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 (Dated: October 25, 2010) Abstract 
The fine structure constant and the quark and lepton mixing angles are shown to arise naturally 

in the course of altering the symmetry of two algebraic identities.  Specifically, the symmetry of 

the identity ݔଶ ൌ ݔ  ଶ is “broken” by making the substitutionݔ ՜ ݔ  െ   on its left side, andݕ

the substitution  ݔ ՜ ݔ െ  equals the order of the identity; these  on its right side, where  ݖ

substitutions convert the above identity into the equation  ݔଶ െ ଶݕ ൌ ሺݔ െ  ሻଶ.  These sameݖ

substitutions are also applied to the only slightly more complicated identity ሺݔ ܽ⁄ ሻଷ  ଶݔ ൌሺݔ ܽ⁄ ሻଷ  ଷݔଶ to produce this second equation ሺݔ െ ଷሻݕ ܽଷ⁄  ଶݔ  െ ଷݕ ൌ ሺݔ െ ሻଷݖ ܽଷ⁄ ሺݔ െ ଷݔwhere, on the second equation’s left side, this property helps define the special case   ሺ ,ݕ݀/ݖ݀ ሻଶ.  These two equations are then shown to share a mathematical property relating toݖ െ ଷሻݕ ܽଷ⁄  ଶݔ െ ଷݕ ൌ ሺ10ଷ െ 0.1ଷሻ 3ଷ⁄  10ଶ െ 0.1ଷ ൌ 137.036,  an equation which 

incorporates a value close to the experimental fine structure constant inverse.  Moreover, on 

the second equation’s right side, this same special case simultaneously produces values for the 

sines squared of the mixing angles.  Specifically, the sines squared of the leptonic angles φ12, 

φ23, and φ13 appear as 0.3, 0.5, and not larger than roughly 1 30 000⁄ , respectively; and the 

sines squared of the quark mixing angles θ12 and θ13 appear as 0.05, and close to 1/90 000, 

respectively.  Despite closely mirroring so many experimental values, including the precisely‐

known fine structure constant, the above mathematical model requires no free parameters 

adjusted to fit experiment. 
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I.  Introduction 

    The fine structure constant (FSC) and the quark and lepton mixing angles are shown to arise 

naturally in the course of an investigation of two algebraic identities whose symmetry is 

altered.  Specifically, the symmetry of the identities 

ଶݔ  ൌ       ଶݔ
and  

ቀܽݔቁଷ  ଶݔ ൌ ቀܽݔቁଷ   ଶݔ

 

will be “broken” by making the substitution 

ݔ  ՜ ݔ  െ   ݕ
 

on their left side, and the substitution  

ݔ  ՜ ݔ െ  ݖ

 

on their right side, where  equals the order of each identity.  The resultant equations will then 

be shown to share a mathematical property relating to ݀ݕ݀/ݖ, where for the second equation 
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this property gives rise to values that are close to the experimental FSC and the sines squared 

of the quark and lepton mixing angles.   

II.  The fine structure constant 

     To generate the FSC start with the symmetric identity  

ଶݔ  ൌ  ଶݔ

 

and break its symmetry by making the substitution 

ݔ  ՜ ݔ  െ  ݕ

 

on its left side, and the substitution  

ݔ  ՜ ݔ െ  ݖ

 

on its right side, where  ൌ 2.  This produces 

ଶݔ  െ ଶݕ ൌ ሺݔ െ  ሻଶ   .                                                          ሺ1ሻݖ

 

If one assumes that 

 



4 
ݕ  ൌ ݔ1                                                                             ሺ2ܽሻ 

 

and 

ݔ  ب 1    ,                                                                       ሺ2ܾሻ 

 

then for Eq. (1) the value for ݀ݕ݀/ݖ turns out to be simply 

ݕ݀ݖ݀  ൎ      ,                                                                   ሺ2ܿሻݕ

 

where   ൌ 2, the order of Eq. (1) (see Appendix A for derivation).  Because Eqs. (2a)−(2c) are 

all that will be needed to generate the FSC in the next example, they will be termed the FSC 

Conditions. 

