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Abstract 

An approach to dark energy is presented that combines ideas of causal set theory with a 

Machian perspective and a treatment of spacetime as a condensate, yielding a “quantum 

potential of spacetime” Q whose density ρQ acts as an effective Λ that satisfies the 

uncertainty relation ∆V∆Λ ~ 1 of unimodular relativity.  In contrast to the ever-present Λ 

of causal set theory, ρQ‟s value is always non-negative, and the nonlocality of Q ensures 

that ρQ is spatially homogeneous, in accordance with observation. 

 

I. INTRODUCTION 

 

In causal set theory and its application to cosmology [6, 28, 38, 57, 64], the four-

volume V of the universe corresponds to, or reflects, the number N of causal-set 

(“causet”) elements, existing at the Planck scale, that constitute the spacetime of the 

universe.  This correspondence, however, is not exact; i.e., for V measured in Planck 

units, the equality N=V holds only up to fluctuations.  Now, N acts as a time-parameter in 

an expanding universe; and just as one does not sum over time in ordinary quantum 

mechanics, so likewise one expects N to be held fixed when performing a gravitational 

path integral, or sum over histories.  Given the macroscopic correspondence between N 

and V, this amounts to holding V fixed, so that it is natural to employ unimodular gravity 

here [6].  (Unimodular relativity has also been motivated by adopting a thermodynamic 

approach to spacetime, an approach which, like causal set theory, takes spacetime to be 

fundamentally discrete [65].)  Even with N held fixed, however, V is subject to 

fluctuations that reflect the non-exactness of the correspondence between N and V; these 

fluctuations are of Poisson type, so that ∆V ~ ±√V.  These V-fluctuations give rise to 

fluctuations of the vacuum energy density Λ in accordance with the uncertainty relation 

∆V∆Λ ~ ħ, a relation that follows from unimodular relativity and is similar to time-

energy uncertainty [6].  Since the V-fluctuations are stochastic (being of Poisson type), 

the Λ-fluctuations are stochastic as well.  This stochasticity, however, does not preclude 

the possibility that the value of ∆Λ is determined by the value of ∆V.  Such a 

determination of ∆Λ would resemble the situation associated with the “exact uncertainty 

principle” of [27], in which random momentum-fluctuations of a quantum ensemble are 

determined by the uncertainty of the conjugate position-variable.  We propose here that 

∆Λ‟s value is in fact determined; and we explore this proposal in the context of causal set 

theory, in particular the cosmological model of Ahmed, Dodelson, Greene and Sorkin [6].  

Because ∆Λ‟s value is determined, however, this value does not exhibit random-walk 

behavior, in contrast to the model of [6]; and this fact, together with the strong 

nonlocality that characterizes the determination of ∆Λ, ensures a spatially uniform 

distribution of Λ at any given time t.  As a result, the present account of Λ avoids a 

problem noted by both Barrow and Zuntz [9, 68] with respect to [6]‟s model: namely, this 

model as it stands, despite being strongly nonlocal itself, entails spatial inhomogeneities 

of Λ that are not in agreement with observation.  In addition, our account of ∆Λ alleviates 



some of the “tension” surrounding the choice of a suitable value for the important 

fluctuation-parameter α of [6]. 

As will be seen, we deviate somewhat from the idea of exact uncertainty by 

allowing the possibility that ∆V is not always the only factor determining ∆Λ.  As a 

result, the uncertainty relation ∆V∆Λ ~ ħ may fail to hold under certain conditions.  This 

fact does not pose any problems, however, as explained in part IV, below. 

In the next section, i.e. part II, we discuss the ∆V∆Λ uncertainty relation, 

particularly as it relates to volume-fluctuations, as well as arguing for the existence of a 

cosmological preferred frame.  In part III, we focus on the determination of ∆Λ by ∆V, 

and we argue that dark energy is in fact a “quantum potential of spacetime” induced by 

the fluctuations ∆V.  In part IV, we address some other topics suggested by our main 

argument.  

 

II. VOLUME-FLUCTUATIONS AND THEIR MUTUAL CANCELLATION 

 

Following [6], we use units with c=ħ=8πG=1; hence, for mp the reduced Planck 

mass and Ep the reduced Planck energy, we have mp=Ep=1.  In addition, and again 

following [6], we adopt the standpoint of causal set theory, according to which a given 

spacetime volume v is viewed as having n causet elements sprinkled into it at unit 

density, with the “sprinkling” here being a Poisson process.  “Unit density” means that 

there is, on average, one causet element per volume Vp, where Vp=l
4 
and l is of Planck 

order [63, 28].  When n is held fixed (see Part I, above, for the case n=N), deviations 

from unit density are due solely to (Poisson) volume-fluctuations ∆v.  Hence, and writing 

“ρ” for the number of causet elements in a given Planck-size volume Vp, ρ‟s average 

value <ρ> is equal to 1, up to volume-fluctuations. 

Consider a volume v consisting of n causet elements, with n=v up to volume-

fluctuations (which implies that v here is measured in Planck units).  If n is held fixed, a 

given fluctuation ∆v ~ √v can be described by saying that the volume-fluctuations (or, 

alternatively, the density fluctuations, or ρ-fluctuations) of all but ~ √n elements cancel 

each other out in v, and the uncancelled remnant consisting of √n fluctuating elements is 

such that √n ~ √v ~ ∆v.  Now, for N the total number of causet elements in the universe 

at a given time t, and for V the total volume of the universe at t (where V is measured by 

the past light-cone of a suitable observer), the uncertainty relation ∆V∆Λ ~ 1 implies that 

the value of ∆Λ is inversely related to the total magnitude ∆V of the volume-fluctuations 

at t that are uncancelled in V, with this magnitude being ~ √N ~ √V.  In other words, these 

uncancelled fluctuations collectively constitute, at t, a volume-fluctuation ∆V ~ √V of the 

universe, with ∆V∆Λ ~ 1; and this yields a suitable value of Λ, i.e. a value that matches 

the observed dark energy.  These considerations naturally suggest the following question, 

which Y. Kuznetsov asked in [41]: what ensures that the volume v with respect to which 

Λ fluctuates is in fact the volume V of the entire universe, rather than some smaller 

volume?  Or, in more general terms, what ensures that the value of “v” in “∆v∆Λ ~ 1” is 

such as to yield a suitable value of Λ? 

Although the relation ∆V∆Λ ~ 1 comes from unimodular relativity, it is important 

to realize that the underlying issue or problem here is independent of relativity and 

depends only on the assumption that spacetime fluctuations are endemic to the Planck 

scale and have an energy density Λ that may gravitate.  This assumption itself makes it 



necessary to ask about the cancellation of these fluctuations on larger scales, and about 

the precise extent of such cancellation; for in the absence of any cancellation, one might 

expect the energy (density) of a given Planck-size fluctuation to be Planckian as well, in 

clear conflict with observation.  If these fluctuations do not cancel at all, then the volume 

v with respect to which Λ fluctuates, i.e. the volume that is conjugate to Λ, is very small, 

making Λ very large; and so, in asking about the presence and extent of such 

cancellation, one is in effect asking about the size of this v, and hence about the value of 

Λ itself.  

