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Abstract

There are three separate approaches to the challenge of constructing WCW Kähler geometry
and spinor structure. The first one relies on a direct guess of Kähler function. Second approach
relies on the construction of Kähler form and metric utilizing the huge symmetries of the geometry
needed to guarantee the mathematical existence of Riemann connection. The third approach relies
on the construction of spinor structure assuming that complexified WCW gamma matrices are
representable as linear combinations of fermionic oscillator operator for the second quantized free
spinor fields at space-time surface and on the geometrization of super-conformal symmetries in
terms of spinor structure.

In this article the construction of Kähler form and metric based on symmetries is discussed.
The basic vision is that WCW can be regarded as the space of generalized Feynman diagrams with
lines thickned to light-like 3-surfaces and vertices identified as partonic 2-surfaces. In zero energy
ontology the strong form of General Coordinate Invariance (GCI) implies effective 2-dimensionality
and the basic objects are pairs partonic 2-surfaces X2 at opposite light-like boundaries of causal
diamonds (CDs).

The hypothesis is that WCW can be regarded as a union of infinite-dimensional symmetric
spaces G/H labeled by zero modes having an interpretation as classical, non-quantum fluctuating
variables. A crucial role is played by the metric 2-dimensionality of the light-cone boundary
δM4

+ and of light-like 3-surfaces implying a generalization of conformal invariance. The group
G acting as isometries of WCW is tentatively identified as the symplectic group of δM4

+ × CP2

localized with respect to X2. H is identified as Kac-Moody type group associated with isometries
of H = M4 × CP2 acting on light-like 3-surfaces and thus on X2.

An explicit construction for the Hamiltonians of WCW isometry algebra as so called flux
Hamiltonians is proposed and also the elements of Kähler form can be constructed in terms of
these. Explicit expressions for WCW flux Hamiltonians as functionals of complex coordinates of
the Cartesisian product of the infinite-dimensional symmetric spaces having as points the partonic
2-surfaces defining the ends of the the light 3-surface (line of generalized Feynman diagram) are
proposed.

Keywords: Infinite-dimensional geometry, Kähler metric, symmetric space, conformal symme-
tries, symplectic structure, Hamiltonians.

Contents

1 Introduction 2
1.1 General Coordinate Invariance and generalized quantum gravitational holography . . . 2
1.2 Light like 3-D causal determinants and effective 2-dimensionality . . . . . . . . . . . . 3
1.3 Magic properties of light cone boundary and isometries of configuration space . . . . . 4
1.4 Symplectic transformations of δM4

+ × CP2 as isometries of configuration space . . . . 4
1.5 Does the symmetric space property reduce to coset construction for Super Virasoro

algebras? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.6 What effective 2-dimensionality and holography really mean? . . . . . . . . . . . . . . 6
1.7 About the relationship between super-symplectic and super Kac-Moody algebras . . . 6

1

http://tgd.wippiespace.com/public_html/


1. Introduction 2

2 Identification of the symmetries and coset space structure of the configuration
space 7
2.1 Configuration space as a union of symmetric spaces . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Consequences of the decomposition . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Configuration space isometries as a subgroup of Diff(δM4

+ × CP2) . . . . . . 7
2.2 Isometries of configuration space geometry as symplectic transformations of δM4

+ × CP2 8
2.3 Identification of Kac-Moody symmetries . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.1 Identification of Kac-Moody algebra . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.2 Ansatz as an X3-local conformal transformation of imbedding space . . . . . . 10
2.3.3 A rough analysis of the conditions . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.4 Commutators of infinitesimal symmetries . . . . . . . . . . . . . . . . . . . . . 11

2.4 Coset space structure for a symmetric space . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Magnetic and electric representations of the configuration space Hamiltonians 14
3.1 Radial symplectic invariants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Kähler magnetic invariants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Isometry invariants and spin glass analogy . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4 Magnetic flux representation of the symplectic algebra . . . . . . . . . . . . . . . . . . 16

