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Abstract
In common practice, degrees of freedom (df) may be corrected for the number of

theoretical free parameters as though parameters were the same as data categories.
However, a free physical parameter generally is not equivalent to a data category in
terms of goodness of the fit.

Here we use synthetic, nonrandom data to show the effect of choice of
categorization and df on goodness of fit.   We then explain the origin of the df
problem and show how to avoid it in a three-step process:

• First, the theoretical curve is fit to the data to remove its
variance, leaving what, under the null hypothesis, should be
structureless residuals.

• Second, the residuals are fit by a set of orthogonal polynomials up
to the degree, should it occur, at which significant variance was
removed.

• Third, the number of nonsignificant polynomial terms in the
original + orthogonal set become the df in a standard chi square
test.

This process reduces a general df problem to one of polynomial df and allows
goodness of a fit to be determined by data categorization and significance level
alone.   An example is given of an evaluation of physical data on neutrino
oscillation.
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   I.  Introduction

Parametric Statistics
Hypotheses are theoretical assumptions.   Scientific hypotheses may be tested

against empirical data.  It is fundamental to all science, that no hypothesis ever can
be proven by experimental data; an hypothesis only may be rendered more or less
likely, or disproven.

The most famous modern use of formal statistics to test scientific hypotheses
dates back to R. A. Fisher [1], who,  in the early twentieth century, published a
method for analysis of the variance in experimental data.   Fisher developed
sensitive ways of detecting differences among data as a function of category of
treatment.  The treatments in his favorite examples were on agricultural variables
such as crop fertilization, light, watering, and so forth.   Fisher's methods were
broad in scope--the nonparametric Fisher Exact Test is named for him--but his
analysis of variance was based on the apparently narrow assumption that the data
were sampled independently and would be normally distributed with constant
variance.

Defining a random variable X with normally distributed probability density
( )N X; ,µ σ 2  by

( )
( )

P x e
x

X = =
−

−1

2 2
2

2

2

πσ

µ
σ ,                                                                    (1)

it easily may be seen that the two parameters of such a distribution are the mean µ
and the variance σ 2 .   The mean (expected value) of data may be taken to define the
effect of an experimental treatment.   A sample taken of data depending on a
mixture of different effects will have a bigger variance than a sample depending on
one; so, the variance may be analyzed to show differences in the underlying means.

If we use mean values to represent categories of data, then hypothesis testing by
analysis of variance may be used to test differences among the categories.   Fisher's
approach to analysis of variance came to be known as parametric statistics.

Fisher's analysis of variance rationale has been supplemented by Bayesian
methods [2, 4].   Problems not fitting Fisher's paradigm have extended the scope of
hypothesis-testing statistics into the nonparametric realm [3, Ch. 7; 6, Sect. 9.2 &
Ch. 12].   Nonparametric statistics attempt to resolve questions for data in very
small samples, for mismatched variances, and for experimental results sometimes
more qualitative than numerical.
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Statistical Tests in Physics
A problem with hypothesis testing in physics is that much of the subject matter is

multiply parameterized.   In physics, a good hypothesis rarely states anything about
categories; instead, it provides an explanation of a set of one or more phenomena
which may vary continuously.   The data typically involve broad ranges of energy or
momentum, or averages of many carefully winnowed events.   Questions arise of, Is
the spin 1/2?  Does the field vary as 1/r?   The connection of any physical hypothesis
with data typically is through multidimensional continua of complexity.

Rather than analyzing experimental variations to discover differences in means
on narrow domains of one or more continuua, the preferred way to demonstrate
support for a physical hypothesis is to show that it may be used unequivocally to
control some physical process in such a way as no other known hypothesis might
explain.

For example, a demonstration of the Hall effect would involve an unequivocal
excess of charge along one side of a flat conducting strip.   To achieve this
confirmation of the predicted effect, superior instrumentation or measurement of
previously ignored quantities would be adopted.   The gradient of the charge, the
effect's time-course of development, and other factors would be examined for
consistency with the hypothesis.  Rarely would physical measurement be on such a
narrow range of values that the variance would be constant, independent of the
mean.   Also, if not all evidence supported the hypothesis, alternatives would be
explored instead.   Merely showing that one side of a conducting strip seemed more
likely to have a charge excess than the other, a test between two categories on one
variable, would be an unsatisfying result.

Doing Physics by Category
Let's consider the special case of curve-fitting hypotheses.   The problem is to

distinguish among various hypotheses of the shape of the  curves.   We might start
by arranging the data along one or more continua.   However, on a continuum, two
data (probably) never coincide; this means we have slim bases for estimating the
mean, variance, or any other parameter of the assumed underlying random
variable.

So, to use parametric statistics, we define category boundaries (bins).   By making
the bins wide enough, the number of data available in each will be large enough to
provide a good estimate of the bin mean.   We may assume the variance in a bin to
be constant, but only if the bins are narrow enough.   Sometimes riskily, we may
assume the variance over all bins to be the same, constant value.
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A simple example will illustrate this approach.   Imagine that two different
physical theories are to be tested against a certain data set.  Perhaps, the theories
might relate to field intensity I as a function of distance x.

Hypothesis I:  The data follow a quadratic function.   This would strengthen belief
in Theory I.

Hypothesis II:   The data follow a cubic function.   This would support Theory II.

Here are the two hypothetical predictions on a data set which has been generated
purely artificially, with no randomization:

Figure 1.  Simulated data fit by eye.   Deviations from the data seem
greater for the cubic than for the quadratic.  The curves represent

( )I x= −7 1 2
2
 for the quadratic, and ( )I x= −25 1 2

3
 for the cubic.

Clearly, visual inspection tells us that the quadratic fit is better.   So, we
immediately should drop Theory II in favor of Theory I.  Or, should we?  How can we
test how well Theory I has been confirmed?   Is it possible Theory II might be more
elegant to derive, simpler, or otherwise more attractive than Theory I, even though
this data set was not fit so well?

We shall discuss the special case in which we wish to test Theory I against the
data, leaving out Theory II entirely.   This kind of statistical test, which measures
the fit rather than rejecting a competing fit, is called a goodness of fit test.
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The most popular goodness of fit test is by chi square, a statistic first derived by
Helmert [2, Sect. 3.4.3] and later independently derived and popularized by Karl
Pearson; it is named by Pearson after the Greek letter chi ( χ ).   Chi square simply
is the distribution of the sum of squares of a set of standardized, normally
distributed data.

Categories in NonRandom Chi Square
Before presenting formalities about chi square, we first develop its application to

the curve-fit example in Figure 1 above.   We ignore the cubic curve for a while.

One Category
Suppose we computed the mean values of the data and of the quadratic curve on

the interval of interest, 01 0 9. .≤ ≤x .   We would get, using all 14 available data
points shown in Figure 1, a statistically invalid analysis but an instructive example
as shown in Table 1.

Table 1.   Comparison of data vs quadratic means on one
category (1 degree of freedom)

Distance x Data
of  I

Quadratic

0.151 0.73
0.201 0.59
0.251 0.44
0.301 0.30
0.351 0.18
0.401 0.08
0.451 0.02
0.501 0.00
0.551 0.02
0.601 0.08
0.651 0.18
0.701 0.31
0.751 0.45
0.801 0.60

mean = 0.2855 µ I  = 0.3733

sample sd of I = 0.2349 σ I  = 0.3339

sample sd of mean 0.0628 σ
I
 = 0.0892
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The mean of the quadratic was computed as follows, using the expected value
operator, E,

( )
( ) ( )

µI E I

dx I x

dx

dx x

x
= =

⋅
=

⋅ −
≅

∫

∫

∫
0 1

0 9

0 1

0 9

2

0 1

0 9

0 1
0 9

7 1 2

0 3733.

.

.

.
.

.

.

. . .                                   (2)

The operator ( )E ⋅  means the same as the familiar ⋅ ; E is used here for symmetry
with the variance operator, ( )V ⋅ .

The standard deviation of the quadratic was computed as follows,

( ) ( )( ) ( ) ( )[ ]
( ) ( )

σ I V I E I E I E I E I sqrt

dx I x

dx

dx I x
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= = − = − =
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The standard deviations of the means were computed by dividing the standard
deviations of the variables (data or quadratic) by the square root of the sample size,

N = ≅14 3742. .

Now, instead of just noticing in Table 1 that the means are about 0.09 apart, and
that the standard deviations of the means are about the same size, suggesting no
significant difference between the theory and the data, let's look at the chi square
statistic.   A unit-normal distribution is defined as one with mean 0 and variance 1,
we describe such a distribution as ( )N 0 1, , a notation which may be related to
equation (1) in an obvious way.

