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The generalized Maxwell equations in vacuum are basically the equations for steady states, which
satisfy both energy and force conservation laws. However, superpositions of the steady states often
break those conservation laws, although the generalized Maxwell equations are kept. To study
those cases, we derived electromagnetic-dynamics equations, which include the generalized Maxwell
equations, energy and force conservation laws, and dynamics of scalar fields. These equations
explain that the scalar fields work as the aether propagating the electromagnetic wave, scalar waves
work as the gravitational waves, and how the electromagnetic waves advance along the way in the
gravitational waves.

PACS numbers:

I. INTRODUCTION

Aether, the medium propagating light, was being dis-
cussed long time ago. Then, Maxwell equations were
proposed and light was predicted as a kind of the electro-
magnetic (EM) waves since those velocities equal to that
of light experimentally observed.1–3 Moreover, to explain
the Michelson-Morley experiment,4 many discussions in-
cluding the aether occurred.5–8 Consequently, The spe-
cial relativity was proposed and has been accepted, in
which light is assumed to have the constant speed in any
inertial systems and the aether is not defined.9 On the
other hand, it was proposed that light has the particle
character as the light quantum,10 and which explain the
photoelectric effect,11,12 Compton effect,13 and many ex-
perimental observations. Thus, although the special rel-
ativity and light quantum hypothesis work quite well,
it is still mystery that why the light has the constant
speed and particle character. Moreover, also the gravita-
tional wave causing the gravitational force is not under-
stood in the details, though the gravitational wave was
proposed.14,15 We emphasize that, to solve these basic
mechanisms, we need to discuss again the aether doing
hidden roles.

In recently, a possibility of the existence of scalar fields
caused by broken Lorentz condition begins to be dis-
cussed in both the classical electromagnetic dynamics
and quantum gravity.16–21 In the classical electromag-
netic dynamics, generalized Maxwell equations are pro-
posed, in which intrinsic charges and currents are defined
by the time differential and gradation, respectively, of the
scalar fields.16–20 Moreover, in our previous work,22 the
energy and force conservation laws which steady states
should satisfy are found.

In this paper, we derive electromagnetic-dynamics
(EMD) equations, which include the generalized Maxwell
equations, energy and force conservation laws, and dy-
namics of the scalar fields. Those equations show that
all electromagnetic fields are described by only the two
scalar fields, and which are the aether. We also discuss
the gravitational wave.

II. BASIC EQUATION

A. Unit

For the convenience, we change variables with follow-
ing relations,

Bnew = cB, tnew = ct, (1)

where B is the magnetic induction (Vs/m2), t is time (s),
and c is light speed (m/s). We use this unit system in
following sections.

B. Definition

We define potentials (V),

φ : electroscalar potential, (2)
ψ : magnetoscalar potential, (3)
A : electrovector potential, (4)
C : magnetovector potential, (5)

fields (V/m),

ξ : electroscalar field, (6)
η : magnetoscalar field, (7)
E : electrovector field, (8)
B : magnetovector field, (9)

and those relations,

η ≡ −ψ̇ +∇ ·C, (10)

ξ ≡ −φ̇−∇ ·A, (11)

B ≡ −Ċ +∇ψ +∇×A, (12)

E ≡ −Ȧ−∇φ−∇×C. (13)
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C. Derivation

In our previous work,22 according to Ref. [16–20], we
explained the generalized Maxwell equations in vacuum,

∇ ·B = ρm, (14)
∇ ·E = ρe, (15)

∇×B = Ė + je, (16)

−∇×E = Ḃ + jm, (17)

and we derived the energy and force conservation laws
which the steady states should follow,

0 =
∂

∂t

1
2
ξ2 + je ·E, (18)

0 = ρeE + je ×B−∇1
2
ξ2, (19)

0 =
∂

∂t

1
2
η2 + jm ·B, (20)

0 = ρmB− jm ×E−∇1
2
η2, (21)

where we defined the intrinsic charges and currents
(V/m2),

−ρm ≡ η̇, (22)

ρe ≡ ξ̇, (23)
jm ≡ ∇η, (24)
−je ≡ ∇ξ. (25)

Those conservation laws,

∇ · jm = ∆η = η̈ = −ρ̇m, (26)

−∇ · je = ∆ξ = ξ̈ = ρ̇e. (27)

are kept in the case of that the generalized Maxwell
equations in vacuum are satisfied, because (14)∼(17) are
equivalent with

φ̈ = ∆φ, (28)

ψ̈ = ∆ψ, (29)

Ä = ∆A, (30)

C̈ = ∆C. (31)

In steady states, the equations, (14)∼(21), are satisfied.
However, superpositions of the steady states often break
the conservation laws, (18)∼(21), although the general-
ized Maxwell equations, (14)∼(17), are kept. In those
cases, we have to consider the dynamics of the electro-
magnetic fields, so that we derive equations including
dynamical effects.

