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Abstract
The purpose of this paper is to illustrate a fundamental, multiple particle, system
equation for which the Klein-Gordon-Dirac-Schrödinger equations are single particle
special cases. The basic concept is that there is a broader picture, based on a more
general equation that includes the entire system of particles. The first part will be to
postulate an equation, and then, by modifying the methods of Path Integrals, develop a
solution which describes the internal dynamics as well as particle interactions of
quantum particles. The complete function has both real and imaginary, as well as
timelike and spacelike parts, each of which are separable into independent expressions
that define particle properties. In the same manner that eigenvalues of the Schrödinger
equation represents energy levels of an atomic system, particle are eigenvalues in an
interacting universe of particles. The Dirac massive and massless equation and solution
will be shown as factorable independent components. A clear distinction between the
classical and quantum properties of particles is made, increasing the scope of QM.

INTRODUCTION

The success and the accuracy of Quantum Mechanics has been one of the most
outstanding achievements in the history of science, but its application to anything other
than microscopic systems quite limited. In essence QM deals with a single system acted
on by an external potential that allows determination of the properties, motion, and
energy associated with that system. The standard QM, coupling is by the insertion of a
representation of the potential through the correspondence relations, which is an action
on the wavefunction, but not a part of the wavefunction. It is asserted that isolating the
system, and acting on it by an external potential, however relativistically correct, limits
the scope, and limits the understanding of the system as a whole. The defining function
introduced will include the entire system of particle and the interaction between those
particles. It will be developed by defining a vector action for a free particle as an integral
of a vector Lagrangian over the classical path from the initial big bang event to the
current time, and then formulating the function by a method similar to formulating a
solution to Schrodinger equation from the method of path integrals. Particle masses are
shown to be separation constants and eigenvalues of the general expression. This paper is
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an attempt to define a function representing an integrated universe of discrete particles,
which obey the well known rules of energy and motion.

The defining differential equation is termed the “System Equation”, and the solution a
“Systemfunction”,  , to distinguish it from standard QM wave equations and
wavefunctions.

Reviewing the standard QM relations
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Where 0 is the particle Compton radius 0 0m c /  . Of the rest mass of a particle (For
general conventions, and notation, see Appendix I)

I. THE GENERAL SYSTEM EQUATION

The Systemfunction  for a universe of discrete particles is proposed to be a solution to
the general System Equation:
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That is, the derivative with respect to a virtual displacement of the square of the
expansion of the universe.  22 cT  , and X, Y, & Z are the coordinates of the
expanding sphere of the universe, along the light cone.  is the general Systemfunction.
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Using standard Clifford operations this can be:
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and the linear function is expected to be:
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where equivalence only implies similarity.

The plan is to develop a function which is a solution to the System Equation based on a
summation, of the vector path integral over a vector Lagrangian field, of individual
particles in the system. The proposed methodology expands the general method to
include the detailed particle interactions, that have eluded the conventional approach,
and overcomes a shortcoming noted by Feynman of the standard path integral
formulation [2].The Systemfunction will be shown to be a product of several
independent functions, one of which being the solution to the Dirac equation.

A. Action re-defined

In the Path Integral formulation of QM, the normal action for the m particle is in general
the path integral, over a scalar action, from one event to another, over all possible paths.
From the standard path integral formulation of QM [4] The path integral depends on its
final coordinate and time in such a way that it obeys the Schrödinger equation, thus
heuristically for a Schrödinger wavefunction:

     
L S

i dt i
q t q tx, t e eD D     (7)

And for the function of a collection of independent particles this would be:
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This has the presumption that the individual particles, though summing to the total
function, do not interact, but are a linear sum of the non interacting parts.

The departure from standard methods starts here. Proposed is a systemfunction solution
to the System Equation Eq., which is:
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
 

 , (9)

where nS


is a vector action of a vector Lagrangian for a particle over the path interval
from the start of the universe to the current event. The sum is the total free particle
actions of all the particles in the system is a four-space event function.

  m
N

f S S
 

, (10)

that is evaluated at a point at a contemporary retarded time for all the particles. Note that
these are vector actions of presumably a conservative Lagrangian, and thus the value of
the integral along any vector path depends only on the end points. In fact a particle can
take no longer or shorter time to arrive at its time retarded current position on the light
cone.

The proposal for the Systemfunction requires defining the action as a vector, being a
single classical path integral over a vector Lagrangian, rather than a scalar:

m m
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where the classical Lagrangian for a free particle would go to :
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and the Lagrangian for the m charged particle residing in the universe is proposed to be:

mm
m

L
r


 
 v (14)

Where the distance to the particle is:

mr  


mr  


m m mS
r     , (15)

which is the distance from an observation point to the classical charge radius not to the
center of mass. v

m
is the unitless four-velocity of the m particle, v   k 0

km
v/ c   ,

and m is the Compton radius of the m particle. ( / mc  ),
m
 is the charge sign of

the m particle.