We follow Brownlee [3, Sect. 1.27], and others in defining chi square as a sum of
squared unit-normal deviates:   Given a number NC  of data categories,

( )χData i
i

N

N
C

2 2

1

0 1=
=
∑ , ,                                                                                 (4)
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with computed or tabulated cumulative probability P at significance level xp ,

( )[ ]P df x ppχ 2 ≥ ≤ , represented as ( )χ p df2 .

In common usage, which we shall question later, the degrees of freedom variable
df is the number of statistically independent categories of the data, and the unit-
normal deviates are differences between theoretical (or otherwise anticipated)
values and data values, one for each category.   Because the differences are defined
standardized, their means all will be expected to be 0 under the null hypothesis that
the fit is good.

Usually, the variance in each df category would be the variance under the null
hypothesis; in our introductory examples, this is the variance under the assumption
that the data were distributed randomly in each category as determined by the
curve being fit.   In this introduction, we shall be looking at the curve fit to data
generated under a theory and examining the adequacy of the representation of that
theory by the fitted curve.  So, we are looking at two different theories, in a sense,
one a simplification of the other.   In our introductory examples, there is no random
component other than rounding error of the numerical values.

In common usage, we would estimate the variance in each category using the
data, thus losing a degree of freedom [4, Sect. 10.11].   In these introductory
examples, we assume the apparatus returns good data, and that we are measuring
the lawful realization of a physical principle.   We assume we know the means and
the change in them within a category; so, we need not use data to estimate
anything; we merely are measuring the fit of a curve.   So, in the first few examples
following, we shall use the variance of the quadratic curve to standardize in each
category, rather than the variance of the equally theoretically correct data.   The
actual difference in the variances is not large anyway, as may be seen in the
tabulations below.

So, to evaluate chi square, we may compute the following sum:

( )
( )

( )[ ]
( )χData

i i

ii

N
i

ii

NX E X

V X

X E X

V X

C C

2

2

1

2

1

=
−









 =

−

= =
∑ ∑ ,                                   (5)

in which, in each category, the theoretically expected value ( )E X  is subtracted from
the value of the observed datum X.   In general, each i-th category represents a
mean of some observations, from which observed mean will be subtracted the i-th
expected mean.   Under the null hypothesis that the fit is good, the difference in the
numerator of the sum in (5) will, of course, be zero.   Dividing each difference by the
expected standard deviation of X standardizes the variance of each of the i elements
in the sum.

We notice here, immediately, that our chi square ignores the theoretically
expected shape of the curve:  It just sums squared differences.   This means that chi
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square is not truly a parametric statistic.   Each category is standardized
individually by its own expected variance; therefore, chi square does not require a
constant  variance over all categories tested.   This is a great advantage in physics.
The shape of the theoretical curve enters only locally, at the granularity of the
individual categories, when a difference ( X Ei i− ) is taken and a variance estimated
perhaps on the assumption that the variance will be constant.

Anyway, let's decide to reject the fit at the p = .001 level.   Keep in mind that we
do not have a valid random sample and that this is meant as a thought-provoking
introduction to a problem of statistical inference in physics.   The tables of chi
square tell us that ( )χ .001

2 1 11≅ .   We trivially compute chi square from the Table 1
means this way:

( ) ( )
( )χData

X E

V
2 1 1

2

1

2

2

2855 3733

0892
10=

−
=

−
≅

. .

.
. ;                                               (6)

and, confirming our visual impression, the result is not significant, so the fit may be
considered good to the extent the overall averages of the data and quadratic
hypothesis in Table 1 are not shown different.   And we are confident the fit would
have been shown good with likelihood of error p = .001, had the statistical
requirements been fulfilled.

We should mention here that the difference in means in Table 1 also might have
been tested by other statistics, such as Student's t.  Above, we have accepted the
mean and variance of the quadratic function as theoretically errorless, and have
accepted the quadratic's computed ( )N . ,.3733 0892 distribution as that of the data,
under the null hypothesis.  In contexts other than the present introduction, this
would be quite wrong statistically, because, visibly, the mean and the variance
change systematically over the domain of interest (standard deviation is a measure
of slope)--and we have a quadratic curve, not a random normal variate.

As a check, ignoring these problems, at p = .001 (two-tailed), a normally
distributed data mean would have to lie about 3.3 standard deviations of the mean
away from the quadratic mean to reject the goodness of the fit.   This would be about
0.30 distance units, clearly about 3 x greater than the 0.09 difference in Table 1.

Using the normal significance value in a second check, if we substitute 0.30 in the
chi square numerator of (6) above, we get 0 30 0 09 1112 2. . .≅ , closely matching the chi
square significance level of 11.  This is a tautology, confirming our arithmetic,

because by definition ( ) ( )[ ]χ . . ,001
2

001

2
1 0 1≡ N .

Two Categories
Now, let us double the number of categories and the sample size, too.  We

increase the density of the data points but keep the same quadratic fitting function:
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Figure 2.  Two-category fit by eye.   More of the same artificial data as

in Fig. 1, for the same quadratic fit ( ) ( )I a x b x= − = −2 2
7 1 2 .

This time, we partition the domain of analysis x into two regions, or bins, called
x1 and x2, as shown in Figure 2.   The horizontal lines show the different means of I
in the two bins.  We tabulate the data shown, and recalculate the parameters of the
quadratic separately for the two halves, as was done above.   We change the problem
slightly here, by integrating this time on the smaller, more precise domain of

( )x ∈ . ,.15 85  instead of ( )x ∈ . ,.10 90 , making the domain of evaluation of the quadratic
match the domain of the sampled data more closely.   Each half now has  14 data
points.   The result is in Table 2.

Looking at Figure 2, with two categories, the obviously-changing data at least are
more or less monotonic in each bin.  As confirmed in Table 2, the two bins, dividing
the data exactly in half at a point of symmetry, make the two quadratic categories
almost identical.   The quadratic statistics all are lower in Table 2 than in Table 1
because of the small reduction in the domain of integration, which eliminated the
largest values of dI dx.   The sample standard deviations and standard deviations of
the sample means in Table 2 agree reasonably closely with those in Table 1, because
we have essentially the same functional change in each "data" bin in both cases,
making slopes all about the same.   However, the quadratic curve-fit standard
deviations reflect the narrower domain of integration.   If we calculated a standard
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deviation of the grand mean in Table 2, using both bins, we would find it 2
smaller than in Table 1, because of the doubling of the data (sample size).

Table 2.   Comparison of data vs quadratic means on two
categories (2 degrees of freedom)

x1:  Low Half x2:  High Half

x Data Quad x Data Quad
1 0.151 0.7338 0.501 0.0000
2 0.175 0.6677 0.525 0.0053
3 0.201 0.5926 0.551 0.0220
4 0.225 0.5216 0.575 0.0471
5 0.251 0.4445 0.601 0.0844
6 0.275 0.3747 0.625 0.1273
7 0.301 0.3023 0.651 0.1822
8 0.325 0.2396 0.675 0.2396
9 0.351 0.1777 0.701 0.3077

10 0.375 0.1273 0.725 0.3747
11 0.401 0.0811 0.751 0.4504
12 0.425 0.0471 0.775 0.5216
13 0.451 0.0203 0.801 0.5985
14 0.475 0.0053 0.825 0.6677

mean (n=14) 0.3097 µ I  = 0.2858 mean 0.2592 µ I  = 0.2867

sample sd of I   0.2494 σ I  = 0.2557 sd I 0.2304 σ I  = 0.2556

sample sd of mean 0.0667 σ
I
 = 0.0683 sd m 0.0616 σ

I
 = 0.0683

As before, imagining the two categories to be statistically independent, we may
look for a rejection of goodness of fit in Figure 2 at the p = .001 level at ( )χ. .001

2 2 138≅ .
We may compute the value of chi square from Table 2 as follows:

( ) ( ) ( )
( )

( )
( )χData

X E

V

X E

V
2 1 1

2

1

2 2

2

2

2

2

2

2

3097 2858

0683

2592 2867

0683
0 28=

−
+

−
=

−
+

−
≅

. .

.

. .

.
. ;              (7)

Again, we get nowhere near a value allowing us to reject goodness of fit; in fact,
we are farther away, because the slight adjustment of the domain away from the
largest values of I (above) has removed the worst deviations from a perfect fit.

Two Categories with More Data
Now, suppose we complete our experimental work and have a set of some 1,000

data at equal 0.001 intervals on the domain ( )x ∈ 0 1, .   As in Figure 2 and (7) above,
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we have decided to keep just ( )x ∈ . ,.15 85 .  This means we will keep just 700 useful
data.