We define electromagnetic stress tensors,
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2ξ
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 , (32)

Sm ≡ ε0c
2η




η Bx By Bz
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−By Ez −η −Ex
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 , (33)

and energy tensors,

Me ≡ ε0c
2ξ2
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ẋe ẋe
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ẏe ẋeẏe ẏe
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2


 , (34)

Mm ≡ ε0c
2η2
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 , (35)

where ε0 is the electric permability (As/Vm), and veloc-
ities are defined as




ẋe

ẏe

że


 ≡ ṙe ≡ je

ρe
, (36)




˙xm

˙ym

˙zm


 ≡ ˙rm ≡ jm

ρm
. (37)

We note that, in our previous work,22 we wrongly defined
the stress tensors, (32) and (33), as the electromagnetic
stress-energy tensors. Therefore, we could not discuss
dynamical effects of the electromagnetic fields and, then,
we only discussed if the system is a steady state or not.
Correctly, the stress-energy tensors become

Te = Me − Se, (38)
Tm = Mm − Sm. (39)

So, from ∂νTµν = 0, the EMD equations in vacuum,
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(motion) (energy) (stress) (Maxwell)[
∂tξ

2 +∇ · (ξ2ṙe
)]

= [ρeξ + je ·E] +ξ [ρe −∇ ·E] , (40)

ξ2 [r̈e + (ṙe · ∇) ṙe] + ṙe
[
∂tξ

2 +∇ · (ξ2ṙe
)]

= [ρeE + je ×B + jeξ] +ξ
[
Ė + je −∇×B

]
, (41)

[
∂tη

2 +∇ · (η2 ˙rm
)]

= [−ρmη + jm ·B] +η [−ρm +∇ ·B] , (42)

η2 [r̈m + ( ˙rm · ∇) ˙rm] + ˙rm
[
∂tη

2 +∇ · (η2 ˙rm
)]

= [ρmB− jm ×E− jmη] +η
[
−Ḃ− jm −∇×E

]
, (43)

are found. These equations consist of four parts, which
are “motion”, “energy”, “stress”, and “Maxwell” parts.
In the case of that (14)∼(21) are satisfied, the stress and
Maxwell parts are all zeros, and which lead to the follow-
ing equations,

0 = r̈e + (ṙe · ∇) ṙe, (44)
0 = r̈m + ( ˙rm · ∇) ˙rm. (45)

These equations are the same type with the Euler equa-
tion in fluid dynamics with neither pressures nor external
forces. Therefore, when (14)∼(21) are kept, the system
is a steady state. We note that r̈e includes ∂tje, which is
related with the back electromotive force in coils. How-
ever, in this paper, we do not discuss about that.

III. ANALYSIS

A. Electromagnetic aether equations

If we define the E and B fields as

E ≡ −ξṙe, (46)
B ≡ η ˙rm, (47)

, then we find that the equations, (40) and (42), are ful-
filled. These definitions mean that the E and B fields are
given by the scalar fields. Therefore, all fields are given
by only the two scalar fields, the ξ and η fields. If we
accept this thing, then the stress tensors, (32) and (33),
become

Se = ε0c
2ξ




ξ ξẋe ξẏe ξże

−ξẋe −ξ −η ˙zm η ˙ym

−ξẏe η ˙zm −ξ −η ˙xm

−ξże −η ˙ym η ˙xm −ξ


 , (48)

Sm = ε0c
2η




η η ˙xm η ˙ym η ˙zm

−η ˙xm −η ξże −ξẏe

−η ˙ym −ξże −η ξẋe

−η ˙zm ξẏe −ξẋe −η


 , (49)

and the equations, (41) and (43), become scalar fields
equations,

ξ2 [r̈e + (ṙe · ∇) ṙe] + ṙe
[
∂tξ

2 +∇ · (ξ2ṙe
)]

= −ξ2r̈e −∇× (ξη ˙rm), (50)

η2 [r̈m + ( ˙rm · ∇) ˙rm] + ˙rm
[
∂tη

2 +∇ · (η2 ˙rm
)]

= −η2r̈m +∇× (ξηṙe). (51)

