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Abstract

The purpose of this paper is to illustrate a fundamental, multiple particle,
system equation for which the Klein-Gordon-Dirac-Schrödinger equations are
single particle special cases. In the same manner that eigenvalues of the
Schrödinger equation represents energy levels of an interacting atomic system,
eigenvalues represent particle energies in an interacting system of particles. An
equation is proposed that has vector solutions defined in Dirac, or Clifford
algebra, that treats all of the particles in the universe as a single system. The
proposed solution is a descriptor of a symmetric, light speed expanding group
of interacting particles having real, as well as the familiar QM constituents.

INTRODUCTION

This paper presents a system equation, and solutions termed a
“Systemfunction”,


which in effect, can be considered a space, of propagators

for an expanding system of point particles, and the interactions between those
particles. The connection with standard QM is straightforward and plausible.

The interrelations between the standard QM equations are well known, but it is
only under special conditions, that being field free, that there is a degree of
connectivity [1]. Their most notable omission is the inability to define more
than just a single particle, and one of the most notable issues, is the lack of a
common physical properties, after the inclusion of the vector potential.
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Where r is the particle Compton radius / mc r . (For general conventions
see appendix [II])

The general system equation, we are proposing, is a descriptor of a time
expanding system of charged, half spin particles. The inclusion of particles
other than half-spin should be straightforward, but the particle action (Eq. (14)),
for such particles have not been included. Normal quantum mechanical
expressions, (Klein-Gordon-Dirac-Schrödinger), represent single particles
systems, separated from the rest of the universe, interacting through a coupling
potential. The standard QM, coupling is by the insertion of a representation of
the potential through the correspondence relations, rather than an interaction of
quantum mechanical wavefunctions. (See Appendix I, for a heuristic view of
the issue.)

One can view this Systemfunction as a space containing the sum of the path
integrals of particles from the initiation of the universe, to the current time. This
being somewhat the same as viewing a summation of paths, of a particle
traveling through a slit arriving at a position on a screen. In the current universe
we will consider these positions as particle event eigenstates.

I. THE EQUATION

The proposed general expression for the Systemfunction will be. (See
Appendix VI for more detail )
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That is the derivative with respect to a virtual displacement of the square of the
expansion of the universe, has constant eigenvalues. Where 2 the square of
radius of the universe, and is expanding at ct ( cT  ). (This should not be
confused with the second derivative). The “Systemfunction” 


being

proposed, as a solution to the system equation, is a matrix representation
defined by Dirac or Clifford matrix, not the normal scalar, or scalar vector
component wavefunction. i.e.:

       1 2 3 4f x f y f z f ct
n

fe         


(5)

This function will have real as well as imaginary components that are separable,
leading to well known energy and frequency relations.

Preliminaries

Since the Systemfunction is expected to have a composition of both real and
imaginary parts, we will require separablility, such that:

R i   
  

(6)

and thus:

R R R22 2i i i
1 i

2

  
             

     
00

rr
, (7)

and:

R R22
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  
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(8)
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The real equation is somewhat new, but the imaginary part may be a little more
familiar if we mote that 2 2 2 ct     thus:

i i
i

c t

  



 
0r

(10)

Where we have changed from a virtual displacement of the radius of the
universe to local time differential. This is possible since the value of the change
in the expansion of the universe cT is the same as ct a local time
differential. The imaginary function i


, now takes on the properties of a

particle propagator. which we will assert later, is the case.

T 0 i   


, (11)

and a solution to the Dirac equation.

1 2 3 4 0 I 0 I

1
x y z ct

    
                 

 
r

(12)

A. Single Particle Action

It is asserted that the current expanding universe of particles, can be viewed as a
space of extremum points, which represent the action end point of a particles,
integrated over the path from the initial event, to the present.

The “Systemfunction”  , will be defined in the space inside the radius cT 
having a value in the space proportional to the inverse of the distances to the
individual particles. In this space the extremums represent the vector action of
the particles from the initial event to the current time. We will presume a vector
velocity thus a vector Lagrangian. That is:

T
m

m 0

L
s dt 




 , (13)

where ms


is the action of the m particle.

For the purpose of this development it is important to define the particle action
properly, otherwise the results diverge from reality. Based on trial and error we
will define action of these particles to be:
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Where M is the mass, is the expanding radius of the universe, mV


is the four
velocity, and  is the classic spin matrix 1 2 3   . Conceptually, if this is the
location of the particle integrated from the initial event to the current position,
the summation of all the paths, is the spinnor particle propagator.

The standard propagator for this would normally be:

n

n j 1

mK s
Lim e

 

 


(15)

Where the sum is over the multiple path for the particle from the initial event to
the current time.