3.4.1 Generalized magnetic fluxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.4.2 Poisson brackets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 General expressions for the symplectic and Kähler forms 19
4.1 Closedness requirement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Matrix elements of the symplectic form as Poisson brackets . . . . . . . . . . . . . . . 19
4.3 General expressions for Kähler form, Kähler metric and Kähler function . . . . . . . . 20
4.4 Diff(X3) invariance and degeneracy and conformal invariances of the symplectic form 20
4.5 Complexification and explicit form of the metric and Kähler form . . . . . . . . . . . . 21
4.6 Cartan algebra decomposition at the level of configuration space . . . . . . . . . . . . 22
4.7 Generalization of WCW Hamiltonians to take into account the interaction term between

the ends of CD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.8 Symmetric space property implies Ricci flatness and isometric action of symplectic

transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1 Introduction

The most general expectation is that configuration space can be regarded as a union of coset spaces
which are infinite-dimensional symmetric spaces with Kähler structure: C(H) = ∪iG/H(i). Index i
labels 3-topology and zero modes. The group G, which can depend on 3-surface, can be identified as
a subgroup of diffeomorphisms of δM4

+ × CP2 and H must contain as its subgroup a group, whose
action reduces to Diff(X3) so that these transformations leave 3-surface invariant.

The task is to identify plausible candidate for G and H and to show that the tangent space of
the configuration space allows Kähler structure, in other words that the Lie-algebras of G and H(i)
allow complexification. One must also identify the zero modes and construct integration measure
for the functional integral in these degrees of freedom. Besides this one must deduce information
about the explicit form of configuration space metric from symmetry considerations combined with
the hypothesis that Kähler function is Kähler action for a preferred extremal of Kähler action. One
must of course understand what ”preferred” means.

1.1 General Coordinate Invariance and generalized quantum gravitational
holography

The basic motivation for the construction of configuration space geometry is the vision that physics
reduces to the geometry of classical spinor fields in the infinite-dimensional configuration space of
3-surfaces of M4

+ × CP2 or of M4 × CP2. Hermitian conjugation is the basic operation in quantum
theory and its geometrization requires that configuration space possesses Kähler geometry [17]. Kähler
geometry is coded into Kähler function.
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The original belief was that the four-dimensional general coordinate invariance of Kähler function
reduces the construction of the geometry to that for the boundary of configuration space consisting
of 3-surfaces on δM4

+×CP2, the moment of big bang. The proposal was that Kähler function K(Y 3)
could be defined as a preferred extremal of so called Kähler action for the unique space-time surface
X4(Y 3) going through given 3-surface Y 3 at δM4

+×CP2. For Diff4 transforms of Y 3 at X4(Y 3) Kähler
function would have the same value so that Diff4 invariance and degeneracy would be the outcome.
The proposal was that the preferred extremals are absolute minima of Kähler action.

This picture turned out to be too simple.

1. I have already described the recent view about light-like 3-surfaces as generalized Feynman
diagrams and space-time surfaces as preferred extremals of Kähler action and will not repeat
what has been said.

2. It has also become obvious that the gigantic symmetries associated with δM4
±×CP2 ⊂ CD×CP2

manifest themselves as the properties of propagators and vertices. Cosmological considerations,
Poincare invariance, and the new view about energy favor the decomposition of the configu-
ration space to a union of configuration spaces assignable to causal diamonds CDs defined as
intersections of future and past directed light-cones. The minimum assumption is that CDs
label the sectors of CH: the nice feature of this option is that the considerations of this chapter
restricted to δM4

+ ×CP2 generalize almost trivially. This option is beautiful because the center
of mass degrees of freedom associated with the different sectors of CH would correspond to M4

itself and its Cartesian powers.

The definition of the Kähler function requires that the many-to-one correspondence X3 → X4(X3)
must be replaced by a bijective correspondence in the sense that X3

l as light-like 3-surface is unique
among all its Diff4 translates. This also allows physically preferred ”gauge fixing” allowing to get rid
of the mathematical complications due to Diff4 degeneracy. The internal geometry of the space-time
sheet must define the preferred 3-surface X3

l .
The realization of this vision means a considerable mathematical challenge. In the much simpler

case of loop groups the Kähler geometry is unique [25] and there are excellent hopes that this holds
true also now. The effective metric 2-dimensionality of 3-dimensional light-like surfaces X3

l of M4

implies generalized conformal and symplectic symmetries allowing to generalize quantum gravitational
holography from light like boundary so that the complexities due to the non-determinism can be taken
into account properly.

