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Abstract 

 

In this paper we discuss a causal network approach to describing relativistic quantum mechanics 

where each vertex on a causal net represents a possible point event or particle observation. By 

constructing the simplest causal net based on Reichenbach-like conjunctive forks in proper time we 

can exactly derive the 1+1 dimension Dirac equation for a relativistic fermion and correctly model 

quantum mechanical statistics. Symmetries of the net provide various quantum mechanical effects 

such as quantum uncertainty and wavefunction, phase, spin, negative energy states and the effect of a 

potential. The causal net can be embedded in 3+1 dimensional space-time and is consistent with the 

conventional Dirac equation. In the low velocity limit the causal net approximates to the Schrödinger 

equation and Pauli equation for a fermion in an electromagnetic field. Extending to different 

momentum states the net is compatible with the Feynman path integral approach to quantum 

mechanics that allows calculation of well known quantum phenomena such as diffraction. 

 

 

1.0  Introduction. 

 

Causality, or the concept of “cause and effect”, has witnessed renewed interest in the physics 

community as a fundamental principle in recent years.  Although Newton’s laws were clearly written 

in causal terms the indeterminacy of quantum mechanics lead to confusion of the role of causality in 

describing quantum systems. Several attempts have been made to fuse relativity and quantum 

indeterminism by Belnap and others [1] where they assume that a theory of branching space-time can 

be built on the primitives of a set of “possible point events” and the causal relations between them. 

Also recently, Rafael Sorkin and collaborators have explored a causal set approach to quantum gravity 

[2] using a “Poisson sprinkling” of events in space-time in a Lorentz invariant manner. 

In this paper we will outline a discrete causal network approach to describing relativistic quantum 

mechanics. The fundamental equation of relativistic quantum mechanics is the Dirac equation for a 

fermion [3]. The Dirac equation is based on the concept of continuous space and time and an exact 

lattice based formulation has never been achieved. In the famous book Quantum Mechanics and Path 

Integrals [4] Richard Feynman presented a discrete space-time derivation of the 1+1 dimension Dirac 

equation for a free particle – the “Feynman chequerboard” – since a particle is viewed in the 

calculation as “zig-zagging” diagonally forwards through space-time in a similar manner to a bishop 

in chess. At each turn in the path the particle picks up a small phase term and by summing over all 

paths the Dirac propagator is found. Although a very clever way of discretising the Dirac equation the 

treatment is an approximation and assumes that the particle moves unrealistically at instantaneously at 

the speed of light and strangely the right answer is only found in the limiting low velocity case. Many 

people have pondered over the problem ever since and it has lead to other variants of discrete or 

lattice based quantum mechanics [5,6,7,8,9]. Notably Kauffman reworked the original chequerboard 

and suggested “bit string” physics to represent quantum mechanics. Also Kac and others used a 

discrete underlying diffusion process (again at the speed of light) to derive a continuous time 

differential equation, reminiscent to the 1+1 dimension Dirac equation, if mass or time is treated as an 

imaginary number.  

In this paper we discuss a causal network discretisation approach which exactly derives the full 4-

vector Dirac equation and provides all the common fermion features, such as spin, negative energy 

states, action of a potential and summation of paths. The most basic causal net describes a plane wave 

solution with the space axis aligned along the direction of momentum. This 1+1 dimension net can be 

embedded in 3+1 dimension space-time using the Pauli matrices and is consistent with the full Dirac 



 

 

equation. By combining causal nets with different momentum states a Feynman path integral 

approach can be used to describe other quantum phenomena such as diffraction. 

 

1.1 Introduction to Common Cause Principles. 

 

The application of probability theory to causality and its relation to the direction of time was 

developed by Hans Reichenbach. His principle of common cause (PCC) [10] was summarized as 

follows: “If coincidences of the two events A and B occur more frequently than would correspond to 

their independent occurrence, that is, if these events satisfy P(A.B) > P(A)P(B) then there exists a 

common cause C for these events that the fork ACB is conjunctive.” That is the probability of A and 

B occurring together is greater than the product of the individual probabilities of A and B. A 

conjunctive fork ACB (see Fig. 1) between events is open on one side where C is earlier in time than 

A or B. This asymmetry Reichenbach argued provides a definition of the flow of the direction of time 

in terms of microstatistics. Essentially a common cause is expected when coincidences or correlations 

between events occur repeatedly with greater frequency than complete statistical independence 

P(A.B) = P(A)P(B). The principle of common cause can provide a definition of simultaneity. If A and 

B are simultaneous there cannot be a causal linkage between them except through the earlier event C.  

 

 

 
 

Figure 1: Reichenbach “conjunctive” fork linking events A and B with common cause C. C is earlier in time than 

simultaneous events A and B. 