We seek to take the above questions seriously here; and though we will propose 

ideas that are somewhat speculative, even controversial, these proposals are motivated by 

the fact that they address these questions and help provide answers to them.  Actually, we 

wish to broaden the question posed in [41] to include the following question: why not 

take the uncertainty relation ∆V∆Λ ~ 1 to be satisfied by ∆V ~ V, so that ∆V represents 

the entire growth of the universe from an initial time prior to inflation, a time at which V 

was negligible?  Such an understanding of ∆V, given the relation ∆V∆Λ ~ 1, entails a 

negligible post-inflation value of Λ [10], since V (~ ∆V) is enormous.  Of course, the fact 

that this interpretation of ∆V gives the “wrong” value of Λ would seem to disqualify it as 

a viable possibility.  It may be, however, that the observed value of Λ results from factors 

other than the ∆V∆Λ ~ 1 relation itself (though this relation, with the “correct” value of 

Λ, could still hold as an effective relation).  This is the possibility explored in the 

remainder of this paper, with the effective, observed Λ given by the density ρQ of the 

quantum potential Q of spacetime, as explained in part III.  The idea that Λ‟s observed 

value is not a direct result of the ∆V∆Λ ~ 1 relation is, in any case, suggested by the 

arguments of [9, 68], which indicate that obtaining this value from the relation ∆V∆Λ ~ 1, 

so that ∆V ~ √V, entails a spatially inhomogeneous distribution of Λ that is not in 

accordance with observation.  Hence, the idea that the ∆V∆Λ ~ 1 relation is satisfied 

simply by ∆V ~ V, and not by ∆V ~ √V, should not be dismissed out of hand, but should 

be taken seriously as a legitimate possibility. 

 

II.1  Darabi’s Machian proposal 

 

Accordingly, we suggest that the mass/energy obtained from the ∆V∆Λ ~ 1 

relation, for ∆V ~ V, is indeed a genuine physical quantity.  For the purposes of the 

present work, at least, it is convenient to treat this quantity as the mass m of spacetime 

itself; the significance of this treatment will become clear from the discussion in part III 

of the quantum potential of spacetime.  In addition, we adopt a Machian, “holistic” view 

of the spacetime universe (a view that fits in well with a holographic perspective [39]); in 

particular, we make use of some suggestive Machian ideas proposed by F. Darabi [17] in 

connection with Planck-size vacuum fluctuations arising from energy-time uncertainty.  

Darabi‟s account appeals to Mach‟s principle – specifically, a mutual correlation and 

interaction between Planck-size regions – to explain why these virtual fluctuations, or 

new “baby universes,” are not annihilated, but instead are integrated or “socialized” into 

the larger “mother” universe of spacetime consisting of “older” baby universes (or causet 

elements, to adopt the language and framework of causal set theory) that have already 

been socialized.  The “socialization” here means that only the total “mother” universe 

satisfies energy-time uncertainty, rather than this uncertainty relation being satisfied by 



each baby universe individually.  As a result, the new baby universes do not have their 

own (Planckian) energy scale; the only operative energy scale here is that of the (mother) 

universe as a whole, with this energy scale being determined in Machian fashion and 

corresponding (according to [17], at least) to the observed dark energy. 

Attempting to exploit these ideas of Darabi‟s for our purposes, however – in 

particular, by replacing time-energy uncertainty with the related ∆V∆Λ uncertainty – 

creates certain problems.  For one thing, the claim that the operative energy scale is that 

of the universe as a whole seems to imply that the volume with respect to which Λ 

fluctuates is the volume V of the entire universe.  As noted, however, the resulting value 

of Λ is far too small to serve as dark energy.  Now, one way around this problem is to 

suppose that the socialization of baby universes consists of the nonlocal, mutual 

cancellation of the (Planck-scale) volume-fluctuations involving the N causet elements 

that constitute the spacetime of the universe.  (Using the idea of a quantum-gravitational 

path integral, or sum over histories, we can speak of these fluctuations as being “canceled 

in the propagator” of the causal set that constitutes the spacetime volume V of the 

universe.)  Taking these fluctuations to be random in character, the fluctuation-

cancellation occurring at a given time will leave an uncancelled remnant of roughly √N 

(~ √V) elements.  As a result, we have a net volume-fluctuation ∆V of the universe, such 

that ∆V ~ √V; and if we take this ∆V to satisfy the ∆V∆Λ ~ 1 relation and hence generate 

stochastically a corresponding ∆Λ, we get a value of Λ suitable for serving as dark 

energy.  In that case, however, the above-mentioned argument of [9, 68] applies – 

namely, the argument that, due to the fact that Λ is generated by a stochastic process, 

spatial inhomogeneities of Λ arise that conflict with observations of the CMB.  There is 

also an additional problem: if we suppose that, at a given time t, the overwhelming 

majority of volume-fluctuations mutually cancel each other, then we are led to the 

conclusion that the density ρ of causet elements, at t, is such that ρ = 1 almost 

everywhere.  Such a near-uniform, lattice-like distribution of causet elements, however, 

violates a fundamental tenet of causal set theory; for, it entails the existence of a preferred 

frame and a consequent violation of Local Lorentz Invariance (LLI), in sharp contrast to 

causal set theory‟s LLI-satisfying Poisson distribution of causet elements [55]. 

Before dealing with these problems and questions, however, there is another issue 

that needs to be addressed.  One might object that the sort of Machian cancellation of 

Planck-scale volume-fluctuations described above is physically counterintuitive, since it 

seems to require an exquisite degree of precision that is implausible from a physical 

standpoint.  In response to this objection, we invoke the idea – which has its origins in 

non-equilibrium physics, and which has been employed specifically in cosmological 

contexts by the authors of [35, 36, 15] – that in highly fluctuating, disordered 

environments, a phase transition may occur that can be characterized as “freezing by 

heating,” or “jamming,” and that is marked by the emergence of a crystalline state in 

which fluctuations are largely absent.  Appealing to this idea, we propose here that 

nonlocal interactions of volume-fluctuating causet elements produce a (temporary) 

jamming or freezing of these elements‟ fluctuations, of the sort described in the above 

references.  Since the Planck-scale volume-fluctuations at a given time t are random in 

character, there is not a perfectly equal division between volume-expanding fluctuations 

and volume-contracting fluctuations at t; specifically, for N the total number of causet 

elements, there are roughly √N more fluctuations of one kind than of the other (and we 



use the letter “k” to refer to whichever kind of fluctuation is more prevalent at a given t).  