If we would presumed K is the Hartree-Fock product wavefunction
representing all the wavefunctions of the particles in the system, we could have:

N N

1 2 3 4 N N
j 1 j 1

n mK K K K K ... Lim Lim ...s se e
 

 

  
   

  
 

 
(16)

Now since all the particle start from the same initial event, and are, for now,
presumed independent:

N N

N
j 1 k 1

m ns s ..LimK e


 

  
 

(17)

So that heuristically at least, the system action would be just the sum of the
particle actions.

 
n m

T n m
...

0
S S S

L L
dt 


 

  
 (18)

Unfortunately since the paths are independent this would represent a system of
non-interacting particles, and insufficient to describe a system of interacting
particles.
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We will propose instead, that “total” system action of a particle 'S


be defined as
the square of the sum of the actions defined in Eq. (14). Thus:

 n n m

2
.

'S S S  
  

(19)

Thus 2 'S S
 

becomes a “Total” particle actions and n m m nS S S S
   

are the
interacting action of the m and n particles.

Our Systemfunction is then:

N N

n I J
I J

exp S S
   
 

  
 

(20)

Note that from our definition of S


from Eq.(14) the 


function has a value that
is dependent on the inverse distance to individual particles, but is generally
zero accept at the locus of one of those particles. We have a presumption that at
that point there is an eigenvalue for that particle, and that is an eigenstate of the
system. The Systemfunction has values throughout the space of particles up to
the extent of cT, at the radius of the universe. Points in the Systemfunction are
generally zero accept at extrema, which are particle locations nr 0 that have
discrete values.

For the function evaluated at the locus of the nth particle this would be:

N N
2

n n m n n m
m m

exp S S S S S
             

    
  

    
(21)

Notable here is that the first term 2
nS


is the square of the action for the single
particle, and the cross terms would be the Clifford dot products of the
interacting actions of the other particles in the system.

Illustrating: If we let the observation point be at the location of the n th particle
then the actions (Eq. (14)) for the n ( nr 0 ), and m particles ( m mr r ), where
 m / Mc r become:

   n m m
n 4 m 4

n m m

V V1 1
S i i , S i i

c 2 r c 2 r
    

               
   

   r
r

(22)
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B. Lagrangian Equation of Motion

Putting in the moment for the nth particle evaluated at r 0 for 2
nS


gives the
Systemfunction representation of the free particle or:

 2

n 4n
n

n n

i V cV 1
exp i

c c 4

          
   


 

r r
, (23)

or, for illustration, explicitly in terms of mass and velocities:

 
2 2

n n
n n 4

M c Mv 1
exp 1 i i V c

c 4

              
    

 
 


(24)

Note that this free particle Propagator is defined at a given point, and has an
extremely small real value for an electron  exp( 75) , also note the velocity nV

is the three velocity. Since i ict 2n icte e e    , the imaginary part is just:

 n
n 4

M c t
i i V c

In e
  





(25)

Taking the magnitude of the exponent With a position phase shift along the x
axis would be:

 2 24 2 2
n n

c tp
i r i M c M c V

In e
  



  (26)

Contrasting, the Dirac free particle is:

 
0
22 2 4

p

i p x p c M c t /
x u e

 
 
 

 
  

  
(27)

Which are equivalent, if the Dirac solution is presumed to be in the particle
frame, dilated time, and Eq, (26) is in stationary reference frame. This can be
seen from the fact that the energy defined in Eq. (26) is the invariant mass
energy and the energy defined in Eq, (27), is the relativistic mass energy.
Thus if Eq. represents the particle propagator, the Dirac free particle equation is
satisfied.
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Including the interaction terms from Eq. (21) our particle propagator becomes:

     2
n n n 4 m m m 4n

n 4
m m

M V V c M V V cM c t Q t
i V c

r M c

i n e

      
          

 
  

(28)

Which now includes the vector potentials resulting from the other particles in
the system

Putting this into Eq. (12) and taking the differential with respect to the potential
leaves the free particle propagator in a vector field:

   2
n n 4 m m 4n m

k 0 FI 0 FI
k m m

M V c M V cQ 1
x r M c

        
            

  
r , (29)

which is the Dirac equation for a particle in a vector field of other moving
particles.

The imaginary portion of Eq. (24), and yields the wavelength:

 n
n 4

M1 1 p
V c

2 h
    

 
 (30)

Which is the correct free particle deBroglie wavelengths for the velocity and the
total energy. The frequencies are.

2
n n

d C

M cv M c
& ,   (31)

Which are the deBroglie kinetic frequency, and the Compton frequency. Note
that these are the values in the rest frame and change in the moving frame.