 

Reichenbach’s principle of common cause is very general and must be obviously slightly 

modified in a relativistic framework. The relativistic connectivity of possible events must be 

considered and if from Einstein’s relativity the speed of light is the maximum signal speed then the 

light cone structure must determine the causal structure. Penrose developed a law of conditional 

independence [11] relating the probabilities in regions of space-time that have overlapping past light 

cones. This is very similar to Reichenbach’s PCC but considers the prior relativistic space-time 

regions C that have causal influence on say events A and B and provide a causal correlation between 

A and B. The work of Malament is also interesting in providing a relativistic definition of 

simultaneity between space-time events based on the light cone structure. Malament defined a 

standard simultaneity condition [12] where actual simultaneous events lie on a hyperplane orthogonal 

to the particle world-line and he defined several symmetries (translation along world line, scale 

expansion, reflection and spatial rotations) for valid hypersurfaces of simultaneity.  

It is widely accepted that quantum mechanics cannot be developed from a basic application of 

Reichenbach’s principle of common cause with a single conjunctive fork since general quantum 

mechanical statistics violate the principle. The principle of common cause involving a single 

conjunctive fork can even actually be used to formulate the well known Bell’s theorem [13,14], which 

motivated the famous experiments by Alain Aspect [15] to exclude the possibilities of certain types of 

hidden variables. Here we shall consider a modified framework where a complete causal network of 

possible events is comprised of conjunctive forks such that each possible event has two effective local 
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common causes or screening factors. Adjacent possible events on the net that are simultaneous are 

thus considered to share a common cause. It appears that, at least in the simple case we consider, this 

allows our common cause principle – based on the simultaneity of neighbouring possible events – to 

be applied consistently with quantum statistics. 

 

1.2 Space-Time Causal Nets. 
 
We shall adopt a relational view of time as an ordered series of closely spaced “events”. Now if we 

consider time as a series of closely spaced events then from this perspective a classical particle 

trajectory could appear as a statistically correlated series of events in space-time (for example, a series 

of actual observations). If the correlation is perfect then one may loosely say that an event at one point 

in space “causes” the event at the next point, providing a Newtonian trajectory (Fig. 2.i).  

 

 
 

Figure 2: Correlated and uncorrelated events in space-time. 
 

However, if the correlation of events is imperfect, but greater than that resulting from statistical 

independence, then adjacent events in space are implied to have a common cause originating at a 

previous time. A trajectory becomes probabilistic in nature and we would have to involve a statistical 

interpretation (see Fig. 2.ii). We might suppose that the event at an earlier time could be considered to 

provide a common cause analogous to the common cause discussed by Reichenbach (Section 1.1) 

[10]. 

Reichenbach argued in quite general terms that a satisfactory definition of time could only be 

obtained on the basis of a principle of common cause [10]. By this he meant that if two events A and 

B occur repeatedly with greater frequency than complete statistical independence predicts (ie. P(A.B) 

> P(A)P(B)) then there exists an event C at previous time such that the fork ACB is conjunctive, or 

has one side open (see Fig. 1). A network of such conjunctive forks constitutes a causal net in which 

time is ordered and events may be considered simultaneous only when they share a common cause. 

In discussing the correlation between events we have introduced the notion of probability. We can 

apply the conventional Lapacian definition of probabilities based on the observed frequency of events 

divided by the possible number of events. Jaynes [16] demonstrated that probability theory, the 

mathematics of probabilities, could be essentially derived from logic and common sense. In any case, 

to further develop our causal net we need to apply probability theory.  

To construct the causal net for a particle motion in space-time, we consider a 1 dimensional space 

aligned with the direction of particle motion, and embedded in 3 dimensional space. In this 1 
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(iii) Uncorrelated events.



 

 

dimensional space the simplest causal net that satisfies our definition of simultaneity is a 1+1 

dimensional “diamond” lattice with causal links connecting the lattice points as in Figure 3.  

Each causal connection is defined by a connecting arrow giving a definite lineal order and an 

associated probability. Each vertex on the causal net represents a possible event – meaning a possible 

observation of the particle – and has two incoming and two outgoing causal connections so that each 

event has two effective possible common causes. Starting at a vertex and following an outgoing arrow 

at random at each subsequent vertex describes a “causal chain” as a series of possible events. The 

causal net thus describes the connectivity between all causal connections and can statistically model 

all future possibilities.  

Measurement or observation at a vertex or a region of the net provides, through Bayesian 

statistics, a re-evaluation of these probabilities after a measurement. For example, if we possess no 

knowledge of where an actual event might occur on the net but observe an event at a particular 

location then, due to the connectivity of the net, we can say that certain causal chains or paths could 

have lead to the event and that it was more likely that the event was preceded by an event in a cone or 

region of previous possible events. This is illustrated in Figure 3 where an event at A is more likely to 

have been caused by an event at B than C and D is an impossibility due to zero connectivity between 

the paths. Bayes theorem provides a way of translating this common sense concept into a formal 

probabilistic context since        >        >       . 
 

 

 
 

 
Figure 3: Causal net showing causal chain from X to Y. 

