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Abstract

The mutually unbiased bases of quantum information theory are used to
study the MNS and CKM mixing matrices. The resulting mixing matrix
parameterisation requires only three real parameters, and is thus potentially
more constraining than those in current use. We also discuss related results
from MINOS.
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1. Introduction

For Hilbert spaces of finite dimension d, the discrete (or quantum) Fourier
transform operator Fd [1] may be considered one of a set of mutually unbiased
bases [2][3][4]. In dimension 3,

F3 =
1√
3




ω ω 1
ω ω 1
1 1 1


 (1)

where ω = exp(2iπ/3) is the complex cubed root of unity. The columns of
F3 form a basis, namely the eigenvector set of a 3 × 3 Pauli matrix. Two
bases are unbiased if all possible inner products between two elements, one
in each basis, have the same norm. A collection of mutually unbiased basis
sets is one such that every basis is unbiased with respect to each other one.
In dimension 3, there are four such sets, two of which may be given by F3

and the identity matrix.
Since the Fourier transform matrix is unitary, the Fourier transform of a

unitary matrix is unitary. In a prime dimension d, a complete set of mutually
unbiased bases for the Hilbert space defines a set of d + 1 unitary operators.
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For d = 2, a complete set of three mutually unbiased bases is given by

F2 =
1√
2

(
1 1
1 −1

)
, R2 =

1√
2

(
1 i
i 1

)
(2)

and the identity matrix I. Observe that R8
2 = I makes R2 a unitary root of

the identity I. In any dimension d, such a Hadamard circulant Rd defines a
basis that is mutually unbiased with respect to Fd [5][6]. The collection of all
such operators forms a finite set, in principle characterising the measurable
quantities for quantum mechanics in a given dimension. For dimension 3,
the complete set of four mutually unbiased bases is given by the collection
{F3, R3, R

2
3, I} where

R3 =
1√
3




1 ω 1
1 1 ω
ω 1 1


 , (3)

is a unitary root such that R3
3 is a multiple of I and R12

3 = I. The Fourier
operator satisfies F 4

d = I.
As Heisenberg and Schwinger originally envisaged, in describing basis sets

this way we remove the emphasis on quantum states and consider instead
the physical composition of measurement operations. This paper uses Rd

type matrices to define a parameterisation of the mixing matrices of particle
phenomenology.

This procedure supports the view that, in quantum gravity, the classical
gauge groups should be derived from deeper measurement principles. After
all, if spacetime is emergent, then presumably the symmetries that act upon
it also are. Recent experimental hints of the need to abandon traditional
continua for quantum states include the MINOS observation [7] of mass dif-
ferences between neutrinos and antineutrinos. Carl Brannen has commented
that these mass differences might be explained by a simple phase conjugation
in Koide mass triplets [8]. A Koide mass matrix is a 3×3 Hermitian circulant
matrix with eigenvalues the square roots of the rest masses. It depends on
two parameters r and δ, as in

√
M = µ




1 reiδ re−iδ

re−iδ 1 reiδ

reiδ re−iδ 1


 , (4)

where µ is a real scale parameter that selects the physical unit. As shown in
[8], the value r =

√
2 accounts for both neutrino and charged lepton masses.
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One may interpret r−1 = tan θ geometrically in matrix space, in which case
the lepton value corresponds to a phase θ = π/4.

The neutrino and antineutrino masses are considered fundamental to a
non local gravitational interaction, replacing the effective Higgs boson of the
local theory. Neutrino mixing is presumed to carry gravitational charge from
its generating (cosmological) horizon into the electroweak sector. Section 2
introduces the basic information matrices of interest, and then the lepton
and quark mixing matrices are discussed in sections 3 and 4.

2. Circulant Sums and Products

An m-circulant matrix is defined by its first row, the other rows being
equal to the first except for a shift of each entry m places to the right. In
any dimension, the discrete Fourier transform diagonalises all 1-circulants.