     To produce the FSC, combine  ݔଶ with the next higher‐order term to form the expression 

 

   ቀܽݔቁଷ   .   ଶݔ
 

Set this expression equal to itself to form the new symmetric identity 

 

ቀܽݔቁଷ  ଶݔ ൌ ቀܽݔቁଷ   ଶݔ
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and apply the earlier substitutions 

ݔ  ՜ ݔ െ  ݖ

ݔ       ՜ ݔ  െ     ݕ
 

with p now equaling 3, the order of this new identity.  This produces the FSC Equation 

 

ଷݔ      െ ଷܽଷݕ  ଶݔ െ ଷݕ ൌ ቀܽݔ െ ቁଷݖܽ  ሺݔ െ  ሻଶ   .                                     ሺ3ሻݖ

 

For Eq. (3), if the first two FSC Conditions—Eqs. (2a) and (2b)—are assumed, then the third FSC 

Condition—Eq. (2c)—is also met if 

 

ݔ ൎ ܽଷ3  1                                                                      ሺ4ሻ 

 

(see Appendix B for derivation).  

     As it turns out, the smallest integers fulfilling these conditions are  

ݔ  ൌ 10 

 

and 
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      ܽ ൌ 3    .  
 

Substituting these integers into the left side of the FSC Equation gives 

 10ଷ െ 10ିଷ3ଷ  10ଶ െ 10ିଷ ൌ 137.036   ,                                       ሺ5ܽሻ 

 

where 137.036 differs from the 2006 CODATA value of 137.035 999 679 by about 2.3 parts per 

billion [1].  In this way the FSC arises naturally from the analysis of the broken symmetry of two 

simple algebraic identities.  (Note that the above FSC approximation is also returned by a 

“brute‐force” computer search for precise approximations of the FSC reciprocal [2], and that 

the values 10 and 3 also arose independently during a study of how to reproduce economically 

the quark and lepton masses [3].) 

III.  The sines squared of the mixing angles 

     To see how the quark and lepton mixing angles ( θ12, θ23, θ13, and φ12, φ23, φ13, respectively) 

are also contained within the above FSC Equation—or, more precisely, their sines squared—

observe that the above values for ݔ and ܽ also determine that 

 

ݖ ൌ 129 999.93 …   , 
 

so that the right side of the Eq. (3) equals 

 ൬103 െ 13 ൈ 29 999.93 …൰ଷ  ൬10 െ 129 999.93 …൰ଶ ൌ 137.036   .                     ሺ5ܾሻ 
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Now notice that the four constants above  

 

    103     , 
 

    13 ൈ 29 999.93 …    , 
    10    , 
 129 999.93 … 

 

each relate to the sines squared of the mixing angles.  Specifically, within the limits of 

experimental error [4]: 

• The value 10 3⁄  equals the reciprocal of ݊݅ݏଶ߮ଵଶ.  

• The value 1 ሺ3 ൈ 29 999.93 … ሻ⁄   equals ݊݅ݏଶߠଵଷ. 

• The value 10 equals ݊݅ݏଶ߮ଶଷ/݊݅ݏଶߠଵଶ.  (Note that if ݊݅ݏଶ߮ଶଷ is assumed to equal  0.5, representing maximal mixing, then for 0.5 ⁄ଶ݊݅ݏ  ,ଵଶ to produce the value 10ߠ
the value ݊݅ݏଶߠଵଶ must equal 0.05.  As it turns out, within the limits of 

experimental error the precisely‐measured ݊݅ݏଶߠଵଶ does equal 0.05 [4]). 

• The value 1 29 999.93 …⁄  equals ݊݅ݏଶ߮ଵଷ/݊݅ݏଶߠଶଷ, so that ݊݅ݏଶ߮ଵଷ cannot be larger 

than roughly 1 30 000⁄ . 