 

1.3 Relativistic Causal Nets for a Free Particle. 

 

First we will consider the simple case of a particle randomly diffusing on the causal net shown in 

Figure 3. In this model time and space can be discretely “counted” by attaching an integer to each of 

the vertex points but there is no underlying continuous space-time. To relate to conventional 

mechanics we interpolate this set of integers by a set of real number coordinates. Expecting that space 

and time have different dimensions we need to introduce a constant c with dimensions [space/time]. 

The net is then made up of elementary triangles labelled with (  ,    ,    ) as shown in Figure 4. 

We have not yet added any specific interpretation to these quantities. To guarantee invariance of 

causality on the net we impose c as the speed of light [17]. Since, from geometry, 
  

   
        , we 

then identify    and    as relativistic space-time intervals in an observer frame S and    as the 

particle proper time interval in its rest frame   . The net geometry guarantees the invariant space-time 

interval 
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Figure 4: The elementary space-time “triangle” for the causal net.  

 

Having abandoned the concept of absolute and continuous space-time we need to define the observed 

velocity in terms of finite differences. The definition we shall adopt is           which we equate 

to the expectation of the velocity on the causal net. The two time intervals are then related by  

        where   is the Lorentz factor 

 

               

 

specifying the net angles 

 

      
 

 
        

 

 
 

 

We now specialise to the case of the motion of a free particle. Clearly Eq. (1) and thus the net can 

be scaled by a factor. If we identify this with the particle rest mass   then rearranging Eq. (1) we then 

have the relativistic dispersion relation              where   is the particle energy        

and        the momentum.  

By construction we require the lattice to describe only physically admissible motions of the 

particle. Experience shows that real particle trajectories obey a principle of least action – that is the 

integral      is stationary. This is a restatement of Maupertuis principle which is a weak form of the 

well known principle of least action and is experimentally verified in classical mechanics. On our net 

if the action      differed for different trajectories then this would rule some trajectories as 

physically inadmissible. Therefore we conclude that      is the same on the lattice for all paths 

between two points which means that     is a constant   for a valid causal net.  

 

1.4 Free Particle Motion on the Causal Net. 
 

To impose our imperfect correlation of events we shall assume that there is an indeterminism or 

randomness to the particle motion at each net vertex. We shall make the assumption that this 

indeterminism is governed by Eq. (1) on the causal net. Thus a particle in its own rest frame    over 

interval    moving at a speed     in frame S can move to a position     in time   . This produces a 

random trajectory in space-time (see Fig. 3). 
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Figure 5: A vertex (1,2) on the causal net with associated probabilities. 

 

Initially we shall consider “classical” or non quantum probabilities in construction of the causal 

net. Consider an individual vertex on the net and label the incoming probabilities on row 1      and 

     and outgoing probabilities on row 2       and      (Fig. 5).  Probability is conserved at the vertex 

and the total probability at a vertex is given by               . If the average velocity measured 

on the lattice is uniform then           and          . This implies that the probabilities “cross” at 

each vertex without actually interfering although the probabilities are coupled. We shall see that this 

corresponds to the equilibrium case of a free particle. If we consider normalised branching 

probabilities at the vertex defined as                then since expected velocity at the vertex is 

defined to be   we have 

 

      
  

  
                  

(2) 

The branching probabilities are then given by 

 

       
     

  
          

     

  
   

(3) 

From this we can see that in the low velocity limit        then         and          and in the 

high velocity limit       then                  The branching ratio   can be written as a function 

of   or the net angle  . 

 

  
     

     

  
     

     
   

   

   
 

       

       
 

(4) 

Using the branching probability (Eq. 4) we can write a non trivial matrix equation linking the 

probabilities 

 

 

   
    

    
   

  
    

  
    

    
    

(5) 

 

1.5 Relativistic Quantum Mechanics on the Causal Net. 
 

We shall now see how the causal net is compatible with the quantum mechanics of the Dirac equation 

for a free particle. We notice that identifying the net constant   with Planck’s constant h provides the 
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de Broglie relation       [18] with        , and a Heisenberg like relation          [19,20]. 

The discrete nature of the net automatically entails a de Broglie relation and an uncertainty principle. 

Now a very general way of forming the probabilities      for the branch (i,j) is through a vector 

dot product                  with                        with real components that depend on the 

proper time   at the net vertices. The probability is invariant in the rest frame of the particle and 

equivalent to a gauge relationship that conserves probability in    so using the relativistic invariance 

               we can write the vector as  

 

            
    

    
        

           

           
  

 

 

       
               
               

   

 

However, a more conventional and compact way of forming the probabilities is through 

introducing complex numbers, rather than vectors, to carry the phase information. So instead by 

combining complex probability amplitudes we can write                 
  with 

 

             
 
     

    

(6) 

which depends on the proper time   at the net vertices. Notably the phase is independent of position x 

for a particular  . Again using the relativistic invariance we can write the probability amplitude as 

  

             
 
     

        
        

    

(7) 

Where x and t are defined at the discrete net vertices and for the moment we consider only positive 

roots. We can then rewrite Eq. (5) as 

 

   
    

    
   

   

     
   

    

    
    

(8) 

which can be alternatively expressed for Eq. (7) in terms of a unique transfer matrix   
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defined as 

 

   
        
         

   
      
        

   
 

 
 
     

          
  

 
  

 

(10) 

 

Here we recognise    as the Dirac Hamiltonian for a free particle [3, 21] with defined momentum p. 

