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Abstract

1 Introduction

Where h̄ = c = G = 1, the following components will be used to model a Schwarzschild black hole of rest mass-energy
E in R3:

1. A 2-sphere (event horizon) S0 at R0 = 2E, upon which lies N0 = E uniformly distributed vertices V0.

2. A complete graph of edges E0 generated by V0.

3. An exterior region at R > R0, upon which lies a countable number of vertices Vext.

4. A countable number of (non-complete) graph edges Eext generated by the Delaunay tetrahedralization of V0

and Vext.

The following presumptions are made a priori :

1. The event horizon and interior region of a Schwarzschild black hole do not contain any physical singularities.

2. The complete graph edges E0 define a universal edge coordinate length of

L =
1√

1−R0/Rmid
, (1)

where Rmid refers to the coordinate distance between an edge’s midpoint and the black hole centre. Accord-
ingly, edge proper length is l = L2.

3. The complete graph edges E0 define a universal minimum edge coordinate length of L = 1 (e.g., the Planck
length).

2 Method

The following steps are used to construct the model’s components:

1. With regard to the 2-sphere S0, numerically solve for the coordinate radial distance R1 of a second 2-sphere
S1, using the formula for the height of regular tetrahedron as a guide:

H = L
√

2/3, (2)

R1 = R0 +H0, (3)

H0√
2/3

≈ 1√
1− R0

H0/2+(R0+H0)

. (4)
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Figure 1: One half of the edges for 2-spheres S0 through S10, where N0 = 10. The manifold is geodesically complete,
since it does not contain any infinitely small or large edges, or “dead end” paths.

2. Calculate the number of vertices V1 that lie upon S1, using the formula for the area of a regular triangle as a
guide:

A = (1/4)
√
3L2, (5)

V1 + F1 − E1 = 2, (6)

F1 = 2V0 − 4 =
16πR2

1√
3( 1

1−R0/R1
)
, (7)

V1 =
F1 + 4

2
. (8)

3. Calculate H1:
H1√
2/3

≈ 1√
1− R0

H1/2+(R1+H1)

. (9)

4. Repeat steps 2 and 3 for each subsequent 2-sphere S≥2.

5. Generate the vertices V0 that lie upon S0. Use Coulomb repulsion on S0 to make the vertex distribution
roughly uniform.

6. Obtain the complete graph edges E0 generated by V0.

7. Generate the vertices V≥1 that lie along each 2-sphere S≥1. Use Coulomb repulsion on each 2-sphere to make
its vertex distribution roughly uniform, if desired.

8. Obtain the (non-complete) graph edges generated by the Delaunay tetrahedralization of all vertices V≥0.

3 Results

Depending on how well the vertices V≥1 are uniformly distributed along their respective shells, one will have to
multiply H≥0 and V≥1 by some small constant values (e.g., ∼ 1) in order to meet the edge coordinate length
requirement given in Eq. 1 with accuracy. See [1] for a public domain C++ code that generates this model’s
vertices and edges. Edge analysis code is included. The default configuration produces an edge coordinate length
accuracy of ∼ 0.99. As with other discretization models, edge length accuracy is based on an average. Unlike other
discretization models however, one is not free to arbitrarily choose the scale of the simplices (e.g., tetrahedra in this
case), and so the manifold is geodesically complete by definition, not by choice.
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