. 
In this way the right side of the FSC Equation mirrors the sines squared of five of the six mixing 

angles.  Note that three of these sines squared are predicted to be the “round” numbers 0.3, 0.5, and 0.05, whereas ݊݅ݏଶߠଵଷ is predicted to be close to 1 90 000⁄ . 
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     Admittedly, two of the above sines squared occur individually 

• sin2 φ12 

• sin2 θ13 

whereas the remaining four sines squared appear as ratios 

• sin2 φ23/ sin2 θ12 

• sin2 φ13/ sin2 θ 23   . 

Importantly, however, while investigating the mixing angles via matrix algebra, the author 

arrived independently at this same combination of sines squared and ratios of sines squared.  A 

detailed account of this alternative method is available, where it is shown that it yields values 

identical to the above five mixing angles, while generating precise values for sin2 φ13 and ݊݅ݏଶߠଶଷ [4]. This account also offers a comparison against experiment of the values predicted 

for all six mixing angles. 

IV.  The muon- and neutron-electron mass ratios 

    The calculation of the value of the FSC inverse depends inversely on the square of the 

electron’s charge ݁  

 

ߙ1     ൌ ܿߝߨ4 ݁ଶ⁄ ൎ 137.036   . 
     

As this usage of electron charge is arbitrary, one could instead employ the square of the d‐

quark’s charge of െ1/3 to produce a “d‐quark FSC inverse” that is ninefold larger the usual FSC 

inverse.   

    With this in mind let 
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 ݇ଶ ൌ 100                  ݇ଷ ൌ 1000  

  ݉ଶ ൌ 1 9⁄                     ݉ଷ ൌ 3            
 

so that 

 ݇ଷ െ ݇ଶିଵ݉ଷ  ሺ10 െ ሺ300 ൈ ݇ଶሻିଵሻଶ݉ଶ ൌ 9 ൈ 137.036 000 001 111 …               ሺ6ܽሻ 

 

and 

 ݇ଶ െ ݇ଷିଵ݉ଶ  ሺ10 െ ሺ300 ൈ ݇ଷሻିଵሻଷ݉ଷ ൌ 9 ൈ 137.036 000 000 012 …               ሺ6ܾሻ 

 

reproduce nine times the value of the FSC inverse in two closely related ways.  They are “closely 

related” in that: 

 The left sides of Eqs. (6a) and (6b) are identical after the  2 ՞ 3 exchange of 

subscripts and powers.  

That is to say, in going from one equation to the other, the subscripts and powers that are 2 

become 3, and those that are 3 become 2.  Moreover, with the aid of two definitions that 

exploit the first term of Eq. (6a) 

 

݆ଶ ൌ ݇ଷ െ ݇ଶିଵ݉ଷ ൌ 333.33   ,                                                     ሺ7ܽሻ 
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and the second term of Eq. (6b) 

 

݆ଷ ൌ ሺ10 െ ሺ300 ൈ ݇ଷሻିଵሻଷ݉ଷ ൌ 333.333 000 000 111 …    ,                       ሺ7ܾሻ 

 

the muon‐ and neutron‐electron mass ratios can, perhaps surprisingly, be expressed 

economically as 

 ݉ఓ݉  ൌ  ݇ଶ݇ଷ  4.1ଷ   ݆ଶ݇ଶ െ 1    ݇ଶ െ  ݆ଶ݇ଶ െ 1 ൌ     206.768 270 7 …                        ሺ8aሻ 

 ݉݉  ൌ  ݇ଷ݇ଶ 4.1ଷ    ݆ଷ݇ଷ െ 1  ݇ଷ ݆ଷ݇ଷ െ 1 ൌ 1 838.683 654 7 …   .                    ሺ8bሻ 

 

 Note that, with the exception of those values appearing in boldface, i.e.,  െ 

and , Eqs. (8a) and (8b) are also identical after the 2 ՞ 3 exchange of 

subscripts.   