To connect with the complete quantum mechanics we note that Eq. (10) can be put in the 

conventional form [21] by assuming that space-time is locally differentiable at the vertex, allowing us 

to use the usual momentum operator     to replace the momentum eigenvalues p writing 

 

  



 

 

 
      

                
  

  
   

 

(11) 

where we have replaced the probability amplitudes   with the familiar 2 component Dirac spinor   

for the free particle [22] 

 

        
  

  
     

    

    
    

 
  

     

  
        

  

(12) 

and A is an appropriate normalisation constant.  

 

1.6 Causal Net Quantum Symmetries and Spin. 
  

Note that the unique matrix   above is a unitary, orthogonal matrix which provides an SU(2) 

group transformation corresponding to an improper rotation – that is a rotation      followed by an 

inversion   so        . The matrix provides the transformations for the probabilities   
       and probability amplitudes     . Importantly because      there automatically 

exists only two levels of symmetry at the vertex and the causal net provides simultaneously both the 

probabilities and the underlying probability amplitudes. Since it is an improper rotation the symmetry 

determines a preferred axis which provides helicity along the axis of movement. If we revisit Eq. (7) 

and consider both possible positive and negative roots we can see that even and odd solutions that 

provide helicity      with positive energy      are given by  

                                         

     
    

  
     

     

                         
    

  
     

      

  

(13) 

 

corresponding to transfer matrices                  . Note that in the above and following 

discussion we have omitted the phase factor           since this cancels in both sides of Eq. (9).  

 

 
 

 

Figure 6: Representation of 1+1 dimension causal net solutions (Eq. 13 and Eq. 14) to the Dirac equation. 
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1.7 Negative Energy States. 
 

Until now we have considered only the positive energy states, but negative energy solutions arise 

from the negative solution of the relativistic dispersion relation                    = 

      (    ). This results in a reversal of the branching probabilities in Eq. (3) and two additional 

possible even and odd spinor solutions 

                                          

     
    

  
      

     

                         
    

  
     

     

  

                                  (14) 

 

for transfer matrices                   . These states provide inverted branching ratios in Eq. 

(4) so in our model negative energy states correspond to particles moving in the opposite spatial 

direction or with negative velocity. This implies that either the negative energy solutions are invalid in 

our framework or the net should be perhaps redefined as speed rather than velocity with           
instead of Eq. (2).  These negative energy solutions however, have a phase that evolves in the 

opposite sense with proper time in Eq. (6). 

 

1.8 The Foldy–Wouthuysen Transformation. 
 

The causal net is also consistent with the extraordinarily simple Foldy–Wouthuysen representation 

[23] of the Dirac equation where the positive and negative energy states are decoupled through a 

rotation of   (the lattice angle)      of the Dirac Hamiltonian. For example, one Foldy–Wouthuysen 

state is given by the rotation through     of the Dirac state Eq. (12) 
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This rotated state and the previous Dirac states (Eq. 12 and Eq. 13) can be represented more clearly as 

vectors in the Figure 6. The Foldy–Wouthuysen states correspond with our framework where the 

Hamiltonian and velocity operator satisfy their classical analogues. Importantly, in this representation, 

establishing an exact particle position is impossible (there is only a mean position operator) and a 

particle is viewed as spread out over a finite region of about a wavelength which is consistent with our 

causal net picture since we cannot localise a particle between two adjacent net vertices without an 

averaging over vertices being performed in a measurement.  

 

1.9 The Complete 4-Vector Dirac Equation in 1+1 Dimension. 

 

If we include the negative energy states then, by combining all 4 net solutions above (Eq. 13 and Eq. 

14), we can write 4 orthogonal 4-vectors which for helicity      and      

are 

                       

                 
     

  

 

 
 

 
 
  

     

  

 
 

 
        

    

                                                                                                                           



 

 

                         
     

  

 

 
 

 
 
 

   

     
 

 
 

 
        

          

                                                                                                               
(16) 

 

where A is again an appropriate normalization constant. Using the 4 possible transfer matrices 

           then the l+1 dimension 4-matrix Dirac equation Eq. (15) is 

 

 
       

                
  

  
   

 

(17) 

Now this Dirac equation and the spinor wavefunction Eq (16) correspond to exactly the conventional 

3+1 dimension Dirac spinor for the special case of the particle moving along the x-axis and with a 

well defined spin (helicity) aligned parallel and antiparallel with the x-axis [21]. 