Figure 1. Eq.(19), Radial distance nr


to classical radius.

Using Eq.(14), as the Lagrangian for a particle, the action can be integrated from the
initiation of the timelike universe to its current position. The addition of these vectors
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requires contemporaneous world lines, and thus connection through a null vector
interval.

 mS  
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i c L dt i c
r
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 v dt (16)

Where  is the unit directional null vector   0    
  from the particle to the

observation point, making cdt an invariant differential distance. m

cT
r

 , is the retarded

time of the endpoint for a particle at a distance mr from the observation point. Integrating
this over the life of the universe this is then:

 m mS i 
 v   

m

m

m r

r
i

r


   
   

 
m

mr

 
  
 

v (17)

It could be presumed that mr , and mv are functions of time, and should be considered
in the integral, however since the endpoint is the current position, the exact history is not
necessary. It is presumed that the function of the final state satisfies the System
Equation.

cT  is the radius of the universe  is the fine structure constant, and   is the null
vector to the expanding sphere of universe
.

 k 0
kX      (18)

From Eq.(10), the total “system” action is, thus.

totalS  
 N

m m
m 1

is



  


mr


 v

N

m
m 1
 , (19)

This sum represents a collective action of the system at any event in the system, where
the m1/r dependence of each of the elements results in the value of the system action
being dependent on the relative position of all the parts.
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When the function is evaluated at the origin of a particle (i.e. the space distance being
zero, nr 0 ), Eq.(19), becomes the total action for the n particle. At that point, the
Systemfunction becomes an eigenfunction, and that particle’s rest mass is an eigenvalue.

n m m nr r    
   (20)

Thus nS


for k
n kr x 0   , the n free particle action of Eq.(12), becomes:

n
n

is 
 


n



 v
n

(21)

nS


, which is the free particle vector action for the n particle (Eq.(13). The action
contribution of the m particle to the n particle action is:

m m
is 

  


mr

 v m nm
r   , (22)

where
m
 is the sign for the m particle, and mr is the three space distance from the

evaluation point to the m particle.

with Eq., and Eq., the product for the function evaluated at the  point at the n particle is:

2
m m n n m m n

N N m m

S S S S S S S
          

   
   
      

   , (23)

where n m m
m m

S S S S 
   

represents the interactions of the n particle with the other

particles in the system. All terms in this expression are scalar.
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Figure 2. Total action evaluation point  and radius of universe 

II. THE GENERAL ACTION IN A TIMELIKE UNIVERSE

The Systemfunction  with the product of the action defined in Eq.(9), and evaluated at
a selected point, for a single particle, has a scalar exponent, all the terms of the
exponent being real and scalar. The  point is a single event, but that event can observed
simultaneously on an invariant interval anywhere along its future light cone   or .
The future light cone subsequently functions as an observation field for the evaluation
event at the n particle center.

It is expected that the initiation of the universe at T=0 there is a minimum value for the
sum of the action. Since the least action for any particle is / 2 it is proposed and later
determined that minimum for a system is / 2 . This would seem quite arbitrary, but, will
be shown necessary to produce proper physical results. Starting with the action function
in Eq.(19), The generalized total action for the system is proposed to be:

N

m
m 1

s


 
 N

m
m 1

1 / 2s


 
 

 



(24)

And the complete Systemfunction of Eq.(9), is then:
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Ae
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
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Since the product of the sums is scalar, (See Appendix IV) the Systemfunction becomes:

Ae


 
 iS iS   

 
iS 

  
 





, (26)

The square of the null vectors is zero, so for quantum issues the first term can
temporarily be ignored. The scalar imaginary portion of the function is then:

Ae  iS



. (27)

This is the imaginary Systemfunction, representing a field of observation, connecting the
evaluation point  worldline of the observer, through an invariant interval.

Figure 3. The observational field of the  event.

Eq.(6), now becomes:

 2
e

X









iS i
Ie

2











iS



(28)

Or by a change of coordinates to the local coordinates (shown in Appendix II), we have:
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i
I

    


  (29)

This has the appearance of the Dirac expression, but is a matrix similarity relation. The
eigenvectors of this will be shown equivalent to the Dirac eigenvectors.