This fact, together with the general phenomenon of fluctuation-induced screening (for an 

example of which see [47]), motivates a further hypothesis: at a given t, there are ~ √N 

fluctuations of kind k that are not jammed, due to the fact that they are screened by the 

other fluctuations of kind k that are jammed (for large N, of course, these latter 

fluctuations are much more numerous than the unjammed ones).  These unjammed 

fluctuations constitute the above-noted net fluctuation ∆V of the universe‟s volume V, 

with ∆V ~ √V ~ √N.  As we will see in part III, the combination of these (relatively 

scarce) unjammed fluctuations with a predominantly crystalline state, a state resulting 

from the jamming or freezing of fluctuations, gives rise to a quantum potential Q of 

spacetime.  This quantity of energy Q is a source of new causet elements; and the N-

fluctuations that reflect the creation of these new elements cause the crystalline state to 

break up, with nonlocal interactions between these fluctuations leading once again to a 

widespread jamming or cancellation of fluctuations and the consequent re-emergence of a 

predominantly crystalline state, and so on in a continually repeated cycle.  (We leave 

until section IV a consideration of the possible origin of the nonlocality required for a 

large-scale cancellation of volume-fluctuations.) 

Given, then, the existence of a nonlocal cancellation of spacetime volume-

fluctuations on a cosmological scale, we argue in what follows that the idea of such a 

cancellation can lead to a viable account of dark energy, despite the problems described 

above.  On this account, the uncertainty relation ∆V∆Λ ~ 1, for ∆V ~ √V, is not taken as a 

fundamental principle from which dark energy in the form of ∆Λ is obtained.  Rather, we 

start from the idea mentioned earlier that a cosmically pervasive and nonlocal 

cancellation of volume-fluctuations may result in causet elements being distributed in 

such a way that ρ = 1 almost everywhere; and we claim that such a distribution itself 

gives rise to energy in the form of the above-mentioned quantum potential Q of 

spacetime, with the density ρQ of this energy acting as an effective Λ by virtue of 

satisfying (in general) the relation ∆V∆Λ ~ 1, for ∆V ~ √V.  (We say “in general” 

because, as explained later, some deviations from ∆V∆Λ ~ 1 may occur at certain times, 

specifically in early cosmological epochs.)  The emergence of Q thus allows the relation 

∆V∆Λ ~ 1, for ∆V ~ √V, to be recovered (in general) as an effective principle.  At the 

same time, as indicated earlier, we do take the relation ∆V∆Λ ~ 1, for ∆V ~ V, as basic; 

and we associate the resulting energy scale with the mass m of spacetime, obtaining the 

value m ~ 1 = mp, since the relevant energy E is just E = VΛ = ∆V∆Λ ~ 1 = Ep= mp.  This 

value of m implies – given the general expression for the quantum potential, which 

contains a mass term in the denominator – that the mass of spacetime has no effect on the 

value of the spacetime quantum potential Q.  (Taking spacetime‟s mass to be simply its 

inertia, i.e. its resistance to expansion or contraction, this lack of effect of m on Q 

indicates that this inertia is negligible and hence may be disregarded.) 

As explained later, the nonlocal nature of Q entails a spatially homogeneous 

distribution of dark energy, thereby circumventing the arguments of [9, 68].  

Furthermore, as just indicated (and as shown in part III, below), Q has the right 

magnitude to serve as dark energy.  Hence, we see how two of the problems mentioned 

above in connection with our use of Darabi‟s ideas can be resolved.  We propose to 

address the remaining problem, namely the violation of LLI, by arguing that the existence 

of a preferred frame, and the consequent violation of LLI, should be accepted after all.  



II.2  Smeared time and a preferred frame 

 

Consider first causal set theory‟s idea of a quantum-gravitational sum over 

histories.  As noted, in taking such a sum over histories, the time-parameter N is held 

fixed, which however does not eliminate all volume-fluctuations, since N=V only up to 

fluctuations [6].  A crucial point here is that V itself can serve as a time-parameter; there 

is nothing special about N that makes it uniquely suited to parameterize time.  This 

suggests that, for any relevant sum over histories, time cannot be held completely fixed, 

due to the existence of volume-fluctuations ∆V; in other words, time is necessarily 

subject to a certain amount of “smearing.” To put it another way, the parameterization of 

time by N – or more specifically, by a series of “timesteps,” each of which is associated 

with a particular value of N – is relatively coarse-grained, since it ignores the smearing of 

N (or of time) by volume-fluctuations ∆V.  The resulting “smeared-out” time interval is 

associated not only with the uncancelled volume-fluctuations ∆V ~ √V; it is marked as 

well by the nonlocal cancellation, mentioned above, of the vast majority of volume-

fluctuations. 

We turn now to an argument for a cosmological preferred frame that has been 

given by Arlen Anderson [7].  Anderson notes the conjugacy, in unimodular gravity, 

between cosmological time and Λ; and he goes on to observe that, in order to 

accommodate the many-fingered time formalism of quantum field theory and the extra 

degrees of freedom that it entails, it is desirable to replace the scalar Λ of standard 

general relativity with a cosmological stress tensor Λμν.  This Λμν represents a preferred 

frame that may be equated, for practical purposes, with the rest frame of the CMB.  (On 

the general rationale for equating a cosmological preferred frame with the CMB rest 

frame, see [37].)  As [7] makes clear, this preferred frame does not lead to a loss of 

general covariance. 
The relevance of all this to the present discussion is that the same sort of 

motivation for Λμν that is found in [7] is available even without appeal to the many-

fingered time formalism.  For, the volume-fluctuations that “smear” (N-parameterized) 

time, as described above, occur on various small (i.e., sub-cosmological) scales and are 

not everywhere identical, which indicates that the amount of smearing can vary from 

region to region, all the way down to regions near the Planck scale in size; and this in 

turn suggests that there are multiple “local times” that vary from region to region, with 

each such time parameterized by the magnitude of the volume-fluctuations occurring in 

the relevant region.  And the resulting impossibility of completely eliminating the 

existence of different times in different regions provides the same sort of motivation for 

representing Λ by a cosmological stress tensor Λμν as the many-fingered time formalism 

does.  This Λ, however, being conjugate to cosmological time [7], is just the Λ such that 

∆V∆Λ ~ 1, for ∆V ~ V, since the volume V of an expanding universe is a measure of 

cosmological time; and as noted, this Λ has far too small a value to serve as dark energy. 

The model of [7], therefore, cannot be viewed as a complete model of gravity, since as it 

stands it fails to account for dark energy.  This does not mean, however, that [7]‟s Λμν 

should simply be discarded.  For, the energy scale such that ∆V∆Λ ~ 1, with ∆V ~ V, does 

exist (its existence is noted in [51], e.g., though it is not described there in terms of ∆V); 

and, as indicated earlier, we propose that it represents the energy scale of the mass m of 



spacetime.  Hence, we conclude that there is genuine motivation for accepting the 

existence of a cosmological preferred frame, or rest frame of the universe, even from the 

standpoint of causal set theory and its idea of a quantum-gravitational sum over histories. 