Without tabulating data, the result of a chi square test on two categories with 350
data each is shown in Table 2a:

Table 2a.   Comparison of numerous data vs quadratic
means on two categories (2 degrees of freedom)

x1:  Low Half x2:  High Half

Data Quad Data Quad
mean (n=350) 0.2831 µ I  =   0.2858 mean 0.28520 µ I  =   0.2867

sample sd of I   0.2321 σ I  =   0.2557 sd I 0.23290 σ I  =   0.2556

sample sd of mean 0.01241 σ
I
 = 0.01367 sd m 0.01245 σ

I
 = 0.01367

Of course, the quadratic means and variances have not changed; however, we now
must standardize the category means by the much larger sample size.  The result is,

( ) ( ) ( )
( )

( )
( )χData

X E

V

X E

V
2 1 1

2

1

2 2

2

2

2

2

2

2

2831 2858

01367

2852 2867

01367
0 05=

−
+

−
=

−
+

−
≅

. .

.

. .

.
. ;            (7a)

and this is even farther from the significance level of 13.8.   We thus might conclude
from chi square on two categories that the fit of the quadratic was good.

Ten Categories

As above, we have 700 usable, equally-spaced data on ( )x ∈ . ,.15 85 .   Let us test the
fit of the quadratic function again, this time dividing our x domain into 10
categories.   Using "box plot" representation, the result, again a fit by eye, is in
Figure 3.  Each of the 10 bins has been processed as we did in the preceding
analyses.  Again, we have such precision of measurement of the data in this
artificial example, that there is no legitimate randomness.
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Figure 3.  Ten-category fit by eye.   Summarized set of 700 of the same
artificial data as in Figs. 1 and 2, for approximately the same quadratic

fit, ( )I x= −7 1 2
2
.

Notice in Figure 3 that the variance in each bin clearly increases with the local
slope of the curve.   Each mean represents 70 data; the equal-spacing of the data
project on the local slopes to determine the standard deviations shown.

Also notice that the large number of 70 data in each bin, treated as though
sampled randomly and independently, yield such a small standard deviation of the
bin mean, that for only one of the data, the second from the left, does the quadratic
actually fall within a standard deviation of the mean.

To prepare our chi square test of goodness of fit of the quadratic, we summarize in
Table 3 the statistics plotted in Figure 3:
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Table 3.   Comparison of data vs quadratic means on ten
categories (10 degrees of freedom)

Bin #
(70 data)

Bin
mean

Bin sd sd of
Bin

mean

Quad
mean

Quad sd sd of
Quad
mean

χ2

element

1 0.63680 0.05840 0.006976 0.695150 0.087730 0.010486 30.97
2 0.43190 0.05945 0.007106 0.421240 0.068241 0.008156 1.71
3 0.24020 0.05077 0.006069 0.215930 0.048726 0.005824 17.37
4 0.09301 0.03404 0.004068 0.079220 0.029227 0.003493 15.58
5 0.01348 0.01220 0.001459 0.011110 0.009933 0.001187 3.99
6 0.01407 0.01253 0.001498 0.011599 0.010206 0.001220 4.10
7 0.09468 0.03432 0.004102 0.080689 0.029524 0.003529 15.72
8 0.24270 0.05096 0.006091 0.218379 0.049003 0.005857 17.24
9 0.43480 0.05901 0.007113 0.424669 0.068529 0.008191 1.53

10 0.63970 0.05828 0.006966 0.699560 0.088010 0.010519 32.38

Value of ( )χData
2 10 ≅ 141

But, ( )χ .001
2 10  is about 29.5; so, now, with a larger sample and df = 10, we easily

reject the null hypothesis and conclude that the fit by the quadratic is not good to
explain the data.

Fifty Categories
Before leaving this introduction, we look at our nonrandom data once more to see

what would happen if we tried a chi square goodness of fit test as above, but with
the data subdivided into more numerous categories, say, 50 of them.

A priori, if we had some randomness, we might hope that 50 categories would
make for fewer data per bin and thus larger variances of the mean in each bin; so,
with higher df at the significance point, the chance for a good fit might be improved
over what it was with 10.

The result is plotted in Figure 4 and dramatically shows the effect of systematic
versus random variation.   With 50 categories and 700 data, the real shape of the
data curve becomes evident; and, quite contrary to our conclusion based on Figure 1
or 2 above, and maybe to our first impression of Figure 3, we see that the quadratic
isn't even close to a good fit to the data.  Perhaps a slightly better quadratic might
have been chosen by eye, but the shape of the data curve obviously prevents chi
square ever from accepting the quadratic on 50 degrees of freedom.
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Data: I = 1 - cos(x-.5) + cos( 3(x-.5) ) - cos( 5(x-.5) )
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Figure 4.  Fifty-category fit by eye.   Summarized set of 700 artificial

data for the quadratic fit, ( )I x= −7 1 2
2
.  The function used to generate

the data throughout the Introduction is given in the graph title.

Tabulation of the Figure 4 statistics has been omitted; however, the significance
point is ( )χ .001

2 50 87≅ ; the obtained value is computed at χData
2 304= ; so, again, the chi

square test reassures us that we should reject the fit as not good.
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 II.  Meaning of Chi-Square
At this point, we leave the introductory examples for some formalism about the

statistics.   Generalization of these formalisms to the multidimensional case [4, 5] is
nontrivial but reasonably straightforward.

Formalisms

Relation to Gamma Distribution

The factorial of an integer n, defined as ( ) ( )Fact ! ...n n n n ni
i

n

≡ = = ⋅ − ⋅ ⋅
=

∏ 1 1
1

, appears in

combinatorial analysis everywhere.   The factorial may be expressed as a special
case of the continuous gamma function.    The gamma function is discussed in the
context of Bayesian inference in [6, Sect. 7.3 ff.]; the derivations below follow those
of Feller [7 vol II, Ch. 2].   It isn't much of an overstatement to say that the gamma
function is as fundamental to statistical inference as the exponential function is to
the solutions of differential equations.

The gamma function is defined as,

gamma(x) ( )≡ = ⋅ −
∞

−∫Γ x d exτ τ τ1

0

.                                                            (8)

Integrating (8) formally by parts,

( ) ( )Γ Γx
x

d e
x

xx= ⋅ = +
∞

−∫
1 1

1
0

τ τ τ ; therefore,

( ) ( )Γ Γx x x+ =1 ; and so,                                                                       (9)

( ) ( ) ( ) ( )Γ Γx x x x= − ⋅ − −1 2 2 ,                                                               (10)

which clearly shows the recursive relation making ( ) ( )Γ x x= − 1 !, for the special case
of x an integer.

Using the gamma function Γ  in (8), we may define the gamma probability density
of random variable X on ( )0,∞  by,

( ) ( ) ( )P X x x e x= = = − −gamma ,α ν ν αν ν α1 1

Γ
.                                           (11)
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Looking at (11), we notice that the familiar exponential density then may be
defined as ( )gamma ,α 1 ; and so, by analogy, in (11) we will have the mean ( )E X = ν α
and the variance ( )V X = ν α 2 .

In a small digression, recall the combinatorial expression for the number of ways
(unordered) of taking a sample of j objects from a discrete population of m of them:

( )
( )( )

( )
( ) ( )

( ) ( )
m

j
m

j m j

j m j

j m j

j n

j n

j n

j n









 =

−
=

+ −
−

=
+

=
+ +

+ +
!

! !

!

! !

!

! !

Γ
Γ Γ

1

1 1
.                (12)

The discrete case may be generalized to the beta integral, in terms of the gamma
function, starting this way:

( ) ( )
( ) ( )B ,ν ϑ
ϑ ν
ϑ ν

=
+









−Γ
Γ Γ

1

.                                                                      (13)

Other uses of the gamma function are discussed in [4, Ch. 4] and [7 vol II, Ch. 2].

Returning to the subject, we may redefine the unit normal density as in (1) above,
in the following way:   From (8) and (11), setting α  to 1 2  and ν  to 1 2 yields,

( )gamma x e

d e
x

e
x

x1
2

1
2

1
1
2

1 2
1 1

2

11

2

1

2

1

2
1

2

0

2,






 =









=
⋅

− −

−
∞

−

−

∫Γ τ τ τ

.              (14)

The definite integral ( )Γ 1 2  evaluates to π ; so,

( )
gamma

x
e

x
1
2

1
2

1 1

2 12

1

2

0

1

2

2
,







 =

⋅















−
−

π
.                                              (15)

In the brackets in (15), we have x  in a unit normal distribution.   Because

( )1
0 1

x
N X ; ,  is the density of the square of the unit normal random variable X [7

vol II, p.47], we may say that

( )[ ]gamma N
1
2

1
2

0 1
2

, ,






 ≡ .                                                                    (16)

So, (16) means that ( )gamma ,1 2 1 2  represents the probability density of the square

of a random variable X distributed as ( )N 0 1, .   It is easy to see the generalization of
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(16) to a sum of n variates, each distributed as ( )N 0 1, :   Therefore, recalling (4)
above, we may write

( )gamma
n

n
1
2 2

2,






 ≡ χ ; and,                                                                (17)

this is just the definition of the distribution of chi square.