III. THE QUANTUM PARTICLE

Putting in the specific values Eq.(27), it becomes. (See Appendix VIII for the details)

n n
i

Ae




   v
n n m mr


   v

m

 
 

 


(30)

Now since 0 oct r    , where i 0 represent an ignorable arbitrary phase, and or is
the space distance from , to an arbitrary observation position, (See Figure 3) the
function is then:

 o
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i ct r

Ae
 

 
v

n
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 

v
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 
  
 
 



(31)

or in more elementary terminology:

  n o on m
on n m mo o

E
c

r rv vi ct r 1 1
c r cr r

Ae

    
    
            

     

 


  
  

 (32)

Where or


is the spatial three vector of  , making :

o
o o

o

r
r r

r


  , (33)

which designates a specific point on an observational sphere.
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This is the imaginary Systemfunction has frequencies and wavelengths associated with
the Compton and deBroglie waves, and a phase velocity of c. The Compton waves are
spherical and the deBroglie waves are plane, in the direction of motion.

Notably, the field defined by this imaginary function, Eq.(32),  has a value
representing the linear components of the action of the n particle evaluated at  , as
observed on the invariant null interval throughout the space. This is in contrast with the
Dirac positional probability amplitude, and is the conceptual difference between the
Systemfunction and the wavefunction. The reconciliation of this with the probability
amplitudes, will be left for later.

A. Separating Dirac Massive, and Massless Functions

The matrix function Eq.(32), can be separated into a product of functions, with
eigenvectors equal to those of the Dirac wavefunction for a massive function, and a
massless particle.

The Dirac massive type parts of this function have derivatives with no dependence on the
observational field, and thus create a clear demarcation, between the Dirac massive part
of the function and the Dirac massless part of the function.

Starting from Eq.(32), and separating into a & b products of the imaginary
Systemfunction:

Ia Ib

n

nn
EiE
cc

on mn m oo m mm m o

rp vp v r cti ct r r r cr r c r
Ae Ae

 
                                                

      

     


          . (34)

or:

Ia

nE
c

n m on m m
p vi ct rr r c

Ae

                

   

 


   
(35)

and:
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 
Ib

nE
c

n omom m o

p rvi r ctr r c r
Ae

 
   

   
        

  

   

 


 
   

(36)

Applying the chain rule as before to Eq.(29):

     Ia Ib Ib Ia Ia Ib Ia Ib
n

i
I  

  

 
                  

 
, (37)

As noted earlier Eq.(37), implies a similarity relation, and diagonalizng both sides
produces back the trivial standard relativistic velocity mass relation, but finding the
eigenvectors of this relation a , can be done, and the process reduces the expression into
a very familiar relation.

1 1 1

2 2 2

3 3 3

4 4 4

Ia Ib
nIa Ib

a a a
a a a
a a a
a a a

1 1 i I 
 

     
     
      
     
     
     

      
   (38)

Examination will show that the derivatives of the “Ia” function are independent of the
observation vector 0r


, whereas the derivatives of “Ib” are not.

If the first term in Eq.(37), is set equal to the mass constant, making it homogeneous, and
identical to the Dirac massive particle equation. This requires the second term to be set to
zero, which makes the second equation inhomogeneous or massless. This particular
separation illustrates that the imaginary Systemfunction is a product of the Dirac
expressions for a massive, and massless particle.

The first massive:

Ia Ia
n

n
nn m o

m m

pm c vi ct rr r c i
e I

                
 

   

        a a a

    
 , (39)

and the second, massless:

 
Ib

n on mo
m m o

i p rm c vr ctr r c r
Ae I 0

 
                 

 

   

      a

 
    

(40)
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B. The Dirac Massive Particle

Rearranging the homogeneous Eq.(39), gives:

Ia
n

n n mo on m
m c v vi ct r ct rc r c i

e I

    
    
    

      


  

    a a

    
 . (41)

An interesting point is the second term in the exponent of Eq.(41), is the potential, and it
can be separated and included in the operator.

 
0m m

o m
m m

v v Q
i ct r i i A

x r c r c c




                    

   


, (42)

Where A


is just the vector potential. Eq. (39), can then be rewritten as:

m Ia Ia
n

Q i
i A
c

I


        
 

a a


 
. (43)

where in this case Ia does not contain the potential terms.

This is identical to the Dirac expression with the vector potential [3], noting that the
vector potential was part of the particle action, and not included by way of the
correspondence relation. This mA


term becomes the source term for the spin potential.

(See Appendix VII.)

This, equation and function, is now equivalent in form to the Dirac particle in a potential
field, and if the potential is removed it is just the Dirac free particle.