In dimension 3, a codiagonal is a 2-circulant M with non zero entries M13,
M22 and M31. The sum of a diagonal and a codiagonal essentially results in a
matrix with 2×2 and 1×1 blocks. It follows that the Fourier transform of a
sum A+iB, where A is a real 1-circulant and B is a real 2-circulant, results in
a matrix with 2× 2 and 1× 1 blocks. We are interested in parameterisations
of unitary matrices in dimension 3 in the form A + iB [9]. In particular,
consider the block forms

F23 =
1√
2



√

2 0 0
0 1 1
0 1 −1


 , R23 =

1√
2




1 + i 0 0
0 1 i
0 i 1


 . (5)

The operators Fij and Rij are similarly defined for (ij) = (12) and (31).
Observe that the cyclic product R12R23R31 is a sum of the form A + iB.
More general decompositions of the form A+ iB are obtained using matrices
such as

R23(r) =
1√

r2 + 1




r + i 0 0
0 r i
0 i r


 , (6)

with a real parameter r. In this case, the 1-circulant component A becomes
the real part of the unitary matrix, while the 2-circulant B is the imaginary
part, and their contributions to the associated matrix of probabilities do
not have any interference. That is, it may be natural to decompose a magic
probability matrix, such as a mixing matrix, into the sum of a real 1-circulant
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and a purely imaginary 2-circulant. Since swapping A and B results in the
same set of probabilities, we consider such decompositions to manifest a
duality of electric magnetic type.

These decompositions presume a cyclicity amongst particle generations,
which leaves the probability set invariant under permutations of rows and
columns. As an ansatz for complex mixing matrices, this potentially allows
a reduction of the required number of parameters from four to three. The
following sections consider whether the MNS and CKM matrices may be
described by the normalised three parameter product form

M = NR12(a)R23(b)R31(c), (7)

where a, b and c are real, and

N−2 = (a2 + 1)(b2 + 1)(c2 + 1) (8)

is the normalisation constant. As a circulant sum, M takes the form

M = N




abc −a− c −b
−b abc −a− c

−a− c −b abc


 (9)

+iN




bc ac− 1 ab
ac− 1 ab bc

ab bc ac− 1


 .

This is a general form for a cyclic decomposition in terms of generation pairs,
because one is always free to scale the imaginary entries of Rij to unit norm.
As seen in the following section, it is similar to the tribimaximal extension
considered in [10], in terms of the (ub) term. A cyclic four parameter form
for general unitary matrices is discussed in [9].

Markovitch [11] considers a symmetry condition for mixing matrices aris-
ing from the observation that the norm square matrix P of a rotation matrix
satisfies P − P T = C(x), where C(x) is a 1-circulant matrix with first row
(0,−x, x). For a three parameter product of the form M , the real circulant
M −MT satisfies x = a− b+ c. The real norm square of M gives a circulant
with x = b2 − (−a− c)2.

For a normalised mixing matrix in the form A+iB, the Fourier transform
of A + iB results in a 2 × 2 block of determinant 1 and a 1 × 1 block that
is the row sum phase. That is, the complex matrix M is transformed into
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an element of SU(2) × U(1), which is a four parameter Lie group obtained
from an arbitrary A+ iB form. We consider a general four parameter mixing
matrix as a three generational version of the three parameter product form
M . Such parameterisations will be discussed in [9].

Observe that in the triple product M , the ordering of the three parameters
matters. This is in contrast to a two parameter product, where a swapping of
factors results in a transpose but does not alter the final set of probabilities.
The three parameter ordering is viewed as a source of CP violation, since
setting the third parameter to zero reduces CP phases to zero.

3. The Masses and MNS Lepton Mixing

We assume that the generation of rest mass is entropic, which is to say
time asymmetric with respect to an observer’s measurement clock. In an
observer dependent cosmology, the rest mass emergence is associated to a
minimal zero entropy horizon, and defined by Michael Rios [13] in terms of
the distance in a Jordan algebra matrix space from the origin. Since the
information content of rest mass operators is prior to the generation of a
classical spacetime, and the cosmology is time asymmetric, one does not
expect universal conservation of CPT symmetry.

The MINOS collaboration have recently reported [7] a difference in the
oscillations of neutrinos and antineutrinos, with mass differences given by

neutrino: ∆m2 = 2.35× 10−3 ± 0.11 eV2

antineutrino: ∆m2 = 3.35× 10−3 ± 0.45 eV2

and the two flavor mixing angles

neutrino: sin2(2θ) > 0.91

antineutrino: sin2(2θ) = 0.86± 0.12

Observe that these mass parameters are consistent with two distinct Koide
triplets [8] as follows. Each mass triplet arises as an eigenvalue set for the
1-circulant Hermitian matrix. If the single off diagonal complex phase in this
mass matrix is chosen to be

δ =
2

9
± π

12
(10)
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then the three eigenvalues of interest are given by

