A complete graph model of the Schwarzschild black hole in \mathbb{R}^3

S. Halayka*

November 19, 2010

Where $\hbar = c = G = 1$, the following components will be used to model a Schwarzschild black hole of rest mass-energy E in \mathbb{R}^3:

1. A 2-sphere (event horizon) S_0 at coordinate distance $R_0 = 2E$, upon which lies $N_0 = E$ uniformly distributed vertices V_0.
2. A complete graph’s worth of edges E_0 generated by V_0.
3. An exterior volume at $R > R_0$, upon which lies a countable number of vertices V_{ext}.
4. A countable number of (non-complete) graph edges E_{ext} generated by the Delaunay tetrahedralization of V_0 and V_{ext}.

The following presumptions are made:

1. Neither the event horizon nor the black hole centre at $R = 0$ are singular in any way.
2. The complete graph edges E_0 define a universal edge coordinate length of

$$L = \frac{1}{\sqrt{1 - R_0/R}},$$

where R is the coordinate distance between an edge’s midpoint and the black hole centre. Accordingly, edge proper length is L^2 (e.g., light travels across an edge at coordinate speed $1/L$).
3. The complete graph edges E_0 define a universal minimum edge coordinate length of $L = 1$ (e.g., the Planck length).

The following steps are used to construct the model’s components:

1. With regard to the 2-sphere S_0, numerically solve for the coordinate radial distance $R_1 > R_0$ of a second 2-sphere S_1. Using the formula for the height of a regular tetrahedron

$$H_{\text{tet}} = L\sqrt{2/3}$$

as a guide:

$$R_1 = R_0 + H_0,$$

$$\frac{H_0}{\sqrt{2/3}} \approx \frac{1}{\sqrt{1 - \frac{R_0}{R_0 + H_0/2}}}.$$

2. Calculate the number of vertices N_1 that lie upon S_1. Using the formulas for the area of a regular triangle

$$A_{\text{tri}} = L^2(1/4)\sqrt{3}.$$
and the Euler characteristic of a closed convex polyhedron

\[N_1 + F_1 - E_1 = 2, \quad F_1 = 2N_1 - 4 \]

(6)
as a guide:

\[L_1 = \frac{1}{\sqrt{1 - \frac{R_0}{R_1}}}, \]

(7)\[F_1 = \frac{4\pi R_1^2}{L_1^2}, \]

(8)\[N_1 = \frac{4 + F_1}{2}. \]

(9)

3. Numerically solve for \(H_1 \):

\[\frac{H_1}{\sqrt{2/3}} \approx \frac{1}{\sqrt{1 - \frac{R_0}{R_1 + H_1/2}}}. \]

(10)

4. Repeat steps 2 and 3 for each subsequent 2-sphere \(S_{\geq 2} \):

\[R_{\geq 2} = R_{\geq 1} + H_{\geq 1}, \]

(11)\[N_{\geq 2} = 2 + \frac{8\pi R_{\geq 2}(R_{\geq 2} - R_0)}{\sqrt{3}}, \]

(12)\[H_{\geq 2} \approx \frac{1}{\sqrt{\frac{3}{2} - \frac{3R_0}{2R_{\geq 2} + H_{\geq 2}}}}. \]

(13)

5. Generate the vertices \(V_0 \) that lie upon \(S_0 \). Use Coulomb repulsion on \(S_0 \) to make the vertex distribution roughly uniform.

6. Obtain the complete graph edges \(E_0 \) generated by \(V_0 \).

7. Generate the vertices \(V_{\geq 1} \) that lie along each 2-sphere \(S_{\geq 1} \). Use Coulomb repulsion on each 2-sphere to make its vertex distribution roughly uniform, if desired.

8. Obtain the (non-complete) graph edges generated by the Delaunay tetrahedralization of all vertices \(V_{\geq 0} \).

Depending on how well the vertices \(V_{\text{ext}} \) are uniformly distributed along their respective shells, one will have to multiply \(H_{\geq 0} \) and \(N_{\geq 1} \) by some small constant values (e.g., roughly on the order of 1) in order to meet the edge coordinate length requirement given in Eq. 1 with accuracy.

See Ref. [1] for a public domain C++ code that generates this model’s vertices and edges. Edge analysis code is included. The default configuration produces an edge coordinate length accuracy of \(\sim 0.99 \). See Fig. 1 for an example manifold. As with all discretization models [2], edge coordinate length accuracy is based on an average.

Unlike most other discretization models, this model does not allow one to arbitrarily choose the scale of the tetrahedra (e.g., \(dx^{\mu} dx^\nu \equiv 1 \) here). As such, the manifold is geodesically complete by definition, not by choice.

Thank you to P. Gibbs for his work on complete graphs [3].

References

Figure 1: One half of the edges for 2-spheres S_0 through S_{10}, where $N_0 = 10$. The manifold is geodesically complete, since it does not contain any infinitely small or large edges, or “dead end” paths. Edge coordinate length decreases as r increases. The figure was rendered using OpenGL / Microsoft Visual C++ Express 2010, and was post-processed using Rick Brewster’s Paint.NET. Space kitten is generally nonplussed by π.