To describe the E and B fields, we have new definitions,
(46) and (47), based on the dynamics of the scalar fields,
the ξ and η fields, respectively, and, therefore, which can
be used even in the unsteady states breaking the con-
servation laws, (18)∼(21). The scalar fields equations
show the dynamics of the energy densities, ε0ξ2 and ε0η2,
due to the scalar fields. From the first term in the right
hand side of the scalar fields equations, we understand
that the energy densities receive the reaction forces cor-
responding to those own accelerations from other energy
densities. Therefore, these energy densities propagate in-

teraction forces immediately. Moreover, the second term
in the right hand side of the scalar fields equations ex-
plain that the two scalar fields affect each other. These
terms are expected to explain the EM wave. As defined
in the above equations, (22)∼(25), (46), and (47), the
charges, currents, and E and B fields are all defined by
the scalar fields. Therefore, by observing those physical
quantities, we know how the dynamics of the scalar fields
is (Fig. 1). Here, we note that the intrinsic charges and
currents are the real charges and currents, respectively,
we normally observe. Thus, the aether propagating the
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electromagnetic wave is these scalar fields. Therefore,
we call the scalar fields equations electromagnetic aether
(EMA) equations.

In following sections, we discuss the gravitational wave
without the knowledge of this section, because we do not
completely understand the EMA equations yet. For ex-
ample, although the EM wave must be described as a
solution of the EMA equations, we do not do that in
following sections.

ξ

z

ξ(t)

ξ(t+∆t)

ρe∆t > 0

ρe∆t < 0
je

E

re

O

FIG. 1: The electric charge , ρe, current , je, velocity , ṙe,
and field , E, defined by the electroscalar field, ξ. We note
that the magnetic physical quantities, ρm, jm, ˙rm, and B, are
also defined by the magnetoscalar field, η. Those definitions
are in (22)∼(25), (36), (37), (46), and (47).

B. Steady states

We find some steady states as solutions of (28)∼(31).
Both two solutions of transverse waves,

A = −sin(ω(t± z))ey, C = φ = ψ = 0, (52)
C = ∓sin(ω(t± z))ex, A = φ = ψ = 0, (53)

make the same fields,

E = ωcos(ω(t± z))ey, (54)
B = ±ωcos(ω(t± z))ex, (55)

as a EM wave. On the other hand, both two solutions
of scalar and longitudinal waves due to the electroscalar
and electrovector potentials, respectively,

φ = −sin(ω(t± z)), A = C = ψ = 0, (56)
A = ∓sin(ω(t± z))ez, C = φ = ψ = 0, (57)

make the same fields, charges, currents, and velocities,

ξ = ωcos(ω(t± z)), (58)
E = ±ωcos(ω(t± z))ez, (59)
ρe = −ω2sin(ω(t± z)), (60)
je = ±ω2sin(ω(t± z))ez, (61)
ṙe = ∓ez, (62)

as a electroscalar (ES) wave. Moreover, there is another
scalar wave. Both two solutions due to the magnetoscalar
and magnetovector potentials,

ψ = −sin(ω(t± z)), A = C = φ = 0, (63)
C = ±sin(ω(t± z))ez, A = φ = ψ = 0, (64)

make the same fields, charges, currents, and velocities,

η = ωcos(ω(t± z)), (65)
B = ∓ωcos(ω(t± z))ez, (66)
ρm = ω2sin(ω(t± z)), (67)
jm = ∓ω2sin(ω(t± z))ez, (68)
˙rm = ∓ez, (69)

as a magnetoscalar (MS) wave. Those EM, ES, and
MS waves fulfill (14)∼(21). Therefore, the stress and
Maxwell parts in the EMD equations are all zeros, which
cause no dynamical effects and keep the steady states.

C. Dynamics of scalar fields

To produce the dynamics of scalar fields, we only have
to break the conditions that both the stress and Maxwell
parts in the EMD equations equal zeros. When we cancel
the E or B field by the way of, for example, crossing EM
waves or using magnets or coils, the stress parts in the
EMD equations become non-zeros. Then, the canceled
fields’ energies are used for creating scalar fields and those
motions as shown in the energy and motion parts in the
EMD equations.