For further elaboration of the nature of this preferred frame, consider the idea, 

found in [5], that the rest frame of the universe is defined by hypersurfaces of constant 

mean extrinsic curvature (CMC).  This leads to the view that the preferred frame consists 

of CMC hypersurfaces, a view that matches Afshordi‟s account of a preferred frame or 

“gravitational aether” T'μν [1, 3, 4].  (Such a preferred frame is also a feature of Horava-

Lifshitz gravity in the low energy limit [2]; and see [40] on how ascribing viscosity to the 

aether can yield observationally acceptable values of G.)  This aether, on Afshordi‟s 

account, is such that it is always coupled to some other field; in the present context, the 

aether may be coupled to the mass m of spacetime, which can be treated as a 3-tensor mij. 

(See [8] for such a treatment of mass in connection with Bose-Einstein condensates; this 

treatment is in accordance with the present approach to spacetime as a condensate.)  In 

describing the dark energy associated with this aether, however, we depart from 

Afshordi‟s framework in order to develop an account that recovers the ∆V∆Λ uncertainty 

relation of unimodular GR (albeit as an effective relation).  Nonetheless, it is possible that 

aether pressure may make some sort of non-negligible contribution to the current cosmic 

acceleration. 

Regarding the issue of LLI, we take the position that, as long as time is 

parameterized by N alone – as in causal set theory – so that the “smearing” of time is 

disregarded or abstracted from, then causet elements exhibit a Poisson distribution, no 

preferred frame is evident, and LLI is upheld.  It is only when we regard volume-

fluctuations as an actual smearing of time itself – in contrast to causal set theory, which 

views volume-fluctuations as essentially instantaneous, i.e. as occurring at a particular 

“unsmeared” moment at which N is held fixed – that we see evidence of a preferred 

frame, with a concomitant deviation from both LLI and a Poisson distribution of causet 

elements, and are in a position to describe or take account of the effects of this deviation.  

Thus, we view LLI as an approximation that holds only when time is parameterized by N 

alone and is therefore treated as “unsmeared;” such a view of LLI conforms with [56], 

where it is argued that LLI is not a strict consequence of general relativity and is valid 

only as an approximation. 

The considerations mentioned above regarding preferred frames motivate us to 

explore the consequences of adjoining the idea of a preferred frame to that of causal sets.  

One consequence is that a distribution of causet elements such that ρ = 1 almost 

everywhere – a distribution that represents a particular configuration of the scalar field ψ 

described above, a configuration in which the vast majority of causet elements 

correspond to Planck-size “cells” of spacetime volume distributed in a uniform or 

homogeneous manner – must be accepted as physically allowable, despite the fact that it 

indicates the existence of a preferred frame.  This consequence is, in fact, crucial to 

obtaining a satisfactory account of ever-present Λ, or dark energy, since, as indicated 

earlier, the very existence of a distribution of causet elements such that ρ = 1 almost 

everywhere entails the existence of energy, in the form of a quantum potential Q of 

spacetime, that can serve as an effective Λ, due to the fact that the density ρQ of this 

energy satisfies (in general) the relation ∆V∆Λ ~ 1, for ∆V ~ √V. 



Both (i) the Machian idea that volume-fluctuations are subject to a nonlocal 

cancellation process involving nearly all causet elements in the universe, and (ii) the idea 

of ρQ as an effective Λ, have a certain affinity with Gogberashvili‟s Machian model of 

gravity with a fundamental preferred frame [21], a model in which the key principles of 

general relativity (GR) – including LLI – are recovered in the IR as effective principles.  

At the same time, as is clear from [18], GR itself – in a “normalized” form – permits a 

nonlocal/Machian account of Λ.  The value of this Λ, in fact, turns out to be zero, so that 

dark-energy effects need to be described in terms of something else, such as ρQ.  Also 

worth noting is [18]‟s conclusion that both the Machian Λ of normalized GR and any 

effective Λ are non-negative; this conclusion is compatible with the account of dark 

energy given here, but not with [6].   Thus, both [21]‟s Machian model and the 

normalized GR of [18] can accommodate the present account of ρQ as an effective Λ.  We 

also note the existence of a quantum version of Mach‟s principle [19]; and analogously to 

this extension of Mach‟s principle to the quantum realm, the present account of Λ in 

terms of Q may be viewed as (part of) a quantum/Planckian extension of [21]‟s Machian 

model of gravity.  In addition, both [21]‟s model and the present account of Q and Λ 

recall, in some respects, the cosmological model of [20], in which the universe is treated 

as a single “particle” formed by dynamical symmetry breaking of a (Weyl) vacuum.  

Particularly relevant is the notion that the “internal space” of such particles is not subject 

to any locality requirement [67], so that nonlocal relations may play an important role 

within the universe. 

 

III.  SPACETIME AS A CONDENSATE, AND ITS QUANTUM POTENTIAL 

 

To proceed, then, we adopt [6]‟s view that Λ reflects the action (per causet 

element) that is due to the bare existence of spacetime itself, irrespective of excitations 

such as matter and gravitational waves.  We also accept [6]‟s assumption that Λ‟s “target 

value” – the value that Λ tends to take, up to fluctuations – is zero; as noted, this 

assumption is supported by the normalized GR of [18].  Motivated by this conception of 

Λ, we ask whether there is a theoretical framework suitable for representing or expressing 

the idea of such a Λ.  One attractive possibility for such a framework – suggested in part 

by its usefulness in connection with analogue gravity – is the theory of Bose-Einstein 

condensates [8].  It is natural to write the condensate wave function ψ using the 

Madelung representation, which gives us ψ = √ρ(exp[iS/ħ]).  Here ρ = n/v is the particle 

density of the condensate, for a given volume v; in addition, |ψ| 2 = ρ, and S has the 

dimensions of an action [8].  As is well known, substituting the Madelung representation 

of ψ into the Schrodinger equation yields the following two equations [8, 12, 13], in 

which we write “∆” for the Laplacian operator and “R” for √ρ: 

 

 ∂S/∂t + (∇S)
2
/2m + V – [(ħ

2
/2m)(∆R/R)] = 0

 

 

 ∂ρ/∂t + ∇ · (ρ ∇S/m) = 0.
 