Appendix VI, demonstrates the modes for Eq.(39), and Eq.(40), . For the Dirac particle,
they are well known but shown for comparison. They are:

z z n z n z
1 3 2 4

p mc p mc m c p m c p
a a a a                   

       

   

       
, (44)
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C. The Dirac Massless Particle Function

Taking the derivatives of the second expression Eq.(40), the “Ib” function, results in:

n o n m o
Ib

m o m o

m c r p v r
i 0

r r r c r

     
        

     
a

  
    

, (45)

Examination of this function shown in Appendix VI, shows that it can only be valid it
the observation vector is collinear with the momentum, and thus Eq.(40), ignoring the
potential, and observed along the direction of motion is:

Ib

n no
m ci v tr

Ae I
 
  


  a

  , (46)

which is the Dirac wavefunction for the massless particle.

Appendix VI, demonstrates the modes for Eq.(45), for the free massless particle which
are:

n n o n n o n n o n n o
3 4 1 2

o o o o

m c p r m c p r m c p r m c p r
a 0 , a 0 , a 0 , a 0

r r r r

       
                       

       

       
   

       
(47)

To review:

The imaginary Systemfunction is identical to a product of the Dirac wavefunctions for a
massive and massless particle.

The functions defined in Eq.(35), and Eq.(36), represent the values of the
Systemfunction evaluated at the  event, with that event’s value being observed on an
arbitrary invariant interval, at a distant location, The value of that point as seen at a
distant point has the characteristics of a wavefunction defined in the observation space .
Though having the same values, as a probability amplitude.

IV THE CLASSICAL PARTICLE
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The classical particle as discussed here is not a different particle, but the development of
the properties of the particle, that are generally considered to be classical. Primarily this
will be to show a real mass obeying a real differential equation.

The systemfunction defined in Eq.(26), can be revisited.

Ae


 
 iS iS   

 
iS 

  
 





(48)

The first term in the exponent is zero, but it is also real and is separable into spacelike
and timelike parts, making the function a product of separable spacelike and timelike
function.

 2 2 2 2X Y Z iS iS iS iS
Ae e e

   
      
   

    
   

   
   

 iS 
  
 





(49)

Designation these functions as R1 R 2 I, , &   , and applying the chain rule to this, from
Eq.(5):

       

 

k 0
R2 I R1 R1 I R2 R1 R2 I2 2 2 2

k

R1 R2 I R1 R2 I

X X X

K K K

 

 

                     
      
  

     



(50)

The last term in Eq.(50), is the imaginary term which has been developed earlier, and
from Eq.(29), IK i / 

With the assumption that each of these terms are equal to or at least similar to
independent constants, and if:

R1 R 2K K  (51)
the relation is still valid.

The K’s then represent a separation constant between the spacelike and timelike universe
of particles, and it is asserted that this separation constitutes the mass of the particles.
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2
R1 0

2
R 2 0

K 1/

K 1 /



 




(52)

This is then for the timelike function:

 
0 2

R 2 0 R 22
1 / I


    
 

 , (53)

and the spacelike function:

 
k 2

R1 0 R12

k

1 / I
X


   


 . (54)

The separation of the Systemfunction into positive and negative masses at the initial
event would seem to be the initial separation of the universes at the Big bang.

(55)

It will now be shown that the timelike expression acting on our general systemfunction
yields the proper equations of motion for a real particle in a timelike universe.

Inserting timelike function from Eq.(49), into Eq.(53), leads to the classical relativistic
Lagrangian equation of motion for a real particle.

   
0 0 2

R1 n n m m n R122 2
m m 0

1
exp S S S S S I

    
                

 
    

  


(56)

(See Appendix IV, Classical particle, for details.)

The exponent of this function is scalar and real, thus, R1 is the “Real” part of the
Systemfunction for the n particle. Explicitly this is:

n

R1 Ae


  
v

2 2

n n m n mm

2
r

  
   

 
 

v
m
 v

n

(57)
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Putting this into Eq.(53), and expressing in more elementary notation is:

2
2 2 2

n m nn0 n
2 2n m

n m

m c m c v 2 Q v v
1 1

c m c r c c

                                  
   , (58)

Eq.(57), is the coordinate free, square of the classical scalar Lagrangian for a moving
charged particle in the presence of other moving charged particle. Taking the square root
gives the familiar classical linear Lagrangian expression for a particle the presence of
other electrically charged particles. Note that there could not be the proper
electromagnetic interaction without the vector actions.

2
2

n m n2 2
n0 n 2

m m

1 v Q v v
m c m c 1 1

2 c r c c

      
                 

  (59)

The real Systemfunction defines the “classical properties” of the same quantum particle
defined earlier.

Arriving at this relativistic interaction Lagrangian is not unusual in itself, but arriving at
it using the afore described procedure is unusual, and gives a degree of credence to the
general System Equation.