1.2 Light like 3-D causal determinants and effective 2-dimensionality

The light like 3-surfaces X3
l of space-time surface appear as 3-D causal determinants. Basic examples

are boundaries and elementary particle horizons at which Minkowskian signature of the induced metric
transforms to Euclidian one. This brings in a second conformal symmetry related to the metric 2-
dimensionality of the 3-D light-like 3-surface. This symmetry is identifiable as TGD counterpart of the
Kac Moody symmetry [23] of string models. The challenge is to understand the relationship of this
symmetry to configuration space geometry and the interaction between the two conformal symmetries.

1. Field-particle duality is realized. Light-like 3-surfaces X3
l -generalized Feynman diagrams -

correspond to the particle aspect of field-particle duality whereas the physics in the interior of
space-time surface X4(X3

l ) would correspond to the field aspect. Generalized Feynman diagrams
in 4-D sense could be identified as regions of space-time surface having Euclidian signature.

2. One could also say that light-like 3-surfaces X3
l and the space-like 3-surfaces X3 in the inter-

sections of X4(X3
l ) ∩ CD × CP2 where the causal diamond CD is defined as the intersections

of future and past directed light-cones provide dual descriptions.

3. Generalized coset construction implies that the differences of super-symplectic and Super Kac-
Moody type Super Virasoro generators annihilated physical states. This implies Equivalence
Principle. This construction in turn led to the realization that configuration space for fixed
values of zero modes - in particular the values of the induced Kähler form of δM4

± × CP2 -
allows identification as a coset space obtained by dividing the symplectic group of δM4

± × CP2

with Kac-Moody group, whose generators vanish at X2 = X3
l × δM4

± × CP2. One can say that
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quantum fluctuating degrees of freedom in a very concrete sense correspond to the local variant
of S2 × CP2.

The analog of conformal invariance [20] in the light-like direction of X3
l and in the light-like radial

direction of δM4
± implies that the data at either X3 or X3

l should be enough to determine configuration
space geometry. This implies that the relevant data is contained to their intersection X2 at least for
finite regions of X3. This is the case if the deformations of X3

l not affecting X2 and preserving light
likeness corresponding to zero modes or gauge degrees of freedom and induce deformations of X3 also
acting as zero modes. The outcome is effective 2-dimensionality. One must be however cautious in
order to not make over-statements. The reduction to 2-D theory in global sense would trivialize the
theory and the reduction to 2-D theory must takes places for finite region of X3 only so one has in
well defined sense three-dimensionality in discrete sense. A more precise formulation of this vision
is in terms of hierarchy of CDs containing CDs containing.... The introduction of sub-CD:s brings
in improved measurement resolution and means also that effective 2-dimensionality is realized in the
scale of sub-CD only.

One cannot over-emphasize the importance of the effective 2-dimensionality. It indeed simplifies
dramatically the earlier formulas for configuration space metric involving 3-dimensional integrals over
X3 ⊂ M4

+ × CP2 reducing now to 2-dimensional integrals. Note that X3 is determined by preferred
extremal property of X4(X3

l ) once X3
l is fixed and one can hope that this mapping is one-to-one.

1.3 Magic properties of light cone boundary and isometries of configura-
tion space

The special conformal, metric and symplectic properties of the light cone of four-dimensional Minkowski
space: δM4

+, the boundary of four-dimensional light cone is metrically 2-dimensional(!) sphere allowing
infinite-dimensional group of conformal transformations and isometries(!) as well as Kähler structure.
Kähler structure is not unique: possible Kähler structures of light cone boundary are paramet3rized
by Lobatchevski space SO(3, 1)/SO(3). The requirement that the isotropy group SO(3) of S2 cor-
responds to the isotropy group of the unique classical 3-momentum assigned to X4(Y 3) defined as a
preferred extremum of Kähler action, fixes the choice of the complex structure uniquely. Therefore
group theoretical approach and the approach based on Kähler action complement each other.

1. The allowance of an infinite-dimensional group of isometries isomorphic to the group of con-
formal transformations of 2-sphere is completely unique feature of the 4-dimensional light cone
boundary. Even more, in case of δM4

+×CP2 the isometry group of δM4
+ becomes localized with

respect to CP2! Furthermore, the Kähler structure of δM4
+ defines also symplectic structure.