 

The first of these is the so-called quantum Hamilton-Jacobi equation (QHJE), and 

the second is a continuity equation.  The term “[(-ħ
2
/2m)(∆R/R)]” in the QHJE is the 

quantum potential Q, with V being a classical potential.  (In the case of Bose-Einstein 



condensates, there are typically two kinds of potential V: an interaction potential between 

particles and an external confining potential.)  Applying this condensate treatment to the 

spacetime of causal set theory, we identify “ρ” in the above equations with the causet-

element density ρ described earlier; and we express the idea that Λ – i.e., the action due 

to the bare existence of spacetime - has zero as a target value by saying that (i) the value 

of the action S is essentially zero, or negligible, and (ii) each term in both the QHJE and 

the continuity equation has a value which, up to fluctuations, is negligible and hence may 

be treated as zero (of course, the terms containing “S” are zero already because of (i)).  It 

follows from (i) that ψ is a scalar field, with ψ = √ρ = R.  Furthermore, the only 

significant fluctuations we assume here are ρ-fluctuations, the existence of which follows 

from the volume-fluctuations of causal set theory.  (In particular, we do not suppose that 

stochastic spacetime fluctuations generate S-fluctuations of sufficient magnitude to 

constitute dark energy; for, we regard the idea that dark energy is generated by such 

stochastic fluctuations as ruled out observationally by the arguments of [9, 68] mentioned 

earlier.)  These fluctuations give rise to a fluctuating quantum potential Q as explained 

below; and as a result of these ρ- and Q-fluctuations, we get deviations from the two 

equations above, deviations that can be viewed as quantum-gravitational corrections to a 

pure quantum spacetime. 

(Regarding the potential V, we assume a negligible interaction potential between 

causet elements, an assumption that seems reasonable prima facie.  Furthermore, for 4D 

spacetime, the lack of “confinement” indicated by the universe‟s (accelerated) expansion 

suggests that the confining potential is negligible as well.) 

It is important to note that an individual ρ-fluctuation does not, by itself, give rise 

to a nonzero Q.  The quantum potential Q of spacetime is a collective product of the 

entire pattern of ρ-fluctuations occurring at a given time t, and it takes a single value at t; 

hence, Q is delocalized, or nonlocal, in accordance with [12, 13], and consequently its 

density ρQ = Q/V is spatially uniform or homogeneous.  This ρQ recalls the nonlocal Λ of 

[18], except that in [18] Λ‟s value is temporally as well as spatially homogeneous. 

It is also important to realize that even though this ρQ can be represented, using 

the field equations of unimodular GR, as a quantity Λ such that ∆V∆Λ ~ 1, for ∆V ~ √V,   

our account of this Λ is not obtained from GR itself, unimodular or otherwise.  Rather, 

we explain this Λ or dark energy as a quantum-gravity effect; specifically, we explain it 

in terms of the fluctuating spacetime quantum potential Q mentioned above.  By taking 

account of this Q, however, we can, as noted, effectively recover the ∆V∆Λ uncertainty 

relation of unimodular GR, with ∆V ~ √V.  (As indicated in part IV, a coupling of dark 

matter to spacetime may alter m‟s effective value, especially in early cosmological eras, 

leading to some deviation from the uncertainty relation ∆V∆Λ ~ 1, for ∆V ~ √V.  Since 

this relation is merely effective, however, this deviation raises no theoretical issues or 

problems.) 

Returning now to a consideration of those ψ-configurations with the property that 

ρ = 1 almost everywhere (at time t), we seek to show that the (uncancelled) volume-

fluctuations ∆V that form part of a given such ψ-configuration determine a definite value 

for Λ at t.  The fact that ρ = 1 almost everywhere implies that (only) approximately √N 

causet elements are actually fluctuating at t – with these fluctuations collectively 

constituting a volume-fluctuation ∆V of the universe – and these fluctuating elements are 

taken to have a Poisson distribution, in accordance with [6].  Given this distribution and 



the largeness of N in relation to √N, and taking the roughly √N causet elements that 

fluctuate at t to constitute a subset s of the set of all causet elements in the universe, we 

conclude that the members of s are overwhelmingly likely to be sparsely distributed 

throughout the universe.  In other words, any two members of s are almost certain to be 

separated by a supra-Planckian spatial distance.  Since each member of s is associated 

with a volume-fluctuation and hence with a fluctuation of ρ, it is obvious that these ρ-

fluctuations are likewise sparsely distributed; i.e., they are each surrounded by a 

relatively large region where ρ = 1 uniformly.  It is also evident that the ρ-fluctuations of 

the members of s produce nonzero values or fluctuations of ∂ρ/∂x
n
 (“n” here ranges over 

the three spatial dimensions) that are sparsely distributed as well.  (We treat “∂” here as a 

finite difference operator, with Planck-length finite differences.)  Finally, note that the 

members of s, at a given time, collectively produce either a contraction or an expansion 

(as the case may be) of the four-volume V of the universe. 

Our main argument, in what follows, is that the fluctuations of ρ and ∂ρ/∂x
n
 

associated with the members of s give rise to a (fluctuating) quantum potential Q (or ∆Q) 

of spacetime which plays the role of dark energy, with Q‟s density ρQ having the same 

magnitude as the ∆Λ of [6].  In other words, this ∆Λ manifests as ρQ, so that the 

uncertainty relation ∆V∆Λ ~ 1, for ∆V ~ √V, is effectively satisfied.  Before 

demonstrating by explicit calculation that ρQ and [6]‟s ∆Λ are in fact comparable, 

however, there are several other points to make. 

 

III.1  Some remarks on the quantum potential of spacetime 

 

In the first place, since ρQ, as we shall see, always has the same sign regardless of 

whether the volume-fluctuation that determines it is a contraction or an expansion, we 

take ρQ‟s value to be positive, in accordance with cosmological observations.  (Since the 

usual sign convention is to give the quantum potential a negative value in order to 

indicate that it is a repulsive force, we should, strictly speaking, write the dark energy 

density as “-ρQ” to indicate that this density is positive.  We will not always adhere to this 

convention, however, preferring to simply write “ρQ”.)  This contrasts with [6], where Λ 

may fluctuate either positively or negatively.  Treating ρQ, as exclusively positive does 

raises some issues concerning its value at early times, however, which will be addressed 

in part IV.  In any case, as noted earlier, [18] contains an independent argument for the 

non-negativity of both the “true” cosmological constant Λ and a time-varying dark 

energy, based on a “normalized” GR with field equations that resemble those of 

unimodular GR. 

Something also needs to be said concerning our claim that the Q-fluctuations 

arising from volume-fluctuations entail deviations from the QHJE; the basic idea behind 

this claim is that the perturbations of spacetime represented by volume-fluctuations 

induce temporary violations of the QHJE, violations that take the form of fluctuations of 

the spacetime quantum potential Q.  This claim itself seems reasonable enough, since (a) 

the QHJE follows from the Schrodinger equation, and (b) volume-fluctuations clearly are 

not part of, nor are they a consequence of, the process of Schrodinger evolution.  Instead, 

they represent an external force capable of disturbing this process; in that respect, they 

are like the factors responsible for wave-function collapse.  Hence, we should not expect 



the QHJE to describe their occurrence and effects, just as we do not expect the 

Schrodinger equation to describe the collapse of the wave function. 

The resulting deviation from the QHJE is an externally-induced effect – 

“external,” that is, from the standpoint of quantum theory per se.  Specifically it is an 

effect of the volume-fluctuations entailed by causal set theory (together with the ∆V∆Λ 

uncertainty relation of unimodular gravity). There are two main points to make 

concerning this.  First, the existence of such a non-quantum effect does not mean that the 

QHJE is completely irrelevant to the Planck-scale spacetime of causal set theory.  The 

QHJE is still relevant because volume-fluctuations are viewed or understood here as 

sources of deviation from the QHJE.  Second, it seems strange that a quantum-theoretic 

concept like the quantum potential should lead to a deviation from a key equation of 

quantum mechanics, namely the QHJE.  At the Planck scale, however, where quantum 

and gravitational factors interact, we cannot expect the concepts of either quantum theory 

or gravitational theory to be completely unaffected by this interaction; in particular, the 

emergence of “hybrid” concepts that owe something to both theories should be taken 

seriously as a distinct possibility.  And the spacetime quantum potential proposed here is 

just such a hybrid concept: it has the familiar mathematical form of the quantum-theoretic 

quantum potential, but it owes its existence to fluctuations of geometry (specifically, 

volume-fluctuations), and hence it has a gravitational aspect as well. 

Note that the idea of spacetime as a condensate – and the related view of the 

universe as a “macroscopic quantum phenomenon,” so that principles such as the QHJE 

are relevant to it – has been proposed by Hu [30, 31].  (A different, though not 

incompatible, motivation for regarding the spacetime universe as quantum is given in 

[23].)  We can add here that such a view of spacetime finds some motivation in causal set 

theory itself; for, this theory employs the number density ρ = n/v of causet elements, 

which (as noted) is the same kind of density used in connection with Bose-Einstein 

condensates.  Thus, a condensate treatment of causal sets has a certain naturalness to it.  

Finally, the idea of the quantum potential density ρQ as an effective Λ receives 

support from Groessing‟s account of the quantum potential as a form of vacuum energy, 

specifically thermal vacuum energy [26, 14]; and given the idea of Q as thermal, Tiwari‟s 

view of dark energy as thermodynamic in character [65] also provides some support for 

treating Q as dark energy.  (In addition, the use of unimodular relativity in [65], which 

was noted earlier, is congruent with the present approach.) 

 

III.2  Determining the quantum potential of spacetime 

 

We now turn to the task of calculating the value of Q produced by a given 

volume-fluctuation ∆V; the calculation here is actually quite simple and straightforward.  

Since Q here is non-relativistic, we consider only the three spatial dimensions.  It is worth 

noting, first, that the phenomenon of dimensional reduction at the Planck scale (on which 

see [47], e.g.), in which some dimensions are screened due to spacetime blurriness or 

fuzziness produced by geometric fluctuations, does not occur here, since we are 

considering the effects of a general cancellation of such fluctuations, a cancellation 

associated with the presence of a fixed number N of causet elements.  When N is allowed 

to fluctuate, dimensional reduction may well occur; but in the case considered here, 



spacetime is relatively definite and “well-behaved,” and so all of its dimensions may be 

assumed to be fully manifest. 

Consider, then, the sparsely distributed, Planck-scale fluctuations of ρ and ∂ρ/∂x
n
, 

occurring at a given time t, that collectively constitute (as described above) a particular 

volume-fluctuation ∆V of the four-volume V of the universe.  As noted, ∆V here may 

represent either an expansion or a contraction of V.  For the case of a volume-expansion, 

the fact that ∆V ~ √V, together with the fact that there are ~ √V-many fluctuating causet 

elements (i.e., causet elements whose fluctuations are not canceled), means that, on 

average, each of these fluctuating elements experiences an approximate doubling of its 

associated volume, and hence a halving of its density ρ.  (For simplicity, we assume that 

each fluctuating element exhibits “average behavior,” so that a single description can be 

applied to all of them; this assumption does not affect any of our substantive 

conclusions.)  The case of a volume-contraction is not quite as straightforward, however.  

For, we cannot allow the volume associated with the fluctuating elements to shrink all the 

way to zero, even though this would satisfy the relation ∆V ~ √V; the reason is that this 

would amount to the disappearance of these elements, thereby contradicting the 

assumption that the number of elements is held fixed.  We therefore make the stipulation, 

which seems reasonable enough in any case, that the average density-fluctuation ∂ρ/∂x
n
 

of each element undergoing a volume-contraction is just the inverse of the average value 

of ∂ρ/∂x
n
 for a volume-expansion.  In other words, on average, each fluctuating causet 

element experiences an approximate halving of its associated volume, and hence a 

doubling of its density ρ.  (Here too, we make the simplifying assumption that each 

fluctuating element is “average”.) 

Combining the points just made with [6]‟s account of volume-fluctuations, we 

now proceed to determine the value of the quantum potential Q produced by a given 

volume-fluctuation; the hope, of course, is that Q‟s density ρQ is comparable to the ever-

present Λ of [6].  First, we regard the universe‟s volume V as partitioned into Planck-

sized cells, such that each cell is the volume associated with a particular causet element, 

and no two cells are associated with the same element.  Each of these cells, therefore, 

determines the density ρ of its associated causet element.  The cells of interest here, of 

course, are the fluctuating cells that collectively constitute, at a given time t, a volume-

fluctuation ∆V of the universe.  For a given t, there are roughly √V-many such fluctuating 

cells C; and using the simplifying assumptions of the preceding paragraph, we can say 

that either (a) each of these cells C is such that ρ = 2.0 at t, or (b) each of these cells C is 

such that ρ = 0.5 at t (depending on whether ∆V is a contraction or an expansion, 

respectively).  Furthermore, for almost every one of these cells C, all of the cells in the 

vicinity of C satisfy ρ = 1, where the “vicinity” of C is a region approximately one order 

of magnitude above the Planck scale.  (To say that the above condition holds for “almost” 

every such C is to say that the number n of cells C for which this condition holds is such 

that n ~ √V.)  As a result of this uniform density of the cells surrounding a typical C, we 

have that ∇ρ = 0 (i.e., ∇ρ is a null vector) in the vicinity of C, except in the case of C 

itself and those cells immediately surrounding (or adjacent to) C.  A little reflection 

makes clear that, for almost every one of these √V-many cells C, if we take the value of 

the ratio ∆R/R associated with C itself and add to it the value of ∆R/R that is associated 

with each of the cells immediately surrounding C, then the sum is of order 1.  For the 

entire universe, therefore, we have (∆R/R) ~ √V.  To obtain a value for Q, however, we 



need to multiply (∆R/R) by -ħ
2
/2m.  Since ħ=1 and m~1, as indicated earlier, we only 

need to divide by -2, which does not affect the order of magnitude.  Hence, we have -Q ~ 

(∆R/R)/2 ~ √V, which is just what we need (see below). 

Thus, each of the above-described fluctuating cells C gives rise to a ratio ∆R/R 

such that (∆R/R)/2 ~ 1.  Let us now determine this ratio more precisely for a typical C.  

We begin by considering with a volume-expansion, which as noted has the effect of 

making ρ = 0.5, and hence √ρ = R = 0.7 (approximately), for each C.  Consider, for a 

particular C, a one-dimensional vector-component v that passes through C along a given 

coordinate axis x.  Immediately adjacent to C along the x-axis, there are two Planck-sized 

cells Ca and Cb,one on each side of C, such that ρ = 1 = √ρ for each of these cells, and 

with v pointing from Ca to Cb.  We now evaluate ∂R/∂x and ∂
2
R/∂x

2
 by moving across C 

in the direction of v, starting at Ca .  Using the above assumptions concerning C and the 

cells in its vicinity, we have for Ca the following values: ∂R/∂x = -0.3 = ∂
2
R/∂x

2
.  For C 

itself, we have ∂R/∂x = 0.3, and ∂
2
R/∂x

2
 = 0.6.  And for Cb, we have ∂R/∂x = 0, and 

∂
2
R/∂x

2
 = -0.3.  (For all other cells in the vicinity of C, ∂

2
R/∂x

2
 = 0, and we therefore 

ignore them.)  Consider now the ratio (∂
2
R/∂x

2
)/R.  For Ca, the value of this ratio is -0.3, 

since R = 1; and the same is true for Cb, so that the total value for these two cells is -0.6.  

For C itself, we have (∂
2
R/∂x

2
)/R = 0.6/0.7 = 0.86 (approximately).  Hence, the overall 

value of (∂
2
R/∂x

2
)/R here is 0.86 – 0.6 = 0.26.  (Note that for all other cells in C‟s 

vicinity, (∂
2
R/∂x

2
) = 0 = (∂R/∂x), since by assumption ρ = 1 for each of these cells.)  

Repeating this procedure for the other two spatial dimensions and summing the results, 

we obtain ∆R/R = 3 · 0.26 = 0.78; and dividing by -2 gives us -0.39.  Thus, each of the 

√V-many cells C contributes to Q‟s value an amount equal to -0.39, and hence the 

absolute value of each cell‟s contribution is of order 1.  We therefore have -Q ~ √V. 

For the case of a volume-contraction, we proceed in the same manner, except that 

now each C is such that ρ = 2.0, and hence √ρ = R = 1.41 (approximately).  As a result, 

we have, for Ca, ∂R/∂x = 0.4 = ∂
2
R/∂x

2
; and for C itself, we have ∂R/∂x = -0.4, and 

∂
2
R/∂x

2
 = -0.8.  For Cb, we have ∂R/∂x = 0, and ∂

2
R/∂x

2
 = 0.4.  As for the ratio 

(∂
2
R/∂x

2
)/R, its value for Ca and Cb combined is 0.4 + 0.4 = 0.8.  For C itself, we have 

(∂
2
R/∂x

2
)/R = -0.8/1.41 ≈ -0.57.  Hence, the total value of (∂

2
R/∂x

2
)/R here is 

approximately 0.8 – 0.57 = 0.23.  Repeating this for the other two spatial dimensions and 

taking the sum, we obtain (∆R/R) = 0.69.  Dividing this result by -2, we see that each of 

the √V-many cells C contributes to Q‟s value an amount ≈ -0.35; here again, then, the 

absolute value of each cell‟s contribution is of order 1, and hence -Q ~ √V. 

Thus, for a given volume-fluctuation ∆V occurring at time t, each cell C for which 

ρ ≠ 1 contributes to Q an amount having a value of order 1, in Planck units.  Hence, for 

the volume V of the universe, where V contains V
½

-many such cells C at t, the quantum 

potential Q due to ∆V is such that -Q ~ V
½

, with density -ρQ ~ V
-½

.  The magnitude of ρQ 

is thus comparable to that of the (ever-present) Λ of [6], which is just what is needed in 

order to justify treating ρQ (or more precisely, -ρQ) as an effective Λ. 

Given what was said earlier about the nonlocal nature and distribution of Q and 

ρQ, it is clear that, in contrast to the Λ of [6], ρQ‟s value at a given time t is not “selected” 

by a stochastic (random-walk) process; as a result, the spatial inhomogeneity of [6]‟s Λ, 

which leads to effects that conflict with observations of the CMB [9, 68], is avoided.  

One could object that, even though ρQ‟s value is not directly “chosen” stochastically, ρQ 

does depend on a stochastic process, namely the process of volume-fluctuation.  



Nonetheless, in view of the huge number of Planck-scale volume-fluctuations occurring 

in the universe at a given time t, it is reasonable to suppose, by virtue of the Law of Large 

Numbers, that these volume-fluctuations are distributed homogeneously, even between 

causally separated regions of spacetime.  Hence, the element of stochasticity here should 

not lead to observationally problematic inhomogeneities of ρQ.  (Note also that the early-

time suppression of ρQ described in part IV, below, provides an additional avenue for 

avoiding conflict with CMB observations.) 

The general idea of a quantum potential that is nonlocal on cosmological scales – 

and hence has a “Machian” character – is not original with the present account, but has 

been advanced before by others [59, 60]; the same can be said of the idea of treating Λ in 

Machian/nonlocal terms [18], as well as the idea that spacetime itself exhibits strong 

nonlocal connections of a Machian character [43-45, 53, 54].  The above account of Q is, 

therefore, not a completely novel one, though it does have some new features which, we 

feel, make it worthy of attention.  This account of Q also has an affinity with: (i) the idea 

of spacetime as a condensate, according to which the universe as a whole is a 

“macroscopic quantum phenomenon” [31]; (ii) the conception of the universe itself as 

subject to quantum entanglement [22, 23, 29, 46]; and (iii) the view that the universe‟s 

fundamental degrees of freedom obey infinite statistics, and hence are strongly correlated 

and nonlocal.  (On some of the motivations for using infinite statistics in cosmological 

and quantum-gravitational contexts, see [16, 32-34, 46, 48-50, 58].)  Together these 

various theories and proposals, though none of them is free from controversy, suggest 

that the idea of Q as nonlocal on a cosmological scale should be taken seriously, 

especially in view of the fact that the model of [6] itself, as we have seen, requires a 

strong nonlocality. 

 

IV.  SOME ADDITIONAL ISSUES AND QUESTIONS 

 

The fact that ρQ is always positive eliminates the danger of negative Λ-

fluctuations producing a negative total energy density ρtot (on this danger, see [6]); at the 

same time, however, it raises another problem, namely, ensuring that ρQ‟s early value is 

low enough to both allow structure formation to occur and satisfy the constraints 

associated with BBN and observed abundances.  This problem is addressed in [6] by 

allowing negative fluctuations of Λ, but that route is obviously not available to us here.  

Instead, we propose that dark matter couples to the Q-fluctuations of the spacetime 

condensate – a rather natural idea in view of the fact that dark matter itself may well take 

the form of a Bose-Einstein condensate ([11, 42, 61, 62]; and see [66] on the coupling of 

BEC‟s to spacetime fluctuations).  As a result of this coupling, dark matter may 

contribute positively to the value of the mass term “m” in the expression for Q, thereby 

leading to a possibly significant increase in m‟s value and, consequently, to a possibly 

significant decrease in Q.  For a given time t, the extent to which m‟s value is affected at t 

by the coupling depends both on the strength of the coupling, which we assume to be 

constant over time, and on the dark matter density ρm.  At early times, the relatively large 

value of ρm lowers (or effectively suppresses) the values of Q and ρQ significantly; hence, 

assuming that the coupling originates prior to Big Bang Nucleosynthesis, it is possible for 

the constraints of both structure formation and BBN to be satisfied.  At late times, 

however, when dark matter is highly diluted, the effect of ρm on Q and ρQ becomes 



negligible, and the value of the “m” term in the expression for Q is ~ 1, as it is in the 

absence of any coupling with dark matter.  This allows ρQ to dominate ρtot, thereby 

making possible the universe‟s accelerated expansion. 

Turning now to the uncertainty relation ∆V∆Λ ~ 1, for ∆V ~ √V, it is apparent that 

the coupling described above can cause this relation (including the value of ∆V itself) to 

be modified at early times.  Such a modification is not problematic from the present 

standpoint, however, since the above uncertainty relation is treated here as merely an 

effective principle.  This is not to say that the relation ∆V∆Λ ~ 1 should not be expected 

to hold in some form.  The point is simply that this relation can always be satisfied by 

taking ∆V ~ V, as noted earlier. 

The changing effects of ρm on ρQ can be incorporated into the model of [6] via the 

fluctuation-parameter α of this model, which now gets reinterpreted as a time-varying 

parameter that reflects (in part) the extent to which ρm effectively suppresses Q and ρQ.  

Such a reinterpretation of α is possible because the magnitude of dark energy fluctuations 

is no longer the product of a random walk, but is instead determined and constrained by 

the magnitude of both ∆V and ρm.  (Note, by the way, that the random variable ξ of [6] 

gets reinterpreted as well, becoming in effect a constant such that ξ ≈ 1, which allows us 

to disregard it.)  The upshot is that α can take a relatively low value at early times and a 

relatively high value at late times, thereby eliminating the “tension” regarding α‟s value – 

a tension described in [6] – which is due to the need to select a single value of α that 

holds at all times. 

As ρm decreases, the suppression of ρQ by dark matter eventually becomes 

negligible, so that ρQ approaches its “unsuppressed” value of ~ H
2
, which together with 

the decrease of ρm leads to accelerated cosmic expansion.  This raises the question of 

cosmic coincidence: why has ρQ become unsuppressed just now, i.e. in the present 

epoch?  To answer this question, at least in qualitative terms, we note first that the length 

of time it takes for ρQ to become unsuppressed depends on the amount by which ρQ (and 

Q) is suppressed in the first place.  The latter amount, in turn, depends on the strength of 

the coupling between dark matter and Q-fluctuations: the stronger the coupling, the 

greater the suppression of Q and ρQ, for a given value of ρm.  The coupling, however, 

cannot be so strong as to suppress Q altogether, since in that case there would be nothing 

for dark matter to couple to and hence no coupling at all, contrary to hypothesis.  As a 

result, there are significant limits on the strength of the coupling, and hence on the 

suppression of ρQ, even in the epoch of matter domination.  It is not unreasonable, 

therefore, to expect that a substantial decrease in ρm, such as occurs between the matter-

dominated era and the present, will have the effect of eliminating much if not all of this 

limited suppression of ρQ; and so we have an answer, albeit a rather rough and qualitative 

one, to the question raised above. 

To conclude, let us return to the idea that Planck-scale volume-fluctuations may 

undergo mutual cancellation on a cosmological scale, and consider whether any physical 

motivation can be given for the strong nonlocality that this idea entails.  One source of 

such motivation can be found by adopting the idea, advanced by a number of authors [33, 

34, 46, 48-50, 58], that the fundamental particles or quanta constituting the vacuum obey 

infinite statistics.  (The general idea of particles obeying infinite statistics comes from the 

quon model of Greenberg [24, 25] (cited in [32]).)  As argued by Jackson and Hogan 

[32], the strong nonlocal correlations between particles obeying infinite statistics produce 



a cancellation of vacuum fluctuations and a consequent disappearance of vacuum energy.  

Furthermore, as argued by both Ng and Medved [48-50, 46], the fundamental particles 

here must have extremely long wavelengths – of the order of the Hubble radius – making 

the scale of cancellation truly cosmological.  Now, if we take the further step of 

associating vacuum energy with spacetime foam or fluctuations of geometry (including 

volume-fluctuations), as in [48-50], then the cancellation here includes a cancellation of 

volume-fluctuations, up to an uncancelled remnant ∆V ~ √V whose presence reflects the 

random character of these fluctuations.   And as we have shown here, the spatial 

distribution of these remnant fluctuations is such that they collectively give rise to an 

effective Λ in the form of a quantum potential of spacetime, with this Λ satisfying the 

uncertainty relation ∆V∆Λ ~ 1, for ∆V ~ √V. 

From a Machian standpoint, the use of infinite statistics is actually quite natural.  

For, in the first place, infinite statistics and holography are closely related [16]; in 

particular, the nonlocality associated with infinite statistics appears related to the 

nonlocality that is a feature of theories in which holographic relationships play a 

significant role [49].  Second, Mach‟s principle itself, with its attendant nonlocality, is 

expressible in holographic form [39]; and taken together, these considerations suggest 

that Machian nonlocality is realized, at least in part, through infinite statistics. 

Finally, we note an additional possible source of Machian nonlocality.  Consider 

the idea that Planck-scale spacetime, or spacetime “foam,” is a gas or lattice of Planckian 

wormholes, with the constituent elements of spacetime structure (i.e. the causet elements, 

to adopt the standpoint of causal set theory) existing at the interstices of this lattice [52].  

The presence of a lattice structure here is in conformity with the ideas presented in Part 

II, above; and the wormholes themselves can be viewed as establishing nonlocal relations 

or connections between widely separated causet elements.  This kind of nonlocality has 

been described in detail by Requardt [53, 54], and in the present context it can be taken to 

produce a general cancellation of cause elements‟ volume-fluctuations.  The scalar field 

ψ = √ρ = R here is defined only at the lattice interstices or “points;” and the nonlocal 

fluctuation-cancellation that is due to the Planckian wormholes – and possibly also to the 

existence of quanta that obey infinite statistics – gives rise to the quantum potential Q of 

spacetime, as we have seen.  
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