    The above calculated mass ratios differ from their 2006 CODATA values of 206.768 282 3 (52) 

and 1 838.683 660 5 (11) by just 56 and 3 parts per billion, respectively, and are each close to 

their limits of experimental error [1].  

    Information theory has already been used to make the case that the success of equations 

similar to Eqs. (8a) and (8b) is unlikely to be coincidental (see Eqs. (14a) and (14b) in [5]).  

Essentially, they are too simple in comparison to the amount of mass data they correctly 

reproduce to be purely the result of accident.  By way of contrast, here are two approximations 

found by a “brute force” computer search 
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ܯఓܯ  ൌ ૢ 2883 ൌ 206.768 296 9                                                  ሺ9ܽሻ 

ܯܯ  ൌ   ૢ2883 ൌ 1 838.683 662 8                                             ሺ9ܾሻ 

 

(see Eqs. (12a) and (12b), also in [5]).  In much the same way that Eqs. (8a) and (8b) achieve 

economy by exploiting the ad hoc constant 4.1ଷ in their numerators, this search reproduced 

the muon‐ and neutron‐electron mass ratios via a pair of rational approximations sharing an ad 

hoc common denominator of 2883; but there the similarity ends. Whereas Eqs. (9a) and (9b) 

require large additional ad hoc constants such as ૢ  and   ૢ (in boldface) to fit 

the mass ratio data with comparable accuracy, Eqs. (8a) and (8b) require only the relatively 

simple, easy‐to‐remember constants െ and  to fit these same ratios.  Accordingly, the 

value 4.1 is far more effective than 2883 at reproducing the above mass ratios, despite 2883 

containing the same number of digits as 41/10, and despite 2883 resulting from an exhaustive 

computer search [5].  It is just this economy that suggests that Eqs. (8a) and (8b) have a non‐

coincidental relationship with the muon‐ and neutron‐electron mass ratios. 

   Moreover, the value 4.1 arose previously in connection with an examination of the electron, 

muon, and tau masses [3], which were shown to follow the simple proportion 

     ݉   ݉ఓ :  ݉ఛ ൌ 1 :  3 ൈ 4.1ଷ :  3 ൈ 4.1ହ   .                                        ሺ10ሻ 

 

This proportion fits the experimental muon‐electron mass ratio to about 1 part in 40 000, and 

the less precisely measured tau‐electron mass ratio to about 1 part in 2000 [3].  All this is 

further evidence that 4.1 is a constant of physical significance, a point receiving additional 

support from Eqs. (1)−(5) in [3]. 
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V.  The  muon-, neutron-, and proton-electron mass ratios 

    Extending the earlier definitions, we let  ݆ଵ,  ݆ଶ, and  ݆ଷ equal 333.3, 333.33, and 333.333, 

respectively; and let ݇ଵ ݇ଶ, and  ݇ଷ equal 10, 100, and 1000, respectively.  Now define 

 

ଶܮ ൌ 4.1ଷ݇ଶ  4.1ଷ݇ଶଵ  4.1ଷ݇ଶଶ   ሺ11ܽሻ                                                  ڮ

 

ଷܮ ൌ 4.1ଷ݇ଷ  4.1ଷ݇ଷଵ  4.1ଷ݇ଷଶ   ሺ11ܾሻ                                                  ڮ

ଶݍ  ൌ 6݇ଷ                                                                      ሺ11ܿሻ 

 

so that the muon‐, neutron‐, and  proton‐electron mass ratios may be approximated  

 ݉ఓ݉ ൌ ݇ଶ݇ଷ ଷ   ݆ଶ݇ଶ െܮ   1   െ ݇ଶ ଷܮ  1    ݆ଶ݇ଶ െ 1   ൌ    206.768 270 7 …                     ሺ12aሻ 

 ݉݉ ൌ ݇ଷ݇ଶ ࡸ  – ଶ  ݆ଷ݇ଷݍ        െ ݇ଷ ଶܮ െ ଶ  ݆ଷ݇ଷݍ െ    ൌ 1 838.683 654 7 …                    ሺ12bሻ 

 ݉݉ ൌ ݇ଷ݇ଶ ଶ ݆ଷ݇ଷݍ െ  െ ݇ଷ ଶܮ െ ଶ݆ଷ݇ଷݍ െ  ൌ 1 836.152 675 23 …   .             ሺ12cሻ 
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 Note that, except for the constants 1 and ݍଶ in their respective numerators, 

Eqs. (12a) and (12b) are identical after the 2 ՞ 3 exchange of subscripts. 