V POINTS OF INTEREST

A. Quantum and classical connection

It has been shown that the real part of the general Systemfunction Eq.(26):

R Ae


   iS iS 
  
 

 
 

, (60)

which is a summation of single particle vector path integrals over the classical path
squared, and leads to the classical relativistic equations of motion Eq.(59). This would
suggest that the real part of the Systemfunction (Eq.(60),), which only includes the
symmetric inner products of the individual vector paths, has reduced the multiplicity of
paths to the path of least action.
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On the other hand the imaginary (non-squared) part of the systemfunction has
components identical to the Dirac solution, which can be arrived at as the result of some
multiple scalar path integral formulation [7], [8].

 I x, t Ae


   
n

n

i SiS
q t e

 
  
 





D




(61)

The classical properties are the result of the square of this action function, which would
lead more directly to the conclusion that the path integral formulation of QM is the
underlying mechanism of the principle of least action for the classical, as well as the
quantum particle properties.

B. Factorable Systemfunction

Throughout the paper we have factored out parts of the Systemfunction creating
independent equations and functions. First the parts of the imaginary function (Eq.(37),)
then the photon functions and then the timelike and spacelike real function (Eq.(50),)

It can be subsequently be pointed out that the total Systemfunction is a product of all the
functions that define the properties of the particles.

So we have:

Dirac Massive, Massless. I Ia Ib   

Spacelike, Timelike. R1 R 2 Ia Ib      (62)

Thus, the entire systemfunction is a product of the separable functions that represent
distinguishable properties of the particle defined by the action function.

R1 R 2 Ia Ib e


       iS 1 iS 
  
 

  
 

1 
  
 


(63)

It could be noted that as the time T goes to zero, the value of the product of the S sums,
which are negative approach zero. As this happens the value of the exponent goes to
negative infinity in the spacelike, and timelike universes, but not in the product since
  0 . This should be the expectation in the separation of positive and negative

masses between timelike and spacelike universes (Eq.(50),) in a “big bang”.
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CONCLUSION

A multiple particle system equation for the universe and its connection to Classical and
Quantum Mechanics has been demonstrated. If viable, it represents a new approach to
understanding particle dynamics, and particle interactions. It has been the intention of
this paper to show the generation of standard well known physical relations as the result
of the application of the System Equation to the Systemfunction. The fact that standard
physical relations, as well as the Dirac relations are derived, and not contravened, lends a
degree of confidence in the methodology. The fact that the particle electromagnetic
interaction comes automatically out of the theory without special hypothesis is an
extraordinary feature. Extension to other arenas of physics not well understood would be
the logical next step.
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Appendix I

Definitions, Notation, and Conventions

The radius of the universe 0cT ct    
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Four velocity of particle
v
c





   
 

= v unitless

Three velocity of m particle  k k
m m mk

v v v   
 

Null unit vector   0 1
          

    
Mass m

Rest mass 0m

Compton radius
mc




Vector 4 potential A


Compton radius rest mass 0
0m c




Sign of m particle charge
m


Shortened derivatives
 x

 





   


 
2

2
X

X
 






   


The Dirac matrix convention:

2 3 0

1 i 1 1
1 i 1 11

1 i 1 1
1 i 1 1

        
                     
        
               



(1.1)

and
1 1 2 2 3 3 0 01, 1, 1, 1                .

Special vectors:
Trivector:
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1 2 3 3 2 1

i
i

i
i

 
             
 
 
 

(1.2)

Pseudo-scalar:
5 0  (1.3)

Square are:
2 5 51 1     

Spin vector:

1 2 3 2 3 1 3 2 1            (1.4)

The vector four velocities:

v  1 2 3 0
x y z= v v v c / c       (1.5)

The product of two four velocities:

v
n

v   1 2 3 0 1 2 3 0 2
xn yn zn xm ym zmm

= v v v c v v v c / c              (1.6)

or
v

n
v     2

n m n m 4 m nm
v v v v c v v / c      
      (1.7)

The inner product:
v

n
v

m
 v

m
v

n
2 v

n
 v

m
(1.8)

The outer product:
v

n
v

m
 v

m
v     2

n m 4 m nn
2 v v 2 c v v / c       

   
(1.9)
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Appendix II

The Change to Local Co-ordinates

From Eq.(5):

 

22

22

1
2X

      
  


(2.1)

Where the X coordinates represent the location coordinates of the sphere of the
expanding universe, or using Clifford algebra by the Dirac procedure:

   
2

2 2

1
I

2X X
 

 

                     

 


(2.2)

Note that this is the change in the function with respect to a displacement of the
expanding light cone at the edge of the universe.