Hence any function of δM4
+ ×CP2 would serve as a Hamiltonian transformation acting in both

CP2 and δM4
+ degrees of freedom. These transformations obviously differ from ordinary local

gauge transformations. This group leaves the symplectic form of δM4
+×CP2, defined as the sum

of light cone and CP2 symplectic forms, invariant. The group of symplectic transformations of
δM4

+ × CP2 is a good candidate for the isometry group of the configuration space.

2. The approximate symplectic invariance of Kähler action is broken only by gravitational effects
and is exact for vacuum extremals. If Kähler function were exactly invariant under the symplectic
transformations of CP2, CP2 symplectic transformations wiykd correspond to zero modes having
zero norm in the Kähler metric of configuration space. This does not make sense since symplectic
transformations of δM4×CP2 actually parameterize the quantum fluctuation degrees of freedom.

3. The groups G and H, and thus configuration space itself, should inherit the complex structure
of the light cone boundary. The diffeomorphims of M4 act as dynamical symmetries of vacuum
extremals. The radial Virasoro localized with respect to S2 × CP2 could in turn act in zero
modes perhaps inducing conformal transformations: note that these transformations lead out
from the symmetric space associated with given values of zero modes.

1.4 Symplectic transformations of δM4
+×CP2 as isometries of configuration

space

The symplectic transformations of δM4
+×CP2 are excellent candidates for inducing symplectic trans-

formations of the configuration space acting as isometries. There are however deep differences with
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respect to the Kac Moody algebras.

1. The conformal algebra of the configuration space is gigantic when compared with the Virasoro +
Kac Moody algebras of string models as is clear from the fact that the Lie-algebra generator of
a symplectic transformation of δM4

+×CP2 corresponding to a Hamiltonian which is product of
functions defined in δM4

+ and CP2 is sum of generator of δM4
+-local symplectic transformation

of CP2 and CP2-local symplectic transformations of δM4
+. This means also that the notion of

local gauge transformation generalizes.

2. The physical interpretation is also quite different: the relevant quantum numbers label the
unitary representations of Lorentz group and color group, and the four-momentum labeling
the states of Kac Moody representations is not present. Physical states carrying no energy and
momentum at quantum level are predicted. The appearance of a new kind of angular momentum
not assignable to elementary particles might shed some light to the longstanding problem of
baryonic spin (quarks are not responsible for the entire spin of proton). The possibility of a new
kind of color might have implications even in macroscopic length scales.

3. The central extension induced from the natural central extension associated with δM4
+ × CP2

Poisson brackets is anti-symmetric with respect to the generators of the symplectic algebra
rather than symmetric as in the case of Kac Moody algebras associated with loop spaces. At
first this seems to mean a dramatic difference. For instance, in the case of CP2 symplectic
transformations localized with respect to δM4

+ the central extension would vanish for Cartan
algebra, which means a profound physical difference. For δM4

+ × CP2 symplectic algebra a
generalization of the Kac Moody type structure however emerges naturally.

The point is that δM4
+-local CP2 symplectic transformations are accompanied by CP2 local

δM4
+ symplectic transformations. Therefore the Poisson bracket of two δM4

+ local CP2 Hamil-
tonians involves a term analogous to a central extension term symmetric with respect to CP2

Hamiltonians, and resulting from the δM4
+ bracket of functions multiplying the Hamiltonians.

This additional term could give the entire bracket of the configuration space Hamiltonians at
the maximum of the Kähler function where one expects that CP2 Hamiltonians vanish and have
a form essentially identical with Kac Moody central extension because it is indeed symmetric
with respect to indices of the symplectic group.

1.5 Does the symmetric space property reduce to coset construction for
Super Virasoro algebras?

The idea about symmetric space is extremely beautiful but it took a long time and several false
alarms before the time was ripe for identifying the precise form of the Cartan decomposition g = t+h
satisfying the defining conditions

g = t+ h , [t, t] ⊂ h , [h, t] ⊂ t . (1.1)

The ultimate solution of the puzzle turned out to be amazingly simple and came only after quantum
TGD was understood well enough.