Real Terms

Putting the values from Eq.(22) into Eq.(21) , separating the real terms, gives
for the free particle action.
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22 2
2 2 0nn n

n n n 2
' M cM c v

S S S 1
c

             
    

  
 

(32)

and the electromagnetic interacting, or cross terms of Eq. (21), are:

N N
n m m n

n n m m n
m m n m m

' V V V V
S S S S S

c r c r c c

                    
         
   

       
r

(33)

Note that this is the inner product relation between the velocity vectors, so that
the complete expression is:

2 2 2N N
2 2 2n n n n m

n n m n n m 2 2
m m m

' M c v M V VQ
S S S S S S 1 2

c r c c
                              

  
      


 
(34)

Inserting into the real portion of Eq. (8). And taking the derivative with respect
to the virtual displacement of 2 gives:

   2 22 2 2 2
0n n n n m
2 2 2 2 2 2

n m

M c M c v 2 Q V V
1

c c c M c r c c

   
      

    
 

 
  , (35)

Which is the square of the classic Lagrangian for a moving particle in an
electromagnetic field defined by the interaction of the n and m particles. This is
a remarkable result, in that the vector potential is arising from the product of the
actions of the central particle, with the actions of the other particles in the
system, The effects of the electromagnetic interaction are not the result of the
inclusion of a vector field, but as the properties of the actions of the other
particles in the system.

Simplifying:

2 2
2 2 n n m

0n n 2 2
n m

v 2 Q V V
M c M c 1

c M c r c c
        

  
  , (36)

and:
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2 2
2 2 n n m

0n n 2
m

1 v Q V V
M c M c 1 1

2 c r c c
         

  
  (37)

Which is just the Lagrangian for a particle in the presence of a collection of
charged particles.

In addition to the previous noted terms, there is a small spin-spin term which
has no derivatives with respect to 2 and thus doesn’t contribute to the total
energy. A detail representation of this is presumed to illustrate its participate in
the mechanism of the exclusion principle.

2

2
m m

1 Q
2M c 2r

 
  

 
(38)

CONCLUSION

A multiple particle system equation for the universe, and its connection to
quantum mechanics has been demonstrated. Although some detail have been
left out for simplicity, and a lot of the obvious aspects have not been explored,
it is clear that it represents a new approach to particle dynamics, and perhaps
opens a window into the relation between the particles, and the expanding
universe. A point to note is, that by considering only the relativistic dynamics,
and property of particles, interactions can be defined without the necessity of
defining fields. Though one could add gravitational contributions into the
system equation, for our purposes here it does not seem make a useful
contribution.
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Appedix I

The current base equations for QM are the Relativistic Schrödinger equation or
the Klein-Gordon and the Dirac equation with the potential incorporated by use
of the “correspondence relation” . This method asserts that the total momentum
of a charged particle in an external field is modified as such that.

q
p p A

c
  (1.1)

q
A

x x c 
 

  
     

(1.2)

The Schrödinger equation with fields included is:

2 2 2

2 2 2

2
i 0

x y z ct r
                   r

(1.3)

And the field included Dirac expression becomes:

1 x 2 y 3 z 4
q q q q 1

A A A
x c y c z c ct c

                                           r
(1.4)

Before this modification, that is for the free field solution, the Klein-Gordon,
and the Dirac equations are identical, in that the Dirac equation is a
factorization of the KG equation using the Dirac matrix. Once the modification
has been included via the correspondence substitution, the equations, are not
equivalent, not even in interpretation [1]. The KG describes electromagnetic
spin one particles in a potential, and the Dirac is a probability distribution of
half spin particles.

It is asserted that including the potential, via the correspondence relation is the
fundamental error plaguing QM, in explaining physical phenomena. The
insertion of an infinite potential has to be considered an approximation and only
accurate to the extent that the approximation of the inverse square force is an
accurate representation.

For illustration, consider the field free Dirac expression:

  1
0

     
r

(1.5)
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Where we replace the isolated particle wavefunction with:

U (1.6)
Where U is the Hartree-Fock product wavefunction representing the effect of
the entirety of a system not including  .

1 2 3 4U ...     (1.7)

Substituting this into Eq. (1.5) then gives:

  1
U U U 0

        
r

, (1.8)

or:
U

m 0
U




 
        
 

(1.9)

Comparing this with the Dirac expression Eq. (1.4) with the correspondence
related potential:

q 1
A 0

c



         
  r

(1.10)

We find:

U q
A

U c
   (1.11)

Thus, A , which is normally inserted through the correspondence relation
actually is an approximation of the electromagnetic effects of the rest of the
system. In the case of the electron inverse radial potential, this only works to
the extent that the potential is an accurate representation of the entirety of the
rest of the system. The most notable defect of course is that the integration of
the electrons energy becomes infinite, requiring renormalization.

One should point out that the Hartree-Fock product wavefunction Eq. (1.7),
cannot represent multi-fermionic anti-symmetric system, and so this is only an
heuristic argument

Appendix II

Definitions and Conventions
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The radius of the universe:
0cT ct    

The Dirac matrix convention used in this development is

1 2 3 4

1 i 1 1
1 i 1 1

1 i 1 1
1 i 1 1

        
                     
        
               


,

and

1 3 4

2 2 2 2
21, 1, 1, 1           .

The product of the space coordinates is termed the spin matrix:

1 2 3 3 2 1 4

i
i

S
i

i

 
 
             
 
  

The square is:
2 21 1    

The product of 2 with the coordinate vectors:
1,2,3 1.2,3  

4 4   

n 2 3 1 3 1 2, ,        

Which are the elements of the spin vector:

1 2 3 2 3 1 3 2 1           

The vector four velocity:

1 3 4x 2 y zV= v v v c      


Commutation relation with V and S
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 
 

 
 

1 x 2 y 3 z 4

1 x 2 y 3 z 4

1 x 2 y 3 z

x y z2 3 1 3 1 2

V = v v v c

V = v v v c

V V 2 S v v v

2

2 V

v v v

        

        

        



 

       




 



       
       

       

2
m n

2
m n n m

n n n n4 4 4 4

n m n m4 4 4 4

n n n n4 4 4 4

V c V c V c V c

V c V c V c V c

V c V c V c V c

V V c

2V V 2c 2V V







      

      

       

 

 

 

  

 

 

   
 


:

The product of two four velocities:

  1 3 1 3m n xn 2 yn zn 4 xm 2 ym zm 4V V = v v v c v v v c             
 

or

m n m n m n 4V V V V V V c V      
   

 

The inner product :

m n m n m nV V V V 2V V 
     


The outer product:

m n m n m nV V V V 2 V V   
     

Appendix III

Discussion of the action vector.

 
 
m m 4

m

1
i M V i

2
Mcr /

    


 







15

This represents a particle action vector, presumably the result of the integration
of a vector Lagrangian for the particle over all possible paths, from the initial
event to its current position. As a result, this it is the most probable, or classical
action. When the function is evaluated, at the locus of such a particle, the
arrived at, equation of motion, will be the action for that particle and the locus
of its eigenvalue for the function.

If the velocity and mr goes to zero the function becomes:

4
Mc

 

Since  is the radius of the universe this is the “maximum” action a particle
existing at that location in the universe, can have, Note that at the Compton
radius r  r the function is infinite. But since it is an observation point there is
no physical significance.

Focusing on the denominator and presuming mMcr   and the velocity is zero
we have:

2 2
m

42
m m

i MV 1 Q i 1 Q
Mc r c r

    
     

   



 

Which makes it the action of the electric energy potential induced from the
particle at the observation point. And goes to  when r .

The action vector function thus represents a maximum value when r 0 and the
minimum when r  . At a given observation point an extremum is
diminished by / r , making its contribution proportional to its observed cosmic
age.

Appendix IV

Left blank

Appendix VI

THE FULL EQUATION
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Although the proposed general expression Shown in Eq.( 4) was originally
developed by the following methodology, it is probably not the best approach.
Presume:

       
2 2 2

1 1 1 1
1 1 1 1 12 2 222 2 2

K
ZX Y

                       
                

       
(6.1)

Which is the sum of the second derivatives if the function with respect to the
square of the expanding four dimensional light cone.

Using the Dirac Clifford Algebra this can be separated into two first order
derivatives:

       
1 1 1 1

1 2 3 4 12 2 2 2
K

X Y Z

                         
                  

    
(6.2)

of which we presume our first Eq. (4) is separable By means of a constant to
yield:

  1 12
K


  

 

 
(6.3)

Noting that (6.2) the partial derivative with respect to a displacement of the
expanding light cone at the edge of the universe. Since the max of X,Y,Z are
just equal the radius,  , and X is the same for either the edge of the universe,
or a local frame X x   , thus we can have:

 
 
 
   

2

2

2

2

X 2X x 2 x

Y 2Y y 2 y

Z 2Z z 2 z

2 x 2 ct

    

    

    

     

, (6.4)

And thus arrive at the Dirac expression for the function.

 
1 1 1 1

1 2 3 4 1K
2R x 2R y 2R z 2 ct

         
                        

    
, (6.5)
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Which is just the field free Dirac expression.

Squaring this we also have:

 

2 2 2 2
1 1 1 1

122 2 2 K
x y z ct

         
                       

    
(6.6)

Which is the field free Klein-Gordon expression.