Since in a spherical universe, X,Y,Z are the location coordinates of the expanding light-
cone of the universe, and each have a magnitude equal to the radius  .

Along the light cone, X c T   and locally, x c t   . Since t T   then x X   , thus:

 
 
 
     

2

2

2

2

X 2X x 2 x

Y 2Y y 2 y

Z 2Z z 2 z

2 ct 2 ct

     

     

     

     

, (2.3)

Then Eq.(6), for the timelike systemfunction would be:

 
0 i

I
x


   


 


(2.4)

.
and general Eq.(2.2),:
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   

21
I

2 x 2 x 2
 

 

                     

 


(2.5)

To the extent that  is large slow changing, and can be treated as constant, and the
expression becomes similar to the Dirac equation, thus:

   

21
I

x x
 

 

                     

 


(2.6)

and:
i

I
     


(2.7)

If  is not treated as a constant, there are other terms.

Note that this a matrix equation, and the equality implies similarity. The eigenvector
equation for this is identical to the Dirac equation.

Appendix IV
Details, Classical Particle

This is the details of the products of the actions of the individual particles for. Starting
with Eq.(53):

N N

m m
m 1 m 1

S S

R 2 e  

  
    
  
 

 

 

(4.1)

Putting in the particle actions:

2
R 2 n n m m n R 22 2 2

m m 0

1
exp S S S S S

r
             

 
    

   
(4.2)

The actions for the central and distant particles Eq.(21), and Eq.(22):
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n n
n

is 
  


v mn m

is


 
 v

m

mr
(4.3)

n
n

is 
  


v nn

n n
n

r 0

is s

 
 

 


  

 
v

n
n

i
  

 
   v

n

2
n n n

n

s s s

 
 
 


  


  v

2

n

 
 
 

(4.4)

n m
n

is s 
  

  v
n m

i
 

 
 

v 2
m

n m
m n mr r

  
  

 
   v

n
v

m

2

m n n m
n m

and

r
s s 

  
  v

m
v

n

(4.5)

2

n m m n n m
n m

2
r

s s s s 
    

    v
m
 v

n
(4.6)

So that

2
n n m m n

m m n

S S S S S


    
    

 v
2 2

n n m
n m

2
r

  
   

   v
m
 v

n
(4.7)

Note that the m,m terms are ignored since their mutual interaction is only an indirect
correction to the n term action.

Thus:
2 2

n n mn n mm
R 2

V 2
rAe

 
  
 

   
 




  v m  v n
. (4.8)

Taking the differential with respect to 2 , and noting that the function is only a function
of the time coordinate:
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2 2 2 2 2
n m nn0 n n

2 2 2n m
m m

m c m c v m Q v v
1 2 1

c r c c

                        
    , (4.9)

which is the square of the relativistic Lagrangian for a classical mass particle. Taking the
square root gives the familiar linear expression.

2
n0 nm c m c    

   v
2C C2

2n n m
m n m

2 Q
m c r

  v
m
 v

n

 
 
 

, (4.10)

or
2 2

m n2 2 n
n0 n 2

m m

1 v Q v v
m c m c 1 1

2 c r c c

              



 . (4.11)

Appendix V
Details, Quantum Particle

Starting with the Systemfunction Eq.(27),

Ae  iS


 (5.1)

The action of the n particle at  is:

n n
n

is 
  


v nn

r 0 (5.2)

and the m particles are:

m
m m m

i
r

s 
  


v mm

r   (5.3)

Then the sums from Eq.(27), are,



26


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iS i
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 
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n m

m m

i
r


   v
m

 
 

 

 , (5.4)

and the systemfunction is:

n n
i

Ae




   v
n n m mr


  v

m

 
 

 


(5.5)

Now since 0 oct r    , where i 0 represents an ignorable arbitrary phase, and or is
the distance from , thus:

 
n

oi ct r

Ae
 

 
v n

n mn
 

v m

mr

 
 
 
 


(5.6)

The imaginary Systemfunction is then a spatially defined wavefunction being composed
of spherical and plane waves having frequencies of the Compton and deBroglie waves,
and a phase velocity of c.

This function is the corresponding relation for the Systemfunction, as the Dirac particle
in a potential.