Thus, we have used the gamma density to show that a sum of n squared unit
normal variates will be distributed as ( )χ 2 n .   By analogy to (11) above, the mean of

( )χ 2 n  will be n, and the variance will be 2n.

Moment Generating Function
Not many readers would see the relation of (15) to (16) above.   An easier way to

show the relation between the normal and chi square probability densities is by
comparison of their moment generating functions (mgfs).

The moment generating function of a random variable is a series expansion of its
density which, term by term, yields as coefficients the n-th moments of the random
variable about the origin.  The first moment is the mean, the second the variance,
and so forth.   What is important for us here, is that two random variables, under
very general conditions, have the same density if and only if all their moments are
identical [6, 6.7.8; cf. 6.3.3].   And, if they both have the same mgf, their moments all
will be identical.

The mgf of a random variable X is defined [6, Sect. 7.1] for continuous
distributions on ( )− ∞ ∞,  as

( ) ( ) ( )mgf ; ft X E e dx e X xtX tx= = ⋅ =
−∞

∞

∫ ,                                                 (18)

in which ( )f X x=  is the probability density function of X.   The moments will be
obtained by a power series expansion on t; the interval of series convergence does
not concern us here.

The rest is very simple:  From (14),

( ) ( )f X x
x

e
x

χ π2 1
2

1
2

1
2

1

2

1
= ≡ 






 =

−
gamma , ; so, from (18),

( )( ) ( )mgf ;t dx e xx tχ
π

2 1 2
1

21
1

2
= ⋅ −

−∞

∞
−

∫ .                                                    (19)
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Changing variables in (19) with y x= 1 2 and fixing the lower limit of integration
immediately yields, for chi square,

( )( )
( )

mgf ;t dy e
t

y
χ

π
2

1 2

2

0

1
1

2

2

= ⋅
−

−∞

∫ .                                                        (20)

On the other hand, the unit normal density (1) may be written,

( ) ( )f ,N

x

x e0 1
2

1

2

2

X = =
−

π
.                                                                      (21)

So, the mgf for X 2  will be,

( )( )
( )

mgf ; ,t N dx e dx etx x
t

x2 2

0

1 2

2

0

0 1
1

2

1

2

2 2
2

= ⋅ = ⋅−
∞

−
−∞

∫ ∫π π
,                       (22)

which clearly is the same as for the chi square in (20).

While on mgfs, it should be mentioned that the mgf also is perhaps the easiest
way to derive the variance of the Poisson distribution [7 vol I, Sect.6.5 - 6.7] .   The
Poisson distribution, which gives the (discrete) probability of k events each with
small probability λ , has probability function [6, 6.3.7],

( )P k e
k

k

X = = −;
!

λ
λλ ,                                                                        (23)

and may be shown to have mean = variance = λ .  For n repeated Poisson trials, the
mean will be ( )nE X n= λ , and the variance will be ( )nV X n= λ .   For n repeated

trials, the standard deviation of the Poisson mean will be ( )nV X n = n nλ
= λ ; so, by the central limit theorem, we would expect a Poisson distribution sum
of n repeated trials with mean λ  to approach a normal distribution with mean nλ
and standard deviation of the mean nλ  (= standard error).

Sufficiency
A sample of a random variable may be seen as a measure of the information

known about the underlying physical process.   The sample size and the variance of
the measurement determine the information in the sample:  Variance adds unusable
information (possible interpretations of the physical process) and so reduces the
precision of the sample in representing the physics.   Sample size decreases the
variance of the mean of the sample and so increases the precision of the sample in
representing the mean of the physics.   Because physical processes are of little value
unless repeatable, and because the mean may be used as an expectation of future
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repetitions, size of the sample and variance of the measure work inversely in
determining the information in a random sample.

Given a variety of statistics describing a random sample, a sufficient statistic [6,
Sect. 10.4] is one which describes the data with no loss of information, so that
information beyond that of the sufficient statistic does not improve prediction of
future samples.  Given the same physical process, a set of measurements of small
variance generally will be sufficient to predict a set with greater variance:  The
latter set may be viewed as the former set plus some extra random variation.

Generally, sufficiency requires choice of a statistic good enough to represent the
underlying physical process; otherwise, error in choice of statistic will add
systematic variance which will reduce predictability.   An example of this was in the
introductory example above, in which the wrong choice of curve (quadratic) added
systematic error--clearly systematic, because there was no random error.

In the present context, we may see chi square as a way to represent the goodness
of choice of curve, such goodness being an unavoidable prerequisite to examination
of the random error in the data.   This goodness must be relative to the categories of
the data, not to competing curves.   But, in any case, we cannot look at sufficiency
without goodness of fit.

So, how can we know that chi square might be useful generally as a test, when,
perhaps, the chi-square assumption of a sum of squares of unit normal deviates
might itself be bad?

Central Limit Theorem
The goodness of chi square as a test statistic for goodness of fit of reasonably

large samples generally need not be questioned.   The reason is the central limit
theorem [7 vol II, Sect. 8.4 & Ch. 14], which holds under almost all conditions in
which stable apparatus produces consistent data:

The sum X of any set of independent random variates, regardless
of how distributed, will approach a normal distribution

( )N X Xµ σ, 2  as the sample size approaches infinity.

Of course, that being true, the sample mean will represent ( )E X X≡ µ  and the
sample variance will represent ( )V X X≡ σ 2 .

As applied to the chi square question, if the data in each category fulfil the
requirements of the central limit theorem, the mean in that category always may be
standardized for use as a valid element of a chi square sum.

Furthermore, if errors of measurement caused by instrumentation are themselves
subject to the central limit theorem, and therefore are normally distributed, it can
be proven [7 vol II, Sect. 2.2] that the convolution of the instrumentation error with
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the physical process also will be subject to the central limit theorem, assuming a
reasonably consistent, repeatably measurable process.

Categories in Random-Sample Chi Square

Number of Categories
Above, it was stated that a sufficient statistic will have less variance than one

which is not, for a good fit and the same data.   From (17) and comments
immediately following, as the df of chi square increases, its variance increases, too.
However, to increase df, we change the experiment by changing the way the
categories for averaging the data are defined.   Chi square represents the categories,
not the data.

In terms of the data, a set of means on many categories (in the limit, one category
per datum) always may be combined to make fewer categories.   In this sense, a chi
square of greater df always will be sufficient relative to one of lesser df, for a given
set of data.   Looked at in terms of individual categories, a wider category means
greater likelihood of a change in the physics, making for a bigger variance, given the
same set of data being categorized.  So, in chi square testing, more numerous,
narrower categories (always fulfilling normality) will be sufficient relative to fewer,
wider ones.   The more the df, the closer to sufficiency.

Number of Parameters
For a given data set, it seems obvious that adding free theoretical parameters will

make the fit of the theory better.  In the limit, one always may fit N data categories
by an ( N − 1)-th degree polynomial, resulting in zero variance in each category and
therefore a perfectly good chi square fit.   However, this would be very uninteresting
physics--to claim, in the limit, that everything was a certain number of terms of its
own, unique polynomial.

Clearly, a physical goodness of fit somehow should involve the complexity of the
hypothesis, as well as the categorization of the data.  The issue here is, how should
we view the degrees of freedom in a goodness of fit test when we are free to vary
both the data categories and the number of theoretical parameters?  Is every theory
with numerous parameters and wide-sweeping flexibility better than one which
leaves some variance unaccounted?

Meaning of df
Bock [5, Sect. 2.6.3] defines degrees of freedom in terms of the dimension of a

subspace on which the data are projected.

Brownlee [3, Sect. 8.1] defines degrees of freedom as "the number of variables
minus the number of independent linear relations or constraints between them [and
equal to the degrees of freedom of their sum of squares]."
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In describing the chi square approximation to the multinomial distribution,
Brownlee counts the degrees of freedom as the number of degrees of freedom for the
chi square minus the number of parameters estimated in order to perform a curve
fit.   In an example [3, Sect. 5.2], estimation in the sample makes the df of the chi
square equal to the number of categories minus 1.   He assumes a Poisson
distribution for which he subtracts another 1 from df, because the Poisson density
has one free parameter.   Thus, Brownlee's final df is equal to the number of
categories minus 2.

If Brownlee's approach were applied to our problem of counting df, we would use
the formula,

 ( )df N NC P= − −1 ,                                                                             (24)

in which NC  is number of categories and NP  is number of free parameters.   At least
one popular statistical software package uses formula (24) for chi square goodness of
fit.

For example, consider the artificial data in Figure 4b, and the effect of sequentially
fitting them with a line of slope b and then with a constant function a, each time
subtracting away the fit from the data:
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(a)     Data( x )
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(b)    Data(x) and fit of slope b = 0.058
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Figure 4b.   Effect of linear parameters on residuals.   The data were
fit by f(x) = a + bx  =  0.112 + 0.058x before the successive subtractions.