√
mi = µ(1 +

√
2cos(δ + ωi)) (11)

for a suitable scale µ, and with ωi the three cubed roots of unity. Taking the
+π/12 phase to correspond to neutrinos, and its conjugate to antineutrinos
[8], and with a scale of µ = 0.01, the eigenvalue triplets give mass differences
of

neutrino: ∆m2 = 2.49× 10−3 eV2

antineutrino: ∆m2 = 3.39× 10−3 eV2

Since there is flexibility in the choice of µ, this shows basic agreement with
the MINOS results [7]. The universal phase 2/9 appears in both the charged
lepton mass matrix and also in a large collection of Koide fits for hadron
masses [8]. The phase ±π/12 may be viewed as a geometric phase in connec-
tion with noncommutative paths built from operators associated to mutually
unbiased bases (see [12]). Alternatively, it is the 24th root of unity that rep-
resents the 3 × 8 information dimensions of the full quantum number space
for the low energy spectrum. The π/12 phase is thus a cubed root of π/4,
which occurs for example in the 2× 2 Fourier transform

F2R2F2 =

(
eπi/4 0

0 e−πi/4

)
(12)

showing that scaled R2(r) factors correspond to phases θ away from π/4. Is
there a connection between R2(r) factors and the Koide mass matrix? A two
factor product R2(a)R2(b) has the property that

R2(b)R2(a) = (R2(a)R2(b))
T (13)

from which it follows that the Jordan algebra matrix product X ◦ Y ≡
1/2(XY + Y X) sends the 1-circulant piece of R2(a) ◦ R2(b) to the sym-
metrised norm of a Hermitian Koide matrix. Jordan algebra matrix models
[13] are expected to play an important role in extensions of information the-
ory to gravitational questions, so we view this transmutation of products as
a natural means of extracting the positive energy mass sector from the pre
spacetime mixing.

This begs the question of whether or not the MNS neutrino mixing matrix
also involves simple parameters. The tribimaximal MNS mixing matrix [14]

6



has exact values

T =




2
3

1
3

0
1
6

1
3

1
2

1
6

1
3

1
2


 . (14)

This matrix is obtained from the norm squares of the three parameter product

MT = NR12(1)R23(
√

2)R31(0) = NR12(1)R23(1/
√

2)R31(0), (15)

corresponding to a general tribimaximal type probability matrix, most easily
expressed in the form

P 2(a, b) = N2




b2(a2 + 1) a2 + 1 0
a2 a2b2 b2 + 1
1 b2 a2(b2 + 1)


 . (16)

Observe that a slight rearrangement of the entries of P 2(a, b) shows how T is
built from multiples of one initial row. That is, if we replace the zero entry
by the normalisation factor (a2 + 1)(b2 + 1) = 6 the entries may be arranged
as multiples of the row (1, 1, 2), by the numbers 1, 2 and 3. Taking these
entries modulo 6 returns a non magic form T , obeying a sum rule along each
row and column. The complex matrix MT is also expressible as the circulant
sum

MT =
1√
6



√

2 1 0

0
√

2 1

1 0
√

2


 +

i√
6



−√2 1 0

1 0 −√2

0 −√2 1


 . (17)

This may be viewed as a reduction to a two parameter form, since the zero
parameter term R31(0) acts as a pseudo identity, whereby cycling genera-
tions or rephasing does not alter the probability matrix. Note that since Rij

is symmetric, the two parameter matrix product is given by the nine possible
column products for the two Rij components. The resulting probability ma-
trix is thus a straightforward generalisation of the democratic representation
of mutually unbiased probabilities, by a matrix with all entries equal.

As pointed out some years ago by a number of people, such as Hans de
Vries, we observe that the three Koide eigenvalues of

√
M are expressible in

terms of the nine amplitudes of MT via

λ1 =

√
1

3
+

√
2

3
cos δ +

√
0 sin δ (18)
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λ2 =

√
1

3
−

√
1

6
cos δ −

√
1

2
sin δ

λ3 =

√
1

3
−

√
1

6
cos δ +

√
1

2
sin δ

Through basic trigonometry, this rule holds for any value of the angle δ,
including those for all lepton triplets. The three parameters (a, b, c) appear
in the coefficients of the first expression λ1, but the coefficients in the other
two rows also result in the same tribimaximal mixing matrix. At this natural
scale, the signs for the λi give a cosine rule that forces a mass sum of exactly
2.

The two flavor mixing angles observed by MINOS [7] are still potentially
consistent with tribimaximal mixing in both the neutrino and antineutrino
sectors. For example, the antineutrino matrix may be the transpose of the
neutrino one, or the matrix obtained by conjugating all complex roots. Given
that a conjugate R2 factor is its inverse, a composition of two inverse forms
of MT would result in the identity mixing matrix, obeyed by the charged
leptons.