Configuration space geometry allows two super-conformal symmetries [22, 26]. The first one cor-
responds to super-symplectic transformations acting at the level of imbedding space. The second one
corresponds to super Kac-Moody symmetry acting as deformations of light-like 3-surfaces respecting
their light-likeness. Super Kac-Moody algebra can be regarded as sub-algebra of super-symplectic
algebra, and quantum states correspond to the coset representations for these two algebras so that
the differences of the corresponding super-Virasoro generators annihilate physical states. This obvi-
ously generalizes Goddard-Olive-Kent construction [24]. The physical interpretation is in terms of
Equivalence Principle. After having realized this it took still some time to realize that this coset
representation and therefore also Equivalence Principle also corresponds to the coset structure of the
configuration space!

The conclusion would be that t corresponds to super-symplectic algebra made also local with
respect to X3 and h corresponds to super Kac-Moody algebra. The experience with finite-dimensional
coset spaces would suggest that super Kac-Moody generators interpreted in terms of h leave the points
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of configuration space analogous to the origin of say CP2 invariant and in fact vanish at this point.
Therefore super Kac-Moody generators should vanish for those 3-surfaces X3

l which correspond to
the origin of coset space. The maxima of Kähler function could correspond to this kind of points
and could play also an essential role in the integration over configuration space by generalizing the
Gaussian integration of free quantum field theories.

1.6 What effective 2-dimensionality and holography really mean?

Concerning the interpretation of Kac-Moody algebra there are some poorly understood points, which
directly relate to what one means with holography.

1. The strongest view about effective 2-dimensionality (holography) is that for preferred extremals
the partonic 2-surfaces X2 at the ends of CD act as causal determinants fixing X3

l in the
resolution defined by CD. A weaker view about holography is that light-like 3-surfaces with
fixed ends give rise to same configuration space metric and the deformations of these surfaces
by Kac-Moody algebra correspond to zero modes just like the interior degrees of freedom for
space-like 3-surface do. Which of these options is the correct one? The same question can be
posed in the case of space-like 3-surfaces.

2. The non-trivial action of Kac-Moody algebra in the interior of X3
l together with effective 2-

dimensionality and holography would encourage the interpretation of Kac-Moody symmetries
acting trivially at X2 as gauge symmetries. Light-like 3-surfaces having fixed partonic 2-surfaces
at their ends would be equivalent physically and effective 2-dimensionality and holography would
be realized modulo gauge transformations.

3. There are also Kac-Moody generators which do not vanish at the ends of the X3
l , and these

would act as physical symmetries and their action would reduce at X2 to symplectic action.
This Kac-Moody algebra should appear in p-adic mass calculations. This seems to be in conflict
with the idea that coset construction [24] corresponds to coset space construction. Perhaps
strict correspondence is too naive an assumption. Why couldn’t one use the larger Kac-Moody
algebra in coset construction and smaller Kac-Moody algebra in coset space construction?

4. Gauge symmetry property means that the Kähler metric of the configuration space is same for all
gauge equivalent choices of X3

l and Kac-Moody deformations correspond to zero modes. Kähler
function could differ by a real part of a holomorphic function of configuration space coordinates
representing now Kac-Moody transforms of X3

l . If Dirac determinant gives the exponent of
Kähler function, the eigenvalues of the modified Dirac action can differ only by scalings with are
products of holomorphic function of configuration space coordinates and its conjugates labeling
different Kac-Moody transforms of X3

l .

1.7 About the relationship between super-symplectic and super Kac-Moody
algebras

The relationship between Kac-Moody and symplectic algebras is now relatively well understood but
the physical interpretation of Kac-Moody algebra deserves attention. There are two Kac-Moody
algebras: the smaller one leaves partonic 2-surfaces invariant and second one affects also them. Both
of them are in dual relation to the symplectic algebra and these relations correspond to coset space
construction and coset construction.

TGD inspired quantum measurement theory suggests that the super-symplectic algebra and smaller
Kac-Moody algebra correspond to each other like classical and quantal degrees of freedom. Hence
smaller Kac-Moody algebra would act in the zero modes of the configuration space metric. In the
proposed construction this indeed is the case for Kac Moody algebra elements leaving partonic 2-
surface invariant and appearing in the coset space construction but not for those Kac-Moody algebra
elements affecting partonic 2-surface and allowing interpretation as sub-algebra of symplectic algebra
and appearing in coset construction. This interpretation conforms also with the fact that Kac-Moody
algebra generates massive excitations in p-adic thermodynamics.