Appendix VI
Connection to Dirac Expression

The purpose of this appendix is to illustrate the properties of the two parts of the
imaginary systemfunction and the connection to the Dirac function,

Dirac Function

This development is well known, but shown here for comparison. By letting mr  in
Eq.(40), the Systemfunction becomes that for the free particle condition, or:

1 1

2 2

3 3

4 4

Ia
n

n
nn o

pm ci ct r
a a

a a

a a

a a

1
e

 
    



 
   
   
       
   
   
   

  
 (6.1)

or:
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 n on
I

Et p r /i
e
 

  a
  

(6.2)

This is the same as the Dirac function for a free particle which is:

 
p

i Et p r /
u e


  

  
(6.3)

From Eq.(6.2), for the free particle of our “Ia” imaginary Systemfunction, is the same as
the Dirac free particle wavefunction)

1 1

y2 2n x z
0 1 2 3 1

3 3

4 4

n
nn o

pm ci ct r
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pa am c p p
e i

a a
a a

 
    



 
   
                      
   
   

  
 

   
, (6.4)

or:
1 1

y 2 2n x z
0 1 2 3 Ia Ia

3 3n

4 4

a a
p a am c p p 1

a a
a a

   
                        
   
      

 

     (6.5)

Using a common set of Dirac matrix which is:

1 2 3 0

1 i 1 1
1 i 1 1

, , ,
1 i 1 1

1 i 1 1

        
                  
        
               

    (6.6)

the “Ia” expression is just the normal Dirac equation.
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(6.7)

Now for simplicity the velocity is set to be along the z axis, then the normal four
simultaneous equations is.

0 n z
1 3

0 n z
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m c m c p
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0
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               
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

  


  


  

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(6.8)

Solving for the a’s

0 0z z
1 3 3 1

m c m cp mc p mc
a a , or a a         

   

 

     
(6.9)

We can then have for the modes:
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(6.10)

Similarly for 2a and 4a :
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The modes and options are:
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Where the ' s and ' s are arbitrary constants.

Dirac Massless Function

Now looking at the second equation, “Ib”, from Eq.(36):

 
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m m o

rm c m v vi r ct
r r c r
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   

 

 
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, (6.13)

and Eq.(40):
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

   

  a

 
    

(6.14)

Where or / r
 is the three space part of the null vector o

Observing only the free particle by letting the potential be small mr 

 
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rm c m vi r ct
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Ae 0
x

 
 
 
 
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  
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 
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(6.15)

With multiplication by the column eigenvector a, becomes:
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4

a
am c r p r

i 0
ar r
a

 
                    
 
  

  
  (6.16)

Noting the corresponding term from the Dirac massive particle :
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1
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

  (6.17)

Both terms in Eq. (6.16), have r the observation vector in the terms whereas the Dirac
massive particle terms do not.

Explicitly Eq. (6.16), is:
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(6.18)

Where 1 2 3 4A a ' ,a ' ,a ' ,a ' ,

Now the system is taken to be such that the observation vector is aligned with the
momentum along the z axis r z , and multiply the components of the a’s, thus:
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(6.19)

so:
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thus:
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       

      
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(6.21)

Which are satisfied if the two modes are o

o

r
E c P

r
 


 . Thus, the modes, and are only

observable along the direction of motion, one in the positive direction, and one in the
negative direction, and under that circumstance, the function is identical to the well
known Dirac massless particle function.

Ib

n no
m ci v tr

Ae I 0
 
   

 


      a

  (6.22)

Thus, our second function of the imaginary Systemfunction alludes to a second particle
having zero rest mass, and two modes with a velocity of  v., but the phase velocity from
Eq.(6.15), is v, so that if the particle is not moving, the phase velocity is zero.
The Systemfunction of the free particle then represents a composition particle, consisting
of a Dirac type massive, and massless particles. An interesting factoring of this is
included in Appendix X.

Appendix VII
Spin

Taking Eq.(2.6),
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   
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x x
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 


, (7.1)

and putting the operator defined in Eq.(43):

m

Q
A

c



    
 




(7.2)

We will have a term such that:

Ia

Q Q
A A

c c
 

 
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 
 

(7.3)

Noting that:
5Q Q Q

A B i E
c c c


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
    (7.4)

We have:
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2 5
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c c c c
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  
    

, (7.5)

which illustrates that the Systemfunction exhibits the same spin energy associated with a
2g electron in the presence of a charged particle, (i.e. the Bohr magnetron) as does the
Dirac particle[5].

Appendix VIII

Developing the General System Equation and Systemfunction

Eq.(19), which is the sum of all the free particle actions, and is thus the space of the total
“system” action.

N

total m m
m 1 m

S i
r

s



   




 v
N

m
m 1
 , (8.1)
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This sum represents the function of collective action of the system, where the
contribution of each of the particles to the function at the  point has a m1/r ,
dependence.
If the totalS


vector field is evaluated at an event, the system is then an instant point

function of time, which is acceptable for the point, but if this point is observed from
another location, the interval would not be proper.

With  being the time from the initiation of the system the observability of all the
particle actions are along the past lightcone. And the invariant interval connecting the
particles is a null vector, thus  in the action which has been the Lagrangian integrated
from the initial event should be replaced with the null vector along the past lightcone.

  X η
    (8.2)

An assumption now is, that the start of the expansion of the universe, 0T the minimum for

the action sum is not zero, but ½ the quantum of action,  . The units of S


are in  , so
Eq.(8.1), should become:

S  
  iS 1 / 2 iS 

  1 / 2 (8.3)*

Putting this into Eq.Error! Reference source not found., gives.

iS iS
Ae Ae
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  
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1/2 
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 



, (8.4)

Rearranging the exponent of this is:

 iS 1/ 2 iS  
  1/ 2   iS iS 

 
1/ 2  iS / 2 iS  

 
1/ 4

(8.5)

As noted earlier iS iS 
 

is a scalar, then:

  iS iS  
 

iS 1 / 4


 (8.6)

Now since S


has a factor  , (which will be shown for illustration), as the product of the
first term:
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     2 2 2 2 2 2 k 2
kX Y Z X 0           (8.7)

Separating the space and time terms in Eq.(8.5), there is the space, time symmetric
exponents, so that Eq.(8.5), becomes:

    2 k
kiS iS X iS iS        
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iS 1 / 4


 (8.8)

If this represents the factors of the Systemfunction, which by the procedure outline
Eq.(49), - Eq.(54), leading to:

The imaginary function:

  I I2

i
I

2X





   

 
(8.9)

The real timelike function:

 
0 2

R 2 0 R 22
1 / I


    
 

 (8.10)

and the spacelike function:

 
k 2

R1 0 R12

k

1 / I
X


   


 (8.11)

These functions represent the Systemfunction for two universes, R 2 , which is a
timelike universe inside the light cone, in which we reside, and R1 , a spacelike
universe, exterior to the light cone.
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Figure 8.1

.

Appendix IX

Particle Interaction Lagrangian

From our Lagrangian we have for the interaction of the m particle with the n particle:

2
2C Cn m nn0 n

2 2n m
n m

m c m c v 1 Q v v
1 2 1

c M c r c c

      
            

     

  (9.1)

or
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2C C m n2 2 2
nn0 n n n m

m

1 Q v v
m c m c m v 1

2 r c c

 
   

       
   
    

 (9.3)



37

So the interaction Lagrangian is:

2C C m n
Int n m
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From Jackson p407 [1], the interaction Lagrangian for two particles is:

 int

1 Q
L Q
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 
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Where:
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And from Doran Geometric Algebra p242 [6], the Liénard- Wiechert Potentials for a
particle is:

QvA      QX v 1 A v
rr X v

 




(9.7)

We are not looking at r as the distance to the actual position, but the distance as observed
at n

Thus
2
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
   , (9.8)

which is the same as our interaction Lagrangian in the classical particle Eq.(9.4).

Appendix X

Factoring the Dirac massless function
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An interesting feature of the Dirac massless particle function Ib is the ability to factor it
into a product of photon type function.

Ib

on no
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without the potential and observed along the direction of motion has a phase velocity
equal to the particle velocity nv , is:
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Which, with the substitutions of:
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The first is the total energy is set equal the sum of the energy of two photons, and the
second is the velocity Is set equal to the velocity of the center of mass of the two photons
going in opposite directions.

Eq.(10.2) , can then be written as:
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e
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or:
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 
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which is just the product of wavefunctions for two opposite going light waves.

Appendix XI
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Distance and size of a simple charged particle

From Eq., the free particle action for a simple charged particle has been asserted to be:

m m
m

i
r

s 
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 v
m

(11.1)

Where the distance to the particle is:

mr  


mr  


m m mS
r     (11.2)

Note that mr


is the distance from an observation point to the classical radius of the
particle

This action would apply to an electron, positron, and perhaps the leptons, but not likely
compost particles that have a more complex structure. The detail structure does not
come into play for atomic systems, or the issues of large scale phenomena, although it
seems plausible that actions for other particles could be established.

An issue of course is the boundary at m , which is the classical electrostatic energy
radius as well as the Thompson photon scattering radius. This radius is in contrast with
electron-electron scattering experiments which are consistent with the hypothesis that the
electron is a 'point particle.'

The apparent answer to this dichotomy is that as the energy of the scattering particles is
increased, the radius being inversely proportional decreases. At an energy of 29Gev
(Bender 1984) the radius would be 10E-5 smaller or < 10E-16 cm, which was the
observed upper limit. On the other hand, the arrival of a photon, which has no potential,
at the boundary photon, would not alter the radius other than by impact, and thus the

m radius would be consistent.