 

1.10 The 3+1 Dimension Dirac Equation. 

 

To extend to the general 3+1 dimension case we must consider transformations of the causal net that 

leave it invariant under variation of direction of velocity  . Using polar coordinates then for 

momentum                               and we can expect that the wavefunction 

components become dependent on the coordinates       so       becomes            . Using a 

reduced vector notation                 and following Dirac’s convention [3] we can replace the 1 

dimensional momentum operator    with the 3 dimensional momentum operator Eq. (17) 

 

       
        

         
                   

            
  

(18) 

formed from Pauli matrices    

 

     
  
  

              
   
  

                 
  
   

   

 

(19) 

Eq. (18) is an improper rotation and by definition the provides the relation                  with 

two eigenvectors 

 

 

    
   

 
 

   
 
    

                
    

 
     

   
 
 

  

(20) 

The general solutions for the wavefunction then become (from Eq. 12 and Eq. 13) four 4-component 

orthogonal vectors corresponding to up and down spin        with positive and negative energies 

    . Omitting the phase factors           and normalisation constant these are 

 

     
      

  
       

       

                         
      

  
       

        

  

 



 

 

     
      

  
        

       

                         
      

  
       

       

  

(21) 

These are the general solutions to the conventional 3+1 dimension Dirac equation 

 

 
         

                  
  

  
    

 

(22) 

which can also be written in the well known form  

 

                     
  

  
   

 

(23) 

using the matrices    and    defined as 

 

     
   

   
                 

  
   

   

 

(24) 

Thus for a 3 dimensional space we require all 3 Pauli matrices to construct the vector    and the 

dimensionality of space defines the Pauli matrices. If we rotate Eq. (22) by (  /2) then we see that 

the net is constructed along the momentum direction                 and that the causal net transfer 

matrix in Eq. (10) is invariant. Velocity or momentum of the particle at any point in space-time only 

has one direction even though it is embedded in 3 dimensional space and a plane wave solution to the 

Dirac equation has a unique velocity direction. The connectivity of the plane wave causal net itself 

only requires one space axis. The specification of the Pauli scheme is not unique and we could use a 

different matrix system or permutation and combining with Eq. (9) this allows 12 different 

permutations. 

 

 

1.11 Effect of Potential on Causal Net and the Pauli Equation. 
 

The case we have examined is that of a free particle but we could include a potential V on the 

causal net since E can be replaced by E–V in the construction of the lattice and the branching ratios.  

Returning to the 1+1 dimension case, between two media with different potentials the net is 

compressed or stretched in space in the potential region with a form similar to Snell’s law       
             . We can write Eq. (10) conveniently as 

 

   
          

           
   

 

   
 
     

          
  

   
  

(25) 

 

Recall that an incremental change in potential is equivalent to a force acting on the particle so our net 

can encompass the full mechanics of the particle. The probability current is conserved at a potential 

barrier if we consider the relativistic change in probability across the barrier arising from a Lorentz 

contraction/expansion.  

  Taking these ideas a bit further we can consider that introducing a phase in Eq. (6) is 

equivalent to a global gauge invariance represented by a unitary group U(1). The Lagrangian for our 

net can be written in the form           . What happens if we consider invariance under a 

local gauge transformation? For example, if we consider an SU(2) matrix, such as a rotation   
    , then in general            so to retain invariance we must add an additional term to the 



 

 

Lagrangian and the Dirac equation which corresponds to an electromagnetic potential term. We can 

see that a small change   in net angle relates to a vector potential providing an apparent force. To 

illustrate, consider the special case of a transformation where the proper time interval    is unchanged 

by a potential. The triangle in Figure 3 is deformed by an amount    in time and    in space 

 

                             
(26) 

If we write              and              then we have the dispersion relation for an 

electron of charge   in an electromagnetic field         

 

       
          

        
(27) 

and the corresponding transfer matrix   is given by 

 

   
          

           
   

 

     
 

         

             

(28) 

If as Eq. (22) we embed the causal net in a continuous  3 dimensional space we can replace   with the 

3 dimensional momentum operator       and use the full vector form for the field        and write 

this as 

 

 
            

                            

(29) 

Consider the case of non-relativistic motion in a weak field so that            and      
        . We can neglect smaller component of the spinor and have, following [29], the Pauli 

equation for a non-relativistic spin-1/2 particle 
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where         .  

 

 

1.12 Momentum States and the Feynman Path Integral. 
 

The causal net, denoted  , we have considered is for a free particle with one specific momentum 

state. It is interesting to consider the more general case of a range of momentum states with each 

momentum state occupying an individual net     . This can be visualised in Figure 7 as a stacked 

“deck” of infinite causal nets. Importantly, due to the different net sizes (Eq. 1) the vertices of each 

net do not overlap. 
 



 

 

 
Figure 7: A stacked “deck” of causal nets for different momentum states. 

 

 

Figure 8: Causally connected paths traversing a single space-time point. 
 

For a point in space-time (in practice this could be defined as an infinitesimal region of measurement) 

we can consider which events can causally act on a point at (x,t) from the past. To retain our definition 

of simultaneity as being defined by events that occur at the same proper time then it is a more 

consistent description to consider a point in proper time at (x,     ) and the prior events that are 

causally connected from a earlier slice of proper time at   which are given by different space points x 

from each momentum net      (Fig. 8). This is equivalent to considering which possible particle 

paths pass through the point. To illustrate we shall consider only positive energy states but we can 

easily extend to include negative energy states. If we sum the different spinor components 

contributing to the overall probability amplitude at (x,  ) and include the change in phase over interval 

   from Eq. (6) we have 
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(31) 

      

here y is the relative space coordinate (Fig. 8). For one casual net with a free particle with a single 

momentum state Eq. (31) is trivial since velocity and probability are uniform across the net with only 

the phase varying with  . 
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providing a simple delta function propagator for proper time interval     
 

                        
      

  
(33) 

  However if there is a continuum of momentum nets by geometry the sum in Eq. (31) selects a single 

probability amplitude contribution from each net with momentum         for a given relative 

position y. Writing the relativistic infinitesimal action              we can write Eq. (31) as an 

integration  
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where    denotes the spinor with momentum        . If we consider the non-relativistic limit 

where one spinor component    dominates and     we can use the semi-classical action  

 

     
 

 
 
  

  
 
 

  

 

 

 

(35) 

and write this infinitesimal path integral in the limit of large time interval T to give the conventional 

Feynman path integral [4] 

 

                            

 

  

   

(36) 

where    is the free particle propagator for the Schrodinger equation 

 

           
 

     
 
   

          

(37) 

The causal net model is thus consistent with the quantum mechanical summation of paths and 

solutions to various problems such as slit diffraction using Feynman integrals as detailed in [4].  

 

1.13 Non-Euclidean Space-Time and General Relativity. 
 

Lastly, it is worth considering the case of non-Euclidean or curved space-time. Is our causal net model 

consistent with Einstein’s general relativity? In curved space-time our elementary triangles (Fig. 3) 

comprising our causal net will become distorted and we can no longer apply Pythagoras’ theorem to 

evaluate the space-time interval. If we embed our causal net in 4 dimensional space-time, then in the 

language of general relativity the space-time interval is given by the metric     so     

           Previously, we have considered the special case of the Minkowski metric     for flat 



 

 

space-time. General relativity considers Riemann spaces that have quadratic metric equations and are 

characterised as locally flat. This means that the first derivatives of the metric tensor are zero so for a 

small displacement in space    from a point   using Taylor expansion we have the metric 

 

              
 

 
              

(38) 

So the change in the metric depends only on the second derivatives of the metric and is related to the 

curvature of the space-time. On the basis of Eq. (28) we might assume that variation to the scalar 

Minkowski action   (Eq. 34) would produce a correction    which, to be a scalar under general 

coordinate transformations, can only include second order derivatives of the metric. Mathematically, 

the simplest curvature scalar is the well known Ricci scalar          formed from the Ricci 

curvature tensor    . We can postulate that the simplest additional action might be of the form 

 

            

(39) 

If we set the constant             , where    is a “density” and   Newton’s gravitational 

constant then we have Einstein’s unimodular gravity. If we further impose the density as         

where             then we recover the Einstein–Hilbert action 

 

    
 

      
            

(40) 

Now to balance the Einstein–Hilbert action, so that the overall action is stationary, we must add an 

additional term or Lagrangian. This, in general relativity, describes a matter field and is defined by 

setting      to provide the characteristic stress-energy tensor and the famous Einstein field 

equations. Thus the causal net model, although a microscopic theory, would appear to be consistent 

with the macroscopic theory of general relativity. The elementary triangles of our causal net model 

must be distorted to “tile” curved space-time between causally connected possible events. 

 

1.14 Discussion. 

 

The causal net is a net of probabilities and a measurement provides through Bayesian statistics a re-

evaluation of these probabilities after a measurement – equivalent to “collapse of the wavefunction”. 

The causal net provides a net of possibilities in space-time describing the position and momentum of 

the particle. To illustrate, assume as Section 1.4 the probability of finding a particle at vertex labelled 

(i,j) on a measurement is given by      . Thus a statistical measurement will provide through Bayesian 

analysis a change in all the probabilities on the net for the current time and all previous times. The 

mysterious “collapse of the wavefunction” just corresponds to a statistical measurement and the 

change or refinement in all the retrospective probabilities. This is easily seen for the case of a single 

particle. Consider two different space locations at the same proper time. If for example the probability 

of finding the particle at       is the same as      before the measurement and we perform a 

measurement at vertex (1,2) and the answer is “yes we have found a particle” then         and  

       . Instantaneously, from Bayes theorem and basic probability theory, the probabilities earlier 

in time will change:      will increase and the probability      will decrease.  

The above approach has reduced the general quantum mechanical measurement process to one of 

causal statistics of an ensemble of events. Determination or measurement of the actual state of a 

vertex comprises a statistical measurement which is fully consistent with all the probabilities on the 

net. If we consider a single particle similar to the Aspect experiments [15] then when the particle is 

measured in a particular location there is no true “collapse of the wavefunction” but merely a 

statistical observation yes or no.  From this observation Bayesian analysis can be applied to compute 

the retrospective or historic probabilities and statistics of earlier vertices but these are all perfectly 



 

 

consistent with probability theory. So-called “action at a distance” is just a natural consequence of 

measuring and statistically determining the state of the particle of the system. 

In Section 1.5 we saw that     is a constant   for a valid lattice and, for the particle to obey the 

simplest form of the principle of least action, that the sum      is the same for all paths on the 

causal net. Setting this constant    to be Planck’s constant h is an arbitrary decision but provides the 

de Broglie relation       with lattice constant        . The discretisation of the net then provides 

a Heisenberg like relation         .  

We find that on the causal net the transition from quantum to classical behaviour occurs for 

massive objects. For massive objects since         from the uncertainty relations when p is large 

– true for high mass or virtually any velocity – then the net size    is small and uncertainty in x is 

small relative to the size of the object. The object can be well localized or resolved on the net and is 

effectively non quantum although of course it can be relativistic.  

It is worth emphasising that the full conventional Dirac equation arises only when we impose 

probability amplitudes on the causal net. In contrast the quantisation is automatically provided by the 

net and does not rely on the full formalism of quantum mechanics in terms of the wavefunction. To 

illustrate this consider the relativistic particle in the (1 dimensional) box problem. For a potential well 

of depth V and width L bound states exist for a “forbidden zone” given by imaginary momentum 

states in the potential region. Now from the causal net model we can consider there to be an integer 

number n of net vertices to be contained in the well. This provides the quantization condition   
    giving quantised momentum states        . This corresponds to the solution of the 1+1 

dimensional Dirac equation [22] and reduces to the Schrödinger particle in the box problem in the non 

relativistic limit. Thus for the particle in say its n = 2 state then there are 2 space events on the net that 

can occur at the same time with equal probability. In conventional quantum mechanics the bound state 

problem is treated as a superposition of two plane waves with opposite momentum states and a 

reflective boundary condition applied at the edge of the potential well. In our model we could treat the 

problem as a superposition of two causal nets although as we have seen this is not necessary to realise 

that any bound state is quantised into maxima and minima since this is given by the discrete nature of 

the net, as described above. 

Since we have demonstrated that a “stack” of causal nets provides the Feynman path integral 

(Section 1.12) we can use this well known technique to solve other quantum problems such as 

diffraction from slits. If a single net is denoted by   then we must consider the set of      nets of all 

possible   momentum states applicable to the problem. Following Feynman, as detailed in [4], for a 

single slit all possible trajectories of the particle which can travel from the source and through the 

slit(s) must be considered. The sum over paths provides well known Fresnel integrals which provide 

the observed diffraction phenomena at the detector. In the language of our causal nets we must 

consider all causal chains that causally link the source and the detector that are not limited by the slit 

apparatus. We do not know which causal path was followed to reach the detector but upon final 

measurement we could, if necessary, compute using Bayesian analysis the range of possible paths the 

particle could have followed. 

We could consider the net and the set of all nets exist only as a mathematical description (as say 

Pythagoras’ theorem) or a computing device for possibilities in the same way that a particle on the net 

is probabilistic. Only when an event or measurement occurs then the region of space-time has reality 

and an existence and until then it remains a possibility represented by probability. As with the 

Copenhagen interpretation we cannot say anything about the particles trajectory or local reality when 

it is not observed. However, in our interpretation, between observations particles have their own local 

reality and “exist” in their own stationary reference frame since probability is conserved and the 

particle is stationary. The precise position the particle occupies in space-time in other inertial frames 

is unknown. Determining the location of the particle in the observer frame temporarily collapses the 

causal net for that particular reference frame. This agrees with the wave-particle duality of nature – 

that particles move on the probabilistic causal net and appear as waves when they are not observed. 

However, when we measure them we have an actual event and localise and find a particle. Special 

relativity showed that there is no universal time but we have replaced it with each particle having its 

own invariant proper time or “personal” time – a kind of “universal personal time”. Obviously this is 



 

 

an essentially realist interpretation of space-time – that both space and time exist outside the human 

mind.  

Interesting the causal net using the principle of the common cause has other possible implications 

relating to the flow of time and irreversibility. Reichenbach [10] argued that second law of 

thermodynamics could be derived from application of the principle to statistical thermodynamics. On 

the flow of time he writes: “Neither the laws of [classical] mechanics nor mechanical observables give 

us the direction of time, unless such a direction has been defined previously by reference to some 

irreversible process. For instance, if the velocity of a body is regarded as observable, its direction 

must be ascertained by comparison with some temporally directed process such as the time of 

psychological experience, which is derived from the irreversible processes of the human organism.” 

In our causal net theory of quantum mechanics actual statistical measurement of vertex states define 

such irreversible processes which can provide a direction to time. 

From the basis of simple casual connections between elementary events we have constructed a 

model where the Dirac equation and the fermion particles it describes are seemingly emergent 

properties. Does the causal net automatically imply a quasiparticle such as a fermion? In an inertial 

frame an observer will view an ordered series of events in space-time as an entity behaving as either a 

wave or a particle, depending on how the experimental measuring setup is conceived, and thus 

exhibits wave-particle duality exactly as proposed by de Broglie. Geometrical quantities of the causal 

net correspond to measurable physical qualities: mass (scaling factor), momentum and energy (net 

angle and geometry) and acceleration and forces (change of net angle). The global gauge symmetry of 

the net provides quantum phase and the other degenerate solutions arising from the symmetries of the 

net provide the Dirac spin and negative energy states. In addition the discretisation of the net provides 

an analogy with the Heisenberg uncertainty principle and a “stack” of nets provides, consistent with 

the Feynman path integral approach, quantum phenomenon such as diffraction. None of these 

emergent aspects of our net would have been apparent from our simple starting point of an 

equilibrium distribution of ordered events.  

In many ways this statistical causal net model is a non-local hidden variable theory – the hidden 

variable could be considered to be the actual net. Bell’s theorem applies to local hidden variable 

theories and since our theory is a non-local hidden variable theory which exactly derives the Dirac 

equation it should always pass Bell’s tests and give the exact quantum mechanical result. The causal 

net model is perhaps also consistent with the famous Einstein, Podolsky and Rosen (EPR) paper [24] 

that the “description of reality as given by a wave function is not complete” since the wavefunction is 

not complete without the connectivity of the causal net. The analysis of the superposition of nets in 

Section 1.12 could be possibly extended multiple particles. Consider an EPR type spin experiment 

with parallel settings with the experimental apparatus shown schematically in Figure 9 below. Two 

spin ½ particles are simultaneously emitted in opposite directions from a source in a singlet (or 

antiparallel) state. The particles are later detected along three different chosen spatial axes using 

magnetic fields in the left and right wings of the apparatus. 

 

    
 

Figure 9: EPR experimental setup (from [14]). 
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 Following the notation of Grasshof [14], if the measurement apparatus is set to measure the spin 

direction  in the left and right wings                             and   
    

   symbolizes the spin 

event type                 then the experiment measures     
    

        . However for two 

particles there exists a set of possible pairs of causal nets          comprising all possible 

experimental setups l and m for each particle. If we choose to measure the combination          then 

we select the relevant pair of nets. This selection is mutually exclusive of all the other possible pairs 

of nets existing in the set. For perfect correlation i = j and we can see that     
             and due 

to the initial antiparallel spin arrangement the other net must provide     
          

      For 

imperfect correlation we must consider probabilities such as 

 

    
    

              
          

      
         

           
 

Due to mutual exclusivity it does not matter the order we measure    or    since determination of one 

state implies the other. The function         where     is the angle between i and j can be considered 

to be a projection of a causal net corresponding to projecting    onto a different spatial axis j to give 

   and has a form                . This result corresponds to quantum mechanical statistics. 

Thus importantly, it would seem that there exists a full set of possible causal nets between 

physical observations. This set of causal nets is associated with the entire wavefunction of the system. 

Combining many simple causal nets together we can form a sort of “super” causal net that 

accommodates not only all possible position and momentum states but also various possible 

experimental arrangements and corresponds to the entire wavefunction. On a physical observation or 

measurement one member (or subset in the case of several particles) of the set of all possible nets   is 

selected through mutual exclusivity based on the experimental arrangement and detection of the 

particle(s). This is somewhat similar to the theory of de Broglie [25] where a kind of “many worlds” 

quantum state exists in the microscopic world but in the macroscopic world only one member of the 

ensemble is statistically realised when a particular measurement is specified. In our model the 

mechanism for selection of one member of the set of causal nets and measurement of a particle on the 

net is through mutual exclusivity – that is the particle can exist at a particular location on the net and 

only one net fits the experimental conditions. The existence of one net per fermion state is consistent 

with the Pauli exclusion principle. 

Finally, we shall finish with a brief comment by John Bell himself in 1986: “because of the EPR 

experiments ... I want to say there is a real causal sequence which is defined in the aether.” Bell did 

not imply that the original notion of the aether should be resurrected but “behind the apparent Lorentz 

invariance of the [quantum] phenomena, there is a deeper [causal] level which is not Lorentz 

invariant.” 
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