The dual relation between the super Virasoro algebras associated with super-symplectic algebra
and super Kac-Moody algebra is realized in terms of coset construction. The idea inspired by Olive-
Goddard-Kent coset construction is that the generators of Super Virasoro algebra corresponds to the
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differences of those associated with Super Kac-Moody and super-symplectic algebras. The justification
comes from the miraculous geometry of the light cone boundary implying that Super Kac-Moody
conformal symmetries of X2 can be compensated by super-symplectic local radial scalings so that
the differences of corresponding Super Virasoro generators annihilate physical states. If the central
extension parameters are same, the resulting central extension is trivial. What is done is to construct
first a state with a non-positive conformal weight using super-symplectic generators, and then to
apply Super-Kac Moody generators to compensate this conformal weight to get a state with vanishing
conformal weight. Mass squared would however correspond to either Super-Kac Moody or super-
symplectic mass. The identity of these masses gives rise to Equivalence Principle as a one manifestation
of the coset representation.

2 Identification of the symmetries and coset space structure
of the configuration space

In this section the identification of the isometry group of the configuration space will be discussed at
general level.

2.1 Configuration space as a union of symmetric spaces

In finite-dimensional context globally symmetric spaces [15] are of form G/H and connection and
curvature are independent of the metric, provided it is left invariant under G. The hope is that same
holds true in infinite-dimensional context. The most one can hope of obtaining is the decomposition
C(H) = ∪iG/Hi over orbits of G. One could allow also symmetry breaking in the sense that G and
H depend on the orbit: C(H) = ∪iGi/Hi but it seems that G can be chosen to be same for all orbits.
What is essential is that these groups are infinite-dimensional. The basic properties of the coset space
decomposition give very strong constraints on the group H, which certainly contains the subgroup of
G, whose action reduces to diffeomorphisms of X3.

2.1.1 Consequences of the decomposition

If the decomposition to a union of coset spaces indeed occurs, the consequences for the calculability of
the theory are enormous since it suffices to find metric and curvature tensor for single representative
3-surface on a given orbit (contravariant form of metric gives propagator in perturbative calculation
of matrix elements as functional integrals over the configuration space). The representative surface
can be chosen to correspond to the maximum of Kähler function on a given orbit and one obtains
perturbation theory around this maximum (Kähler function is not isometry invariant).

The task is to identify the infinite-dimensional groups G and H and to understand the zero mode
structure of the configuration space. Almost twenty (seven according to long held belief!) years after
the discovery of the candidate for the Kähler function defining the metric, it became finally clear
that these identifications follow quite nicely from Diff4 invariance and Diff4 degeneracy as well as
special properties of the Kähler action.

The guess (not the first one!) would be following. G corresponds to the symplectic transformations
of δM4

±×CP2 leaving the induced Kähler form invariant. If G acts as isometries the values of Kähler
form at partonic 2-surfaces (remember effective 2-dimensionality) are zero modes and configuration
space allows slicing to symplectic orbits of the partonic 2-surface with fixed induced Kähler form.
Quantum fluctuating degrees of freedom would correspond to symplectic group and to the fluctua-
tions of the induced metric. The group H dividing G would in turn correspond to the Kac-Moody
symmetries respecting light-likeness of X3

l and acting in X3
l but trivially at the partonic 2-surface X2.

This coset structure was originally discovered via coset construction for super Virasoro algebras of
super-symplectic and super Kac-Moody algebras and realizes Equivalence Principle at quantum level.