D. Interaction between scalar waves

In our previous work,22 we could not discuss about
this subject exactly. So, now, we discuss it again more
realistically. We think two ES waves having different
amplitudes and different advancing directions,

φ1 = −m1sin(ω(t+ z)), (70)
φ2 = −m2sin(ω(t− z)). (71)

In this case that those waves collide with each other, a
force F occurs from cross terms of the stress part in (41)
as

F = ρe1E2 + ρe2E1 + je1ξ2 + je2ξ1
= 2m1m2ω

3sin(2ωz)ez. (72)

Then, according to the motion part in (41), this force F
is dynamically screened by induced potentials,

φind
1 = m1m2δ sin(ω(t+ z)), (73)
φind

2 = m1m2δ sin(ω(t− z)). (74)
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Consequently, the force F is reduced in proportion to the
F and become

Fnew = (1− (m1 +m2)δ +O(δ2))F. (75)

The original scalar waves are also screened by the induced
potentials and become

φnew
1 = (1−m2δ)φ1, (76)
φnew

2 = (1−m1δ)φ2. (77)

We note that if the two scalar waves, φ1 and φ2, have
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FIG. 2: Moving process of materials putting out scalar waves
with the same frequency, where circles are the materials, solid
arrows are the scalar waves, and dashed arrows are forces
working on the materials.

different frequencies from each other, then the force F
has a time dependency. Since the motion of scalar fields
cannot follow the high-frequency time-dependent force,
the screening effect we discuss above does not work well
in that situation. Therefore, two materials outputting
scalar waves having the amplitudes, m1 and m2, respec-
tively, and the same frequency attract with each other by
the force in proportion to m1m2 (Fig. 2). This frequency
is so-called the gravitational frequency, ωG, depending on
the source materials. Thus, the scalar waves, the ES and
MS waves, work as the gravitational waves.

FIG. 3: Pass of electromagnetic waves in gravitational waves,
where circles are materials, solid arrows are the gravitational
waves, and dashed arrows are the electromagnetic waves.

E. Interaction between electromagnetic and scalar
waves

We prepare a EM wave, (52)∼(55), and a MS wave,
(63)∼(69), having the gravitational frequency, ωG, as a

gravitational wave. Moreover, we think the case of

ω À ωG or ω ¿ ωG. (78)

In this case, the motion parts in EMD equations cannot
become major roles because of the high-frequency time-
dependent force as discussed in the previous section. On
the other hand, we find that cross terms of the stress part
in (42),

jm1 ·B2 + jm2 ·B1, (79)

are still zeros. These terms become non-zeros when the
EM and MS waves are neither parallel nor antiparallel.
Moreover, those terms become the biggest when the EM
and MS waves are perpendicular to each other. Here,
we note that these values have an anisotropy, and which
become accidentally zeros if the EM wave’s polarization
has the special direction for the MS wave. Consequently,
according to the energy part in (42), the EM wave inter-
acts with the MS wave when those are neither parallel
nor antiparallel. So, the EM wave advance along the
way being parallel or antiparallel with the directions of
the gravitational waves, when the amplitudes of the grav-
itational waves are extremely larger than that of the EM
wave (Fig. 3). Therefore, in our argument in our pre-
vious work,22 it is partially correct and partially wrong
that the EM waves are kicked out by the gravitational
wave.

IV. SUMMARY

We derived the electromagnetic-dynamics equations in
vacuum, from which we found all fields are given by only
the two scalar fields. Then, we found the electromagnetic
aether equations, in which the dynamics of the energy
densities due to the scalar fields is described. Conse-
quently, the equations show that the aether propagating
the electromagnetic wave is those scalar fields.

On the other hand, we discussed the gravitational wave
without the knowledge of the electromagnetic aether
equations because of the difficulty to analyze those equa-
tions. The electromagnetic-dynamics equations describe
the creation, annihilation, and motion of the scalar fields.
Then, those equations explain that the scalar waves work
as the gravitational waves, when those frequencies are the
same with each other. Moreover, the equations show that
the electromagnetic waves pass through the ways which
are parallel or antiparallel with the directions of the grav-
itational waves, when the amplitudes of the gravitational
waves are extremely larger than those of the electromag-
netic waves. As a future task, we have to determine which
scalar wave, the electroscalar or magnetoscalar wave, is
our gravitational wave.



6

1 J. C. Maxwell, Phil. Trans. R. Soc. Lond. 155, 459-512
(1865).

2 O. Heviside, Phil. Trans. R. Soc. Lond. 183A, 423 (1892).
3 E. B. Wilson, “Vector Analysis of Josiah Willard Gibbs”,

Scribner New York (1901).
4 A. A. Michelson and E. W. Morley, American journal of

Science 34, 333-345 (1887).
5 H. A. Lorentz, Abhandlungen über Theoretische Physik,

Leipzig: B. G. Teubner, 443-447 (1892).
6 J. Larmor, Phil. Trans. R. Soc. Lond. 190, 205-300 (1897).
7 H. A. Lorentz, Proceedings of the Royal Netherlands

Academy of Arts and Sciences 6, 809-831 (1904).
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