 Note that Eqs. (12b) and (12c) are also identical, except that in going from Eq. 

(12b) to (12c), the constant ࡸ in the first term of Eq. (12b)’s numerator 

vanishes, while the constant  in Eq. (12b)’s denominator becomes   

(these differences appear in boldface). 

    Also: 

• The above muon‐electron mass ratio ݉ఓ ݉⁄  is identical with its earlier value.   

• The above neutron‐electron mass ratio ݉ ݉⁄  is slightly larger than its earlier 

value, given that ݆ଷ is now slightly smaller (see Eq. (7b), but the difference is too 

small to be of immediate experimental consequence. 

• The above proton‐electron mass ratio ݉ ݉⁄  differs from its 2006 CODATA value of 1 836.152 672 47 (80) by just 1.5 parts per billion [1].  

    Finally, observe that the denominator of Eq. (12a) equals 

     ݆ଶ݇ଶ െ 1 ൌ 33333 െ 1   ,                                                  ሺ13ܽሻ 

 

whereas that of Eq. (12b) equals 

     ݆ଷ݇ଷ െ 1 ൌ 333333 െ 1   ,                                                 ሺ13ܾሻ 

 

and that of Eq. (12c) equals  

        ݆ଷ݇ଷ െ ݆ଵ݇ଵ ൌ 333333 െ 3333   .                                         ሺ13ܿሻ 

 

This last denominator, belonging to Eq. (12c), the proton‐electron mass ratio equation, is 

slightly more complicated than those belonging to the muon‐ and neutron‐electron mass ratios.  

But with help from the definition 
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ܳଶ ൌ ଶ݇ଶݍ  ଶ݇ଶଵݍ  ଶ݇ଶଶݍ   ሺ14ሻ                                                 ,      ڮ

 

which parallels Eq. (11a)’s definition of ܮଶ, Eq. (12c) can be restated 

 ݉݉ ൌ 3ܳଶ ቆkଶି ଵଶ  kଶି ଷଶቇ െ ଶܮ3 ቆkଶି ଷଶ  kଶି ହଶ  kଶି ଶ  ڮ ቇ                           ሺ15ሻ 

 

so that Eq. (12c)’s more complicated denominator vanishes.  Moreover, if  

 

ܳଶᇱ ൌ ܳଶ݇ଶ  ܳଶ݇ଶଵ  ܳଶ݇ଶଶ   ሺ16ܽሻ                                                         ڮ

 

ଶᇱܮ ൌ ଶ݇ଶܮ  ଶ݇ଶଵܮ  ଶ݇ଶଶܮ   ሺ16ܾሻ                                                          ڮ

 

then 

 ݉݉ ൌ 3݇3 ሺkଶܳଶᇱ െ ଶᇱܮ െ kଶି ଵܳଶᇱ ሻ    .                                                  ሺ17ሻ 
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    Equation (14) also allows Eqs. (12a)−(12c) to be written 

 ݉ఓ݉ ൌ ݇ଶ ݇ଷܮଷ െ ଷܮ െ 1 ݆ଶ݇ଶ െ 1                                                                 ሺ18aሻ 

 ݉݉ ൌ ݇ଷ ݇ଶ ܮଶ  ݇ଶ ܳଶ െ ଶܮ െ ݇ଶି ଵܳଶ݆ଷ݇ଷ െ 1                                        ሺ18bሻ 

 ݉݉ ൌ ݇ଷ ݇ଶ ܳଶ െ ଶܮ െ ݇ଶି ଵܳଶ݆ଷ݇ଷ െ ݆ଵ݇ଵ     .                                                  ሺ18cሻ 

 

    Lastly, Eqs. (12a)−(12c) can also be written 

 

݉ఓ݉ ൌ ଷܮ െ ଷܮ  1݇ଷ  0.33332                                                                   ሺ19aሻ 

 

݉݉ ൌ ଶܮ  ଶݍ െ ଶܮ െ ଶ݇ଶ3.33332ݍ                                                        ሺ19bሻ 

 

݉݉ ൌ ଶݍ െ ଶܮ െ ଶ݇ଶ3.3ݍ                                                                  ሺ19cሻ 

 

or 
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 ݉ఓ݉ ൌ 3 4.1ଷ െ  0.1ଷ0.99996                                                             ሺ20aሻ 

 ݉݉ ൌ 3 6060  4.1ଷ9.99996                                                            ሺ20bሻ 

 

݉݉ ൌ 3 6060 െ 4.1ଷ999.9     .                                                       ሺ20cሻ 

 

VI.  Analysis and Conclusion 

     Even a conservative estimate of the number of digits correctly reproduced by Eq. (3), the FSC 

Equation—more than a dozen if those of the mixing angles are added to the more than eight 

digits reproduced of the FSC—suggests that it cannot be expected to compress such a quantity 

of information by accident.  That there are limits to the compressibility of data has already been 

demonstrated in an article that shows how information theory can be used to distinguish 

coincidental, from non‐coincidental, approximations [5].  Whereas it is always possible to 

present data in an alternate form—for example, a decimal number in binary form—it is not 

reasonable to expect that one can compress it at will, which is to say, one cannot logically 

expect to restate a 12‐digit decimal number using just 12 binary digits without loss of 

information.  (Actually, it would require about 12݈݃ଶሺ10ሻ  binary digits, which equals the 

number of bits of information that a 12‐digit, base 10 number possesses.)  

    Thus, the quantity of information possessed by experimental data places limits on how simply 

that data may be mathematically summarized by chance, as is illustrated by Eqs. (9a) and (9b).  

Such limits, once understood, allow one to analyze experimental data with the aid of 

information theory to isolate non‐coincidental—i.e., physically significant—regularities in the 

data [5], where a relationship is likely non‐coincidental to the extent that the above limits are 

breached. 
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     As it turns out, the FSC equation, Eq. (3), is especially unlikely to compress, purely by 

accident, the experimental data it models, given that: 

• Its form derives entirely from an analysis of the “broken” symmetry of two simple 

algebraic identities. 

• None of its four free variables are “adjusted to fit experimental data.”  Instead, its 

variables ݔ and ܽ are merely the smallest integers—10 and 3, respectively—that 

allow Eq. (3) to mimic Eq. (1) in fulfilling Eq. (2c), while Eq. (2a) allows ݕ and ݖ to 

be deduced from ݔ and ܽ. 
• It reproduces more than a dozen digits of FSC and quark and lepton mixing data. 

• Key terms of the FSC inverse Eqs. (7a) and (7b)—specifically, ݆ଶ and ݆ଷ—can be used 

to help reproduce more than a dozen additional digits of data belonging to the 

muon‐ and neutron‐electron mass ratios.  Admittedly, mass Eqs. (8a) and (8b) 

accomplish this while requiring two constants chosen partly to fit the mass data 

and partly because they are round numbers: െ  and , but the information 

content of these numbers is far less than the information content of the high‐

precision mass ratio data they correctly reproduce. 

• The “mirror image” FSC Eqs. (6a) and (6b) supply the key constants ݆ଶ and ݆ଷ that are 

in turn employed by the mirror image mass Eqs. (8a) and (8b); and yet, despite 

this restriction, they each still fit their respective experimental data near their 

experimental limits.  For this reason these four equations appear especially 

unlikely to be merely the result of coincidence. 

    Accordingly, given that neither its form nor its content has been adjusted to fit either the FSC 

or quark and lepton mixing angles, it is logical to suspect that the FSC Equation, Eq. (3), 

compresses more than a dozen digits of experimental data for reasons that are not accidental, 

but physical.  For these reasons it is logical to expect that experiment will for some time 

continue to mirror the “round numbers” predicted by the FSC Equation for the sines squared of 

the mixing angles. 
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Appendix A 

    Proof that given Eq. (1), if Eqs. (2a) and (2b) are true, so is Eq. (2c). 

    Equation (1) 

ଶݔ  െ ଶݕ ൌ ሺݔ െ  ሻଶݖ

 

simplifies to  

ଶݕ  ൌ ݖݔ2 െ  ଶݖ

 

so that 

ݕ݀ݕ2  ൌ ሺ2ݔ െ  ݖሻ݀ݖ2

 

ݔݕ     െ ݖ ൌ  .   ݕ݀ݖ݀
 

Equation (2a) provides that ݔ ൌ   so that ݕ/1

 

ଶ1ݕ       െ ݖݕ ൌ  .   ݕ݀ݖ݀
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Given Eqs. (2a) and (2b), the cross‐terms on the right side of Eq. (1) guarantee that ݖ ൏  ଷ, soݕ

that for small y 

 

ଶݕ      ൎ  .   ݕ݀ݖ݀
 

In this way Eq. (2c) is recovered for  ൌ 2. 
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Appendix B 

    Proof that if Eq. (3)’s values for ݔ and ܽ are consistent with Eq. (4), then if Eqs. (2a) and (2b) 

are true, so is Eq. (2c). 

    If its higher‐order terms are ignored then Eq. (3) 

 

ଷݔ      െ ଷܽଷݕ  ଶݔ െ ଷݕ ൌ ቀܽݔ െ ቁଷݖܽ  ሺݔ െ     ሻଶݖ
 

simplifies it to  

 

   െ ݕଷܽଷ െ ଷݕ ൎ െ ଷܽݖଶݔ3 െ     ݖݔ2
    െ1 െ  ܽଷݕଷ ൎ െ3ݔଶݖ െ 2ܽଷݖݔ    
      ሺܽଷ  1ሻݕଷ ൎ ݖଶݔ3  2ܽଷݖݔ    
 

so that 

      3ሺܽଷ  1ሻݕଶ݀ݕ ൎ ሺ3ݔଶ  2ܽଷݔሻ݀ݖ   
 

         3ሺܽଷ  1ሻݕଶ3ݔଶ  2ܽଷݔ ൎ  ሺB1ሻ                                                        .    ݕ݀ݖ݀
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Although Eq. (B1) is approximate, the terms it ignores are on the order of ݖଶ, where for quark 

and lepton mixing  ݖ ൎ 1/30 000. 

    In order to assure that Eq. (2c)  

 

ݕ݀ݖ݀  ൎ  ݕ

 

holds for Eq. (3), we rewrite Eq. (B1) as 

 

 3ሺܽଷ  1ሻݕଶ3ݔଶ  2ܽଷݔ ൎ ݕ݀ݖ݀  ൎ ݕ ൎ  ଷݕ

 

where  ൌ 3, the order of Eq. (3).  It follows that 

 

   ܽଷ  ଶݔ1  23 ܽଷݔ ൎ  .   ݕ
 

Equation (2a) provides that ݕ ൌ   so that ݔ/1

 

  ܽଷ  ݔ1  23 ܽଷ ൎ 1 
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  ܽଷ  1 ൎ ݔ  23 ܽଷ   , 
 

which recovers Eq. (4)  

 

ݔ    ൎ ܽଷ3  1   . 
 

Hence, Eq. (4) does constrain Eq. (3)’s values for ݔ and ܽ so that, if Eqs. (2a) and (2b) are true, 

then so is Eq. (2c). 

 