2.1.2 Configuration space isometries as a subgroup of Diff(δM4
+ × CP2)

The reduction to light-like boundaries of CD leads to the identification of the isometry group as some
subgroup of for the group G for the diffeomorphisms of δCD. The points of CD connected by a
time-like M4 geodesic parallel to that connecting the tips of CD have natural and are acted in the
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same manner by the symmetries. In H these transformations are non-local but local in WCW. These
diffeomorphisms indeed act in a natural manner in δCD, the space of 3-surfaces in δCD × CP2. In
the following this delicacy is not mentioned and I shall simply speak about symmetries of δM4

+.
Configuration space is expected to decompose to a union of the coset spaces G/Hi, where Hi

corresponds to some subgroup of G containing the transformations of G acting as diffeomorphisms
for given X3. Geometrically the vector fields acting as diffeomorphisms of X3 are tangential to the 3-
surface. Hi could depend on the topology of X3 and since G does not change the topology of 3-surface
each 3-topology defines separate orbit of G. Therefore, the union involves sum over all topologies of
X3 plus possibly other ’zero modes’. Different topologies are naturally glued together since singular
3-surfaces intermediate between two 3-topologies correspond to points common to the two sectors
with different topologies.

2.2 Isometries of configuration space geometry as symplectic transforma-
tions of δM4

+ × CP2

During last decade I have considered several candidates for the group G of isometries of the configu-
ration space as the sub-algebra of the subalgebra of Diff(δM4

+ × CP2). To begin with let us write
the general decomposition of diff(δM4

+ × CP2):

diff(δM4
+ × CP2) = S(CP2)× diff(δM4

+)⊕ S(δM4
+)× diff(CP2) . (2.1)

Here S(X) denotes the scalar function basis of space X. This Lie-algebra is the direct sum of light cone
diffeomorphisms made local with respect to CP2 and CP2 diffeomorphisms made local with respect
to light cone boundary.

The idea that entire diffeomorphism group would act as isometries looks unrealistic since the theory
should be more or less equivalent with topological field theory in this case. Consider now the various
candidates for G.

1. The fact that symplectic transformations of CP2 and M4
+ diffeomorphisms are dynamical sym-

metries of the vacuum extremals suggests the possibility that the diffeomorphisms of the light
cone boundary and symplectic transformations of CP2 could leave Kähler function invariant and
thus correspond to zero modes. The symplectic transformations of CP2 localized with respect
to light cone boundary acting as symplectic transformations of CP2 have interpretation as local
color transformations and are a good candidate for the isometries. The fact that local color
transformations are not even approximate symmetries of Kähler action is not a problem: if they
were exact symmetries, Kähler function would be invariant and zero modes would be in question.

2. CP2 local conformal transformations of the light cone boundary act as isometries of δM4
+. Be-

sides this there is a huge group of the symplectic symmetries of δM4
+×CP2 if light cone boundary

is provided with the symplectic structure. Both groups must be considered as candidates for
groups of isometries. δM4

+×CP2 option exploits fully the special properties of δM4
+×CP2, and

one can develop simple argument demonstrating that δM4
+ × CP2 symplectic invariance is the

correct option. Also the construction of configuration space gamma matrices as super-symplectic
charges supports δM4

+ × CP2 option.

This picture remained same for a long time. The discovery that Kac-Moody algebra consisting of
X2 local symmetries generated by Hamiltonians of isometry sub-algebra of symplectic algebra forced
to challenge this picture and ask whether also X2-local transformations of symplectic group could be
involved.

1. The basic condition is that the X2 local transformation acts leaves induced Kähler form in-
variant apart from diffeomorphism. Denote the infinitesimal generator of X2 local symplecto
morphism by ΦA(x)jAk, where A labels Hamiltonians in the sum and by jα the generator of X2

diffeomorphism.

2. The invariance of J = εαβJαβ
√
g2 modulo diffeomorphism under the infinitesimal symplectic

transformation gives
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{HA,ΦA} ≡ ∂αH
Aεαβ∂βΦA = ∂αJj

α . (2.2)

3. Note that here the Poisson bracket is not defined by Jαβ but εαβ defined by the induced metric.
Left hand side reflects the failure of symplectomorphism property due to the dependence of
ΦA(x) on X2 coordinate which and comes from the gradients of δM4 × CP2 coordinates in the
expression of the induced Kähler form. Right hand side corresponds to the action of infinitesimal
diffeomorphism.

4. Let us assume that one can restrict the consideration to single Hamiltonian so that the trans-
formation is generated by Φ(x)HA and that to each Φ(x) there corresponds a diffeomorphism
of X2, which is a symplectic transformation of X2 with respect to symplectic form εαβ and
generated by Hamiltonian Ