab δnc ] + [ dcabn − δcb δan + δab δcn ] 6= 0
(2.45b)

However, under δF = Λab[ea, eb, F
cec], the variation δS is indeed zero as shown.

This is a consequence of the fact that [ea, eb, ec] 6= [ec, ea, eb] when the 3-bracket
is given by eqs-(2.16).

To show that the action is invariant under finite ternary gauge transforma-
tions requires to follow a few steps. Firstly, one defines

< x y > ≡ Real [ x̄ y ] =
1
2

( x̄ y + ȳ x ) ⇒ < x y > = < y x > (2.46)
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Despite nonassociativity, the very special conditions

x(x̄u) = (xx̄)u; x(ux̄) = (xu)x̄; x(xu) = (xx)u; x(ux) = (xu)x (2.47)

are obeyed for octonions resulting from the Moufang identities. Despite that
(xy)z 6= x(yz) one has that their real parts obey

Real [ (x y) z ] = Real [x (y z) ] (2.48)

Due to the nonassociativity of the algebra, in general one has that (gF )g−1 6=
g(Fg−1). However, if and only if g−1 = ḡ ⇒ ḡg = gḡ = 1, as a result of the
the very special conditions (2.47) one has that F ′ = (gF )g−1 = g(Fg−1) =
gFg−1 = gF ḡ is unambiguously defined.

Hence, by repeated use of eqs-(2.46, 2.47, 2.48), when g−1 = ḡ, the action
density (2.43) is also invariant under finite gauge transformations of the form

< F ′ F ′ > = Re [F̄ ′ F ′] = Re [(gF̄ g−1) (gFg−1)] = Re [(gF̄ ) ( g−1 (gF g−1) )] =

Re [(g F̄ ) (g−1 g) (Fg−1)] = Re [(gF̄ ) (Fg−1)] = Re [(Fg−1) (gF̄ )] =

Re [F ( g−1 (g F̄ ) )] = Re [F (g−1g) F̄ ] = Re [F F̄ ] = Re [F̄ F ] = < F F > .
(2.49)

One may ask now if the expression for g = exp (αΛab[ea, eb]); g−1 = ḡ =
exp (−αΛab[ea, eb]), where α is a real numerical constant which is used to define
the finite gauge transformations

F ′ = eαΛab[ ea, eb ] (F c tc) e−αΛab[ ta, tb ]. (2.50)

furnishes infinitesimal gauge transformations which agree with the ternary ones
when the real parameters Λab are infinitesimals

δF = F ′ − F = Λab F c [ ea, eb, ec ] = α Λab F c [ [ ea, eb ], ec] ⇒

Λab F c fabcm em = α Λab F c (2cabd) (2cdcm) em ⇒ 4 α cabd cdcm = fabcm.
(2.51)

One can verify that by choosing α = 1
4 , one arrives at the condition among the

structure constants cabd cdcm = fabcm which is indeed obeyed for the octonion
algebra as shown in [29]; i.e. the Yamazaki 3-bracket (2.16) satisfies the identity
for octonions

[ ea, eb, ec ] = fabcm em = [ dabcm − δac δbm + δbc δam ] em =

1
4

[ [ ea, eb ], ec ] = cabd cdcm em ⇒

cabd cdcm = fabcm = dabcm − δac δbm + δbc δam (2.52)

dabcm are the associator structure constants given by the duals to the octonion
structure constants as shown in eq-(2.7). A series of identities involving the

12



structure constants of octonions can be found in [29]. Therefore, by choosing
α = 1

4 , the equality in eq-(2.51) is indeed satisfied for the octonion algebra
and such that for infinitesimal real valued parameters Λab eq-(2.50) yields to
lowest order δF = F ′ − F = Λab[ea, eb, F ] recovering the homogeneous ternary
infinitesimal gauge transformations for the field strengths as expected.

We should remark that when a = 1, 2, 3, ...., 7 (excluding the unit element),
having g = exp(Λaea); g−1 = ḡ = exp(−Λaea), a finite gauge transformation
of the form F ′′ = gFg−1 = gF ḡ leads also to an invariant action (2.43). The
infinitesimal transformations are in this case δF = F ′′ − F = Λa[ea, F c ec]
which leave the action (2.43) invariant. However we must emphasize that we
must not identify the ternary transformations with the ordinary ones based on
2-brackets : F ′ 6= F ′′ and Λab[ea, eb, F

cec] 6= Λa[ea, F cec] .
We conclude with a few remarks. Wulkenhaar [39] succeeded in formulating

another type of geometry which shares some similarities with Connes Noncom-
mutative Geometry (NCG). The theory was coined Nonassociative geometry
(NAG). The main difference with the two theories is that NAG is based on a
unitary Lie algebra, instead of a unital associative star algebra. A left-right
gauge model of Pati-Mohapatra within the context of Nonassociative geometry
was provided by [40]. At the tree level they obtained mass relations and mixing
angles identical to the ones obtained in SO(10) GUT. It is warranted to explore
what kind of phenomenological particle physics models can be developed within
the framework of the nonassociative octonionic ternary gauge field theory built
in this work. A thorough analysis of Octonionic spinors can be found in [23].

Also, Noncommutative and Nonassociative octonionic gauge field theories
of gravity deserve investigation. Comparisons with the standard Octonionic
gravity [19], [20] and the E8 gauge theory of gravity in 8D [21] must be made.
The split-octonions ternary gauge field theory case should follow naturally. The
cubic matrices Aµ = Aa

µf bcd
a = (Aµ)bcd with a nonassociative ternary product

(ABC)j1j2j3 = Ai1j1k1 Bk1j2k2 Ck2j3i1 . (2.53)

(where the summation is taken over repeated indices) must play an important
role. The quantization program is a challenging task. The non-Desarguesian ge-
ometry of the Moufang projective plane to describe Octonionic QM was studied
in detail by [11]. This would be a starting point.
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