A robust operator, T also results from the matrix product F3F2 and a
range of similar, essentially parameter free products. This Fourier matrix fac-
torisation may be associated to the A4 discrete symmetry [15][16][17] studied
in the context of neutrino mass generation in the Standard Model, since this
group is the product Z3nZ2

2 of cyclic permutation groups. Here, however, the
finite group appears as a discrete structure in quantum information theory,
rather than as a subgroup of a large continuous symmetry.

4. The CKM Quark Mixing Matrix

Recent experimental estimates [14] of the (unsquared) CKM amplitudes,
for a complex CKM matrix MC , are given by




0.97419± 0.00022 0.2257± 0.001 0.00359± 0.00016
0.2256± 0.001 0.97334± 0.00023 0.0415± 0.0011

0.00874± 0.00026 0.0407± 0.001 0.999133± 0.000043


 (19)

which is closely approximated by a three parameter product

MC = NR12(a)R23(b)R31(c) (20)
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for a = −0.2314, b = 24.0 and c = 0.0035. In the form tanθ these best fit
parameters correspond to the three Euler angles of the standard parameter-
isation for MC , although b = 24 must be inverted to obtain the usual angle.
Kuo and Liu [18] have also considered circulant structure in MC , showing
that three parameters suffice.

Note that the (td) term in this fit is a little outside current bounds, but
these bounds rely on lattice computations and the data [14] used in the fit
here also relies on a largish value for the (td) term. The sign of a makes little
difference to the resulting probabilities, but the negative sign gives a better
fit, slightly reducing the size of the (td) term.

The product form is clearly unitary, and the smallness of c makes MC

similar to a matrix of MNS type. Note however that MC is also closely
approximated by a two factor product of type (16). In fact, the experimental
bounds are all respected with the same parameters a = 0.2314 and b = 24.0,
along with a small c dependent (ub) term at the top right of the adjusted
magic form

|MC |2 = P 2(0.2314, 24.0) + c2




0 0 1
0 1 0
1 0 0


 . (21)

Observe that in either unitary form the three parameters (a, b, c) essentially
come from three of the measured CKM entries, namely (td), (cs) and (ub).
The factor ordering is therefore associated with an ordering of quark pairs.

Since c = 0 results in zero CP violation, and the two factor products are
essentially unordered, we interpret the three factor c 6= 0 ordering as a source
of CP violation in quarks. The Bs physics CP violation parameter

2βs ≡ 2arg(VtsV tbV csVcb) (22)

may easily be computed from MC . Using the phases of (20), we obtain a
value for 2βs of −0.0388, in agreement with Standard Model fits [14]. Note
that the value −0.0388 comes mainly from the (ts) term, with the other
three phases roughly canceling out. In terms of the parameters, the angle βs

is closely approximated by the product abc.
As for tribimaximal mixing, we may now express candidate square root

mass triplets for a phase δ in terms of the entries of the CKM matrix. The
choice

λ1 = 0.2252 + 0.9735 cos δ + 0.0406 sin δ (23)
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λ2 = 0.9743− 0.2250 cos δ − 0.0098 sin δ

λ3 = 0.0035− 0.0416 cos δ + 0.9991 sin δ

obeys the cosine probability rule that gives a mass sum of 2, as for the lepton
triplets.

5. Conclusions

The product parameterisation discussed here potentially constrains the
required mixing parameters for both MNS and CKM matrices. Although the
elements of the exact tribimaximal MNS matrix involve simple parameters
from any point of view, the CKM matrix is usually assumed to be more
complicated.

Of course further study of the relation between mixing and rest mass is
warranted. Do charged leptons also exhibit mass differences between parti-
cles and antiparticles? There are reasons to think not, given the tight limits
on the electron positron mass difference [14]. This perhaps suggests a rela-
tion between the identity mixing of charged leptons and their mass equality,
whereby only the light neutrinos and antineutrinos carry the gravitational
charge into the electroweak sector.

In the abstract categorical framework that motivates this paper, classical
spacetime is emergent and the mathematical association of CPT violation
with Lorentz violation does not automatically arise in this purely information
theoretic analysis of mass quantum numbers. It is possible that Lorentz
symmetry is restored in a collective continuum derived from a richer spectrum
of energy levels.

Both the DZero [19] and CDF [20] experiments report a range for βs that
is consistent with a Standard Model value of −0.019, in agreement with our
parameterisation.
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