Using these two parameters a and b in a curve fit in some sense does reduce the
orthogonality of the remainder (residuals).  The smaller vertical range means the
variance was reduced, too.  With 12 data and 2 parameters to fit, it would seem
reasonable in this example to use the rule above to test goodness using ( )χ p

2 9 , with

df computed as 9 = (12 - 1) - 2.   For example, in Figure 4b, if theory forced a = 0.10,
then only b would be fit, allowing a test on ( )χ p

2 10 , and possibly making acceptance

of the fit more likely for the same data.   Clearly, in such an example, the acceptance
would be more likely for a theoretical value of a equal to its value best fit to the
data.  So, a "stronger" theory which predicted parameters accurately without data
would get preference in goodness.   The Galahad Effect, one might say, in which a
curve gains strength because its theory is pure.

The problem with the approach of simply subtracting the number of free
parameters is that it treats everything as linear and orthogonal.  It gives no more
importance to a parameter of the curve than to just one of the possibly numerous
categories.   This approach seems unquestionably valid when the curve to be fit is
linear.  In other cases, although the categories might be linearly independent and
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contribute equally to the random variance removed by the fit, constraints on the
parameters in general will introduce nonlinear constraints on the category means.

Another, entirely different problem, is the efficiency of the estimator used for a
parameter to be fit.   Surely, we should subtract a df when testing a polynomial
hypothesis, if we are fitting an intercept parameter using the data mean.  But, what
if we are using the less efficient, nonparametric statistic, the median, instead of the
mean?  The median only accounts for the rank order of the data and is invariant
under any strictly monotonic transform of the data.  Should we subtract 1 2 df if we
use the median of the data to estimate the hypothetical intercept?

For a theorist interested in an objective test of a hypothesis with a small number
r of free parameters, testing by (24) above on a large number of categories, say 10r
or more, essentially ignores the number of parameters.   Yet, under the null
hypothesis that the data are well fit by the curve, the data in some sense should be
expected to be interdependent in a way similar to the way they respond to small
changes in the parameters.

Each parameter is critical, to an hypothesis with two parameters to fit.   With 100
categories of data, though, dropping ten categories might not make much difference
in the conclusion.

Need for a Correction to df
The practicality of the problem may be seen by comparing two hypothetical

curves as shown here, one a sine
curve with 3 free parameters
(vertical displacement, phase, and
frequency) and the other a 2-term
polynomial (constant + coefficient
of square).

Suppose we were allowed to
adjust the parameters shown.   If
the data ranged only over a ± 1,
the sine fit might be better than
that of the polynomial; with the
data as shown, a good sine fit
might be hopeless.  By the rule
above, we would use a more
stringent test (more likely to reject goodness) for the sine curve than for the
polynomial.

 We note that adding a free parameter to the sine (say, amplitude) or a couple of
more terms to the polynomial, might make the fit good in both cases.  Alas!  In the
context of a theory, many parameters will be constrained by the physics and
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Figure 4a.  Two ill-fit curves.
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unavailable for arbitrary fitting.   The problem of the present paper is that we
cannot know in advance what the relation will be, for those that remain free to fit.

Clearly, ignoring the number of parameters in a goodness of fit test will make the
test value of chi square such that df dftest categories= , so that, for the same curve fit and

data, acceptance of the null hypothesis (that the fit is good) will be favored.
However, as above, merely subtracting the number of parameters from ( Ncategories− 1)

would seem likely to undercorrect df except in the special case of linear regression.

We seek a way of correcting the df in a way equally fair, in some sense, to all
curves to be fit.
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 III.  The Parameter Correction

Definition of Correction

Development and Rationale
Before starting, we emphasize that we do not address the question of

categorization of the data:  Presumably, an optimum categorization already has
been achieved, or perhaps the problem may not be flexible in these terms.   We
accept the categories of the data set as a given.

We also accept as fixed a priori, the level of significance p to be required for a
rejection of goodness of fit.

A clue to the solution suggested here may be seen in the example in Figure 4b
above:  In that example, the data residuals were just as random as the original data
unless fit by a straight line.  If the residuals were fit by a straight line, the slope
would be 0 and the intercept would be 0, because these orthogonal components were
the ones subtracted down to 0.  But, they were the only ones subtracted away, and
no other structure in the data was affected.   If we wished to test a linear fit to the
residuals by chi square, we would subtract away df = 2; however, we assume here
that to test a trigonometric fit, we would subtract away nothing from the df.   Even
though the variance of the residuals in Figure 4b was less than that of the original
data, the residuals remain just as dimensionful as the data, except as projected on
the intercept or the slope of a linear basis set.

Given categories C, NC  in number, we consider a set of arbitrary curves K to fit,
each curve itself with an arbitrary and probably not unique set of parameters NP  in
number.   All such curves are assumed single-valued on the domain of the categories
of data.  The question is how to count the df to be used in a chi square test.   This
question is equivalent to the one of counting how many df should be subtracted from
the number of data categories.   We know that for realistic problems we must have
N df NP C< < .

The answer we propose here is to account for the diversity of possible parameters
by ignoring their number and considering only their effect.   We therefore propose to
count the degrees of freedom in the data by measuring the orthogonality of the data
after the curve has been fit.

Here is how we prepare this quantification:  For data on random variable X with
domain { }x , described categorized by some function, { }Data x , we can compute the
total variance in the data categories, ( )V Datacat .   We choose the curve K to be fit, fit

it, subtract it, and then examine the residual variance, ( )V Data Kres , .
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Under the null hypothesis that the fit was good, the residuals should represent
solely random variation; they of course may not be assumed constrained by K, K
having been removed.   Under the null hypothesis, we assume here that the
orthogonality of these residuals may be seen as being equal to the degrees of
freedom of the curve fit to the original data, except when considered in regard to a
fit by K itself.

Counting Process
So, having removed the effect of the curve K, we propose to count degrees of

freedom by removing further variance by fitting the residuals with the sum of a set
( ){ }L L x≡ of linearly orthogonal functions, leaving us with a new residual variance,

( )V Data K Lres , , .   Statistical significance of the sum will be tested after adding each
term of L to it; any term removing statistically significant variance will be omitted
from L.

The size of the set L then will define the df of the chi square to be used in testing
goodness of fit.   We see no reason not to use an orthogonal set of polynomial
functions; because we will enumerate terms in L beginning with L0 , we call the size,
n df+ =1 , the nomial of the fit:

( ) ( ) ( ) ( )df Data K L n L n R Data K L L xcorrected j
j

n

≡ = + =
=
∑nomial , , , , ,1 0

0

   s.  t.  es ,      (25)

in which the j take on values of the degree of L not found statistically significant.

To see the logic of this, if only a few terms in L were required to reduce the
residual variance ( )V Data K Lres , ,  below some threshold ε , then the residuals must
have had low-order structure which was missed by K; so, the data categories were
not orthogonal in view of the theory and indeed should be tested at lower df.   On
the other hand, if numerous terms were required in L to reduce the residuals below
ε , the residuals must have had enough orthogonality to be tested at high df.

Stopping Criterion
The one remaining problem is the stopping criterion:  How good a fit should we

require of the orthogonal functions ( ){ }L x , none of which being significant?

We find an answer by again referring to the null hypothesis that the fit is good:
Under this hypothesis, we assume that the initial curve-fit by K must have removed
a statistically significant amount of variance; if so, ( )V Datacat  > ( )V Data Kres , ; in fact,
we may write this in parametric terms as,

( ) ( )V Data F V Data Kcat p res⋅ ≥ , ,                                                              (26)
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in which Fp  is variance ratio at the one-tailed p-level for the Fisher analysis of

variance F-test.  So, to calculate where to terminate the nomial, we suggest applying
this criterion:

( ) ( ){ } ( ) ( )nomial , , , , , ,maxData K L Min n L V Data K L F V Data K Lres p res n− ≡ ⋅ ≥1 0 s.  t.  .   (27)

This just sets a threshold which prevents the creation of nonexistent df by the
orthogonal function fitting process:  If the n-th polynomial leaves the n-th residuals
with significantly less variance than the original 0-th residuals, then all degrees of
freedom (beyond the structure evidently overlooked by K in the data and now found
in the original residuals) have been discovered.

A similar rationale is used sometimes in factor analysis (as distinguished from
principle components analysis).   It should be mentioned that the df for the
significance level of  F is not a difficult issue here, because we are looking at
residuals after our problematical curve K has been fit and gone.  The df  for
computing ( )V Data K Lres n, ,  from a sum of squares of deviations will be just the df of
the data, ( NC − 1),  minus the polynomial constraints (n + 1).  This is because, in both
cases, the residual variance will have the dimensionality of the data under the null
hypothesis that the fit of K was good and therefore that  L will be ineffective in
explaining the data.

So, we have described a process to reduce an arbitrary problem in
counting physical parameters as df, to one of counting linearly independent
polynomial parameters as df.

The Correction Procedure
In the following, ( )Vres ⋅  refers to a variance between categories and is computed

from a sum of squares by dividing by a df depending on the number of categories
and their linear independence.  The sample variance in the original data, as
categorized, is ( )V Datacat  and is a variance among the category means; in context of
analysis of variance, this is called the "between treatments" variance.

We restate the problem:  To perform a chi square goodness of fit test in the
context of a physics experiment, assuming predetermined data categories C and
significance level p, the degrees of freedom df may have to be adjusted for the free
parameters in the curve to be fit.   The proposed answer is:

1. Fit the curve K to the categorized data.   Record the sum of squares of the
residuals (differences or remainders) after the fit, standardizing each difference by
the variance in its category.   The result will be the value of chi square for the fit:
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The standard deviation sd here is the standard deviation of the j-th category mean,
also called the standard error, which should be estimated from the original data
before the fit by K.   Note that the category variance corresponding to chi square,
which will not be used in the goodness of fit test, is obtained by dividing chi square
by the df:  ( )V Data K dfres Data, = χ 2 , in which we approximate the df conventionally by
N NC P− −1 .

If K is a polynomial, count the number NP  of free parameters in the polynomial
and compute df = ( NC − 1) − NP :  This immediately is the df sought.   If K includes
polynomial free parameters (a constant offset, for example), subtract the number of
them before performing the goodness of fit test.

Also, establish a stopping criterion by looking up or calculating the Fisher
variance ratio value F for one-tailed rejection of a null hypothesis test of df of

( )V Datacat  vs. df of ( )V Data Kres ,  at significance level p.   This $Fp  may be found in

statistics references in the context of analysis of variance.  The significance test will
not actually be performed; however its df will set $Fp  for the stopping criterion.   One

df will be that of the data, NC − 1; the other will be that of the data with constraints
of the curve fit K uncorrected, N NC P− −1 .  So, find,

 ( ) ( )( )F df df Fp V Data V Data K p, $
, ≡ .                                                                 (29)

Note that in general K will have removed considerable variance from the data, so
an immediate F ratio test with,

 
( )

( )F
V Data

V Data K
cat

res

=
,

,                                                                              (30)

easily might exceed $Fp .   This will be irrelevant, because (a) we are not merely

testing whether K says something about the data; and, (b) we cannot assume that
the original variance over the whole set of categories was constant.

2.  One sum at a time, progressively fit the residual data with the sum of the
terms from an orthogonal polynomial set ( ){ }L x  and compute the new residual

variance from that fit, ( )V Data K Lres , , .   When the nomial equals NC − 1, stop.  Or,
stop when the stopping criterion is invoked:  This will be when the ratio of variances
among elements of L no longer is below $Fp , namely, when
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( )
( )F

V Data K L

V Data K L
Fres

res n
p= ≥

, ,

, ,
$0 .                                                                   (31)

For every L yielding a statistically significant fit, there was a linear dependence, so
subtract 1 from the nomial for each such fit.

To compute the first and all subsequent values of ( )V Data K Lres , , , compute the only
variance present, namely that between the categories:

( )V Data K Lres n, , ≡
=
∑

1

1dfres
j

j

NC

SS ,                                                             (32)

with ( )df N nres C= − − +1 1 , for Ln  the highest-degree term in a polynomial of n-th
degree.

3.  Finally, to test the goodness of the fit, perform a standard chi square test with
df equal to the nomial.   In cases not requiring a correction, this df will equal NC − 1.

Step 2 may be performed expeditiously by doing a parametric multiple regression
of the residuals ( )V Data Kres ,  on a convenient set of orthogonal polynomials.   A
Chebyshev set of coefficients, or any of several others, may be found in [8] and used
with PC software.

Application in Synthetic Examples
The value of using synthetic examples is that the underlying, correct functional

form of the data will be known.   Thus, we can predict how a good chi square
goodness of fit test should behave.

To insist on stating the obvious, in the following examples, compared with the
introductory ones above, we have a qualitatively different set of data.   The next
data below are simulated experimental data, with real variance.   Uniformly
distributed random numbers were used to add the variance.

In the following examples, we shall assume the central limit theorem so as to be
able to treat each bin mean as normally distributed.   In the first example below, we
shall be computing the standard deviation in each bin using 14 -1 degrees of
freedom; one degree is lost because the bin mean was estimated from the same 14
data.   Knowing each bin mean and standard deviation, we shall compute the
standard deviation of each data bin mean (standard error of the mean) and use it,
not the corresponding theoretical fit parameter, to standardize each element of the
chi square sum.
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Fifty Categories in Random Chi Square

Quadratic Fit

Recall from Figure 4 that the quadratic fit with 50 categories visibly was not
good.   Let's look at the same data categories, but with the data randomized by
addition of some variance.
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Bad Line:
I = 7(x -1/2)

Cubic Fit:
I = 25|x -1/2|3

Quadratic Fit:
I = 7(x -1/2)2

Quartic Fit:
I = 70(x -1/2)4

Figure 5.  Fifty-category fits by eye.   The 700 artificial data of Fig. 4
here are added some random error and again fit with the same

categorized quadratic, ( ) ( )I a x b x= − = −2 2
7 1 2 .   A purposely bad linear

fit also is shown, as is the old cubic fit by eye from Figure 1 above and a
new quartic fit.

Computing χData
2  as in (5) or (28) above yields a value of about 35.8 for the solid

line in Figure 5, which represents the quadratic curve.  We know from published
tables or calculation that ( )χ .001

2 13  = 34.5 and ( )χ .001
2 14  = 36.1.  We find in the tables,

also, that our stopping criterion will be ( )F. , .001 49 47 2 50= .  The quadratic has just two
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polynomial parameters, so our correction should allow us immediately to assign a
corrected df of ( NC − 1) - 2 = 47; however, we proceed with the complete correction
analysis, to show how it works.

If we computed our correction to df = 14 or above, and if no term was significant,
and no residual reached the L Ln0  variance ratio stopping criterion of 2.50, we
would have included sufficient df to know we could accept the null hypothesis that
the fit was good.

The results of these computations are in Table 5.   To reduce possible errors on
this first real trial of the correction, the table was constructed by repeatedly fitting
nonorthogonal polynomials with terms of the form, a xn

n , as described for the
correction above.  The result was verified by repeatedly running multiple regression
on an increasing number of terms of the Chebyshev orthogonal polynomials of the
first kind.   In practice, of course, only the regression would be necessary.

The low, relatively unchanging $F  ratios for the lowest-order nomials in Table 5
are a good indication that we should test at high df.
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Table 5.   Corrected df calculations for the 50-category quadratic in
Fig. 5.   All but the rightmost two columns were done by curve-fit with
nonorthogonal a xn

n∑  polynomials, term by term.   The "MR" columns
were done by multiple regression on Chebyshev polynomials.

Raw
Nom-

ial

Description Poly
Residual

SS

Poly
Residual
Variance

$F
MR

Residual
SS

MR
Residual
Variance

- χData
2 = 35.82 - - - -

0 ( )V Data K Lres , , 0
0.4725 0.00964 - 0.4725 0.00964

1 ( )V Data K Lres , , 1
0.4695 0.00978 0.985 0.4695 0.00978

2 ( )V Data K Lres , , 2
0.4130 0.00879 1.097 0.4128 0.00878

3 ( )V Data K Lres , , 3
0.4127 0.00897 1.075 0.4127 0.00897

4 ( )V Data K Lres , , 4
0.4082 0.00907 1.063 0.4079 0.00906

8 ( )V Data K Lres , , 8
0.3643 0.00888 1.085 0.3613 0.00881

20 ( )V Data K Lres , , 20
0.3597 0.01240 0.778 (not done) (not done)

None of the fits was significant, and all computed values of $F  stayed well below
2.50, so we are justified in testing at ( )χ p

2 20  or perhaps higher df.   We know

already that we cannot reject the null hypothesis at df  = 14, so any higher df surely
will yield a statistic sufficient to the same conclusion .   Further analysis is not
required, and according to our corrected chi square test, we accept the fit of the
quadratic as good.

It should be mentioned here that a least-squares or other similar fit of a 20-term
polynomial technically is not trivial, even on a fast computer.   It would be rather
amazing that such a polynomial really could be fit optimally to a set of data small
enough to approach the number of terms being fit.   But, we assume the best and
look to the future for better.

Linear Fit

Table 5a shows the same test as Table 5, but for the obviously bad fit of a straight
line passing on a steep slope through the middle of the data (Figure 5).   Again, the
two polynomial parameters should allow immediate correction to df = 47; we
continue anyway, for demonstration purposes.
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Table 5a.   Computations as in Table 5 for corrected chi square

goodness of fit test of the bad ( ) ( )I a x b x= − = −7 1 2  line in Fig. 5.  The
stop on the third row makes the nomial = 1; however, the remainder is

supplied to show the result of a bad fit.   Terms significant in regression
are shown in parentheses.

Raw
Nomial

Description Residual
SS

Residual Variance $F

- χData
2 = 106.85 - -

0 ( )V Data K Lres , , 0
101.58 2.073 -

1 ( )V Data K Lres , , 1
2.8708 (*L0,L1)    0.05981 34.7

2 ( )V Data K Lres , , 2
0.4128  (*L0-L2)    0.00878 236.1

3 ( )V Data K Lres , , 3
0.4127  (*L0,L1)    0.00897 231.1

4 ( )V Data K Lres , , 4
0.4079 0.009064 228.7

8 ( )V Data K Lres , , 8
0.3616 0.008819 235.1

12 ( )V Data K Lres , , 12
0.3607 0.009749 212.1

As before, ( )F. , .001 49 47 2 50= .   But, as obvious in Table 5a, the bad linear fit has
left too much structure unaccounted and pushes $F  immediately out to 34.7, making
the nomial 1; this would imply testing against  ( )χ. .001

2 1 108= .   In any case, because
( )χ.001

2 49  is only about 85, the χData  value of 106.85 quickly allows us to reject the fit
of the bad line as not good no matter what the df.

Cubic Fit

Once more, we look at a different curve fit to the data in Figure 5:  This time, it is
the cubic from Figure 1, replotted in Figure 5 and originally rejected as a fit to the
data before random variation had been added.   We again proceed with the analysis,
although two polynomial parameters permit an immediate correction to df = 47.

The raw χData
2  for the cubic fit is found to be 64.25; because ( )χ.001

2 49  is about 85.3,
the data value from the cubic might allow the fit to be rejected, if our correction
were to reduce the df by enough.   From published tables or calculation, we find that

( )χ . .001
2 33 639=  and ( )χ . .001

2 34 652= ; so, if we retain a corrected df of less than 34, we
will reject the fit of the cubic as not good.
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As before, the correction stopping criterion will be ( )F. , .001 49 47 2 50= .   The results
of the analysis are in Table 5b.

Table 5b.   Computations as in Table 5 for corrected chi square

goodness of fit test of the cubic ( )I a x b x= − = −3 3
25 1 2   in Fig. 5.

Terms significant in regression are shown in parentheses.

Raw
Nomial

Description Residual
SS

Residual Variance $F

- χData
2 = 64.25 - -

0 ( )V Data K Lres , , 0
0.834828 0.017037 -

1 ( )V Data K Lres , , 1
0.780223 0.016255 1.048

2 ( )V Data K Lres , , 2
0.479143 (*L0-L2)   0.010195 1.671

3 ( )V Data K Lres , , 3
0.476474 0.010358 1.645

4 ( )V Data K Lres , , 4
0.395849 0.008797 1.937

5 ( )V Data K Lres , , 5
0.394304 0.008961 1.901

7 ( )V Data K Lres , , 7
0.364182 0.008671 1.965

8 ( )V Data K Lres , , 8
0.360949 0.008804 1.935

12 ( )V Data K Lres , , 12
0.360192 0.009735 1.750

20 ( )V Data K Lres , , 20
0.352694 0.012162 1.400

Although Table 5b omits some results, the value of $F  wandered up to the
maximum shown at a nomial of 7, then declined gradually to the nomial 20 value
shown; this was the limit of the author's PC software.   There is no sign the stopping
criterion would be invoked, and only one nomial term was dropped because of
significance, so the corrected chi square df would be NC − − − =1 1 2 46, the final
reduction by two being because the fit was a two-parameter polynomial.  We repeat
that the immediate correction, because of the two polynomial terms, by subtraction
of 2 from 49, would leave a proper corrected df of 47; in effect, we pretended there
was at least one nonpolynomial parameter to test the procedure.  But, 46 34>>  still
means that the cubic fit to the Figure 5 data would be accepted as good.
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Quartic Fit

Let's look once again at a curve fit to the data in Figure 5:  This time, it is the
quartic, which was fit by eye.

The raw χData
2  for the quartic fit is found to be 83.01.   From published tables or

calculation, we find that ( )χ. .001
2 47 82 7=  and ( )χ. .001

2 48 84 04= ; so, if we retain a
corrected df of less than 48, we will reject the fit of the quartic as not good.   The
common practice in (24) above of setting df at N NC P− −1 , or our strictly applied
correction procedure, would assign df = 47, causing an immediate rejection of the fit.
We pretend there is at least one nonpolynomial parameter and pursue our correction
here to see how it performs in this interesting marginal case.

As before, the correction stopping criterion will be ( )F. , .001 49 47 2 50= .   The results
of the correction analysis is in Table 5c.
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Table 5c.   Computations for corrected chi square goodness of fit test

of the quartic ( ) ( )I a x b x= − = −4 4
70 1 2   in Fig. 5.    Terms significant in

regression are shown in parentheses.

Raw
Nomial

Description Residual
SS

Residual Variance $F

- χData
2 = 83.01 - -

0 ( )V Data K Lres , , 0
0.824809 (*L0)       0.016833 -

1 ( )V Data K Lres , , 1
0.766592 0.015971 1.054

2 ( )V Data K Lres , , 2
0.658320 0.014007 1.202

3 ( )V Data K Lres , , 3
0.650998 0.014152 1.189

4 ( )V Data K Lres , , 4
0.407871 (*L0-L4)   0.009064 1.857

5 ( )V Data K Lres , , 5
0.406808 0.009246 1.821

6 ( )V Data K Lres , , 6
0.383786 0.008925 1.886

7 ( )V Data K Lres , , 7
0.366298 0.008721 1.930

8 ( )V Data K Lres , , 8
0.361569 0.008819 1.909

12 ( )V Data K Lres , , 12
0.360525 0.009744 1.728

20 ( )V Data K Lres , , 20
0.352887 0.012169 1.383

As shown in Table 5c, the value of $F  wandered up to a maximum again at a
nomial of 7, but the stopping criterion was not invoked.   However, the low-degree
analysis was enough to reveal two terms of significant residuals; the pretend-
corrected chi square df would be NC − − − =1 2 2 45, and the quartic fit to the Figure
5 data is rejected as not good.  Actually, we of course would have rejected the fit at
49 - 2 = 47 df, because there were just two polynomial parameters and no others.

Finally, before leaving this example, we should remark that the same quadratic
function which failed miserably in Figure 4 easily was shown a good fit in Figure 5.
The dispersion in the Figure 5 data clearly weakened the test.   In fact, even the
cubic of Figure 1 was accepted as a good fit.  When the randomness is great enough,
almost any fit will be good enough--but, not much confidence in the hypothesis will
be added by not rejecting it, either.
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We consider next a more realistic simulated example.

Application in a Twenty Category Decay Simulation
Assume there is a theory which predicts that a certain material, initially

translucent, will fluoresce if illuminated with light at a certain, short wavelength.
Let's consider a hypothetical experiment in which some of this material is enclosed
in a spherical detector, a glowball, and irradiated with a pulse of short-wavelength
light.   We wish to predict the time course of the glow inside the sphere.

The hypothesis is that a 4π  Planckian detector will respond as the convolution of
the Gaussian light exciting impulse with a decaying negative exponential of the
form,

( ) ( ) ( )E t w a I I d e e
t

w t a; , | 0 0
0

1

2
2

= ⋅∫
− − −τ

τ τ ,                                                      (33)

which has two free parameters, pulse width w and time-constant a, the initial
intensity I 0  being fixed by theory.

The result of the simulated experiment is given in Figure 6.
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Figure 6.   Glowball decay experiment.   Time t and energy E are in
arbitrary units.   The solid line represents a fit of formula (33) above,

with I 0= 8 fixed by theory and w = 2.9 and a = 17 fit by eye to the 20 bin
means shown.

From published tables or calculation, we find that ( )χ. .001
2 19 438=  and

( )F. , .001 19 17 4 81= .   Computing χData
2 , we get over 75.  Therefore, the null hypothesis

of a good fit is rejected at once.

   The analysis, although unnecessary for this particular decision, is given in
Table 6.   Looking at the several low-degree values of L in the table, it is obvious
they are changing slowly, and, clearly, after computing L2 , it would be very
reasonable to conclude that a test at df = NC − −1 1 was justified.
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Table 6.   Glowball decay experiment.   Computations for corrected
chi square goodness of fit of the curve in Fig. 6, which was text equation

(33) fit by eye.   Two free parameters, w and a, were available to fit.
Terms in parenthesis were significant in regression.

Raw
Nomial

Description Residual
SS

Residual
Variance

$F

- χData
2 = 75.7 - -

0 ( )V Data K Lres , , 0
9.551  (*L0) 0.503 -

1 ( )V Data K Lres , , 1
9.551  0.531 0.947

2 ( )V Data K Lres , , 2
7.631 0.449 1.120

3 ( )V Data K Lres , , 3
6.493 0.406 1.239

4 ( )V Data K Lres , , 4
6.226 0.415 1.212

8 ( )V Data K Lres , , 8
5.432 0.494 1.018

12 ( )V Data K Lres , , 12
5.559 0.794 0.634

None of the computed values of $F  exceeded even 2, although the L0  term would
not be counted; so, if the initial value of 75.7 for chi square had not been so obvious,
we would have performed the corrected test against ( ) ( )χ χ. .001

2
001
21 1 18NC − − = .
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But what if theory allowed us to adjust the third parameter, I 0 , for a better fit?
The result of a three-parameter fit is shown in Figure 7 and is analyzed in Table 7:
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Figure 7.   Glowball decay experiment.   Analysis with three free
parameters.   Time t and energy E are in arbitrary units.   The solid line
represents a fit of formula (33) above, with I 0= 8.2, w = 2.95, and a = 17

as fit by eye again to the same 20 bin means as in Fig. 6.

As shown below in Table 7, χData
2 , with an additional free parameter, now is just

34.9, which is below ( )χ. .001
2 19 438= .   Therefore, assuming a correction for free

parameters, no immediate decision can be made.   Because the lowest df allowing
acceptance of the fit is 14 ( ( )χ . .001

2 14 361= ), we seek a decision as to whether the df
might be 14 or more.

The correction analysis is done in Table 7.   In that Table, the wandering of the
residual variance and the lack of consistent increase of $F  make it quite certain that
the critical F value of 4.81 never will be reached.   Therefore, the fit of the theory
using three free parameters may be accepted as good.

Compare the appearance of the two fits in Figures 6 and 7:  The eye can hardly
decide, whereas the statistics are unequivocal, given the category set and the
significance level.
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Table 7.   Glowball decay data as in Table 6.   Computations for
corrected chi square goodness of fit of the curve in Fig. 7.   Three

parameters, I0, w, and a, were free to fit.

Raw
Nomial

Description Residual
SS

Residual
Variance

$F

- χData
2 = 34.97 - -

0 ( )V Data K Lres , , 0
9.179 0.4831 -

1 ( )V Data K Lres , , 1
9.173 0.5096 0.948

2 ( )V Data K Lres , , 2
8.868 0.5216 0.926

3 ( )V Data K Lres , , 3
6.622 0.4139 1.167

4 ( )V Data K Lres , , 4
6.300 0.4200 1.150

8 ( )V Data K Lres , , 8
5.433 0.4939 0.978

12 ( )V Data K Lres , , 12
5.572 0.7960 0.607

13 ( )V Data K Lres , , 13
5.516 0.9193 0.526

14 ( )V Data K Lres , , 14
5.385 1.0771 0.449

15 ( )V Data K Lres , , 15
5.199 1.2998 0.372

Application in Neutrino Oscillation Theory
Muon neutrinos are created in great numbers in the upper atmosphere by cosmic

particles.   They penetrate the Earth and may be detected both in a downward
direction, in which they traverse a short distance of atmosphere, and in an upward
direction, in which they traverse the diameter of the Earth.   To explain an apparent
deficit in upward vs downward muon neutrinos, relative to electron neutrinos
similarly created, one theory holds that the muon neutrinos oscillate or transform
into other types not easily identified.

Data from the Super-Kamiokande water-Cerenkov neutrino detector [9, Table I]
are plotted in Figure 8.   The  "statistical error" plotted is the standard deviation of
the assumed-Poisson bin totals, which is to say, ( )bin total  for each bin; this is the
same as the standard error of the bin mean, as described near (23) above.   Neutrino
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and antineutrino data are combined.   The over-1-GeV events (multiGeV events)
were substantially over 1.0 GeV.   Higher-energy events are more easily
distinguished from background than those of lower energy; this causes most of the
separation, even though atmospheric neutrinos tend to average about 1 GeV.
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Figure 8.   Super-Kamiokande atmospheric neutrino data from [9]
after about 535 days online, categorized into five counting bins by

cosine of the angle from the zenith.   The electron-like vs muon-like
events are shown as νe  and νµ , respectively.   The heavier single lines

connect means of Monte Carlo simulations (theory); the event data
means are plotted as points, with the statistical error enclosed in the
lighter lines and representing ± 1 standard deviation of the bin mean.

  The "theory" was obtained by Monte Carlo simulation, because the detector
calibrations are very complicated although well understood.   The Monte Carlo
means ignore any directional bias in neutrino flux; so, if the data fit the theory, we
would conclude there was no atmospheric deficit and hence no observable
oscillation.

Because Monte Carlo simulation is stochastic, the resulting theory will itself
include some randomness (variance), representing uncertainty in the estimates
obtained during simulation.  In the example [9] chosen, the Monte Carlo standard
errors of the means were substantial compared with those of the data, but we chose
to ignore them entirely.  Treatment of such variances is discussed in an appendix in
[9]; in general, if considered truly to measure the uncertainty in the expectancies to
be tested, they should be added to the variances of the data categories.
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Monte Carlo expectancies enter into the chi square elements the same way as do
those of the data, so it may be assumed that the df correction proposed here also will
reveal dependencies or other artifacts introduced by the Monte Carlo model and not
fit by the curve being evaluated.   However, if we assume the Central Limit
Theorem to apply to the Monte Carlo expectancies (something not so obvious as that
Theorem's application to the physical data or instrumentation), the major effect of
the stochasticity will be to add to the variance in the residuals, weakening the chi
square test and biasing it toward acceptance.

For purposes of chi-square testing, one would recommend avoidance of a Monte
Carlo theory which generated nonnormal category expectancies or ones with
category variance of the order of that of the data alone.   However, running multiple
Monte Carlo simulations and averaging the result by bin should correct
nonnormality and high variance for almost any model

If the Monte Carlo model was written to model the variances as well as the
expectancies, the issue would be how the expectancies were computed--an issue
internal to the model.   It is unclear what would be the value explicitly of modelling
the variance, unless to confirm correctness of the Monte Carlo computer software
independent of the physics.   The same concept of sufficiency should be used to
evaluate a Monte Carlo model as would be used to evaluate a statistic.
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In any event, we wish to see how our df correction may be applied in tests of the
goodness of fit of the neutrino Monte Carlo theory to the data.   There are four
different fits to test.   Summary calculations are in Table 8.   ( )F. ,001 4 4 = 53.4

Table 8.   Correction of Monte Carlo fit to neutrino data from [9].
Each event type has NC = 5  data bins, so the maximum df would be 4,

with no correction.   All nomial calculations were done by multiple
regression on Chebyshev orthogonal polynomials of the first kind.

Event Type
Raw

Nomial Description Residual SS Resid. Variance
$F

SubGeV - χData
2 = 34.09 - -

electron 0 ( )V Data K Lres , , 0
2567.3 641.80 -

1 ( )V Data K Lres , , 1
1312.8 437.6 1.467

2 ( )V Data K Lres , , 2
598.51 299.26 2.145

3 ( )V Data K Lres , , 3
554.41 554.41 1.158

SubGeV - χData
2 = 198.3 - -

muon 0 ( )V Data K Lres , , 0
5946.8 1486.7 -

1 ( )V Data K Lres , , 1
1150.70 383.57 3.876

2 ( )V Data K Lres , , 2
270.63 135.31 10.987

3 ( )V Data K Lres , , 3
264.23 264.23 5.627

MultiGeV - χData
2 = 12.2 - -

electron 0 ( )V Data K Lres , , 0
194.8 48.700 -

1 ( )V Data K Lres , , 1
193.9 64.633 0.753

2 ( )V Data K Lres , , 2
192.1 96.057 0.507

3 ( )V Data K Lres , , 3
24.01 24.01 2.028

MultiGeV - χData
2 = 92.1 - -

muon 0 ( )V Data K Lres , , 0
3327.2 831.8 -

1 ( )V Data K Lres , , 1
571.60 190.53 4.366

2 ( )V Data K Lres , , 2
489.03 244.51 3.402

3 ( )V Data K Lres , , 3
40.129 40.129 20.73

None of the regression coefficients was significant, and our stopping criterion
never was invoked, so the goodness of fit criterion will be ( )χ. .001

2 4 185= .  We thus
conclude from Table 8 that the Monte Carlo was a good fit for the multiGeV
electron-like events but that there was a statistically significant effect in the other
cases, reflecting the expected atmospheric deficit in muon-neutrinos.
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 IV. Conclusion
We suggest that the proposed correction to df is almost trivial conceptually and is

not difficult to use in practice.

We believe it has been shown to perform as hoped:  It equalizes the meaning of
statistical significance for goodness of fit, as applied to theoretical curves with any
number of physically important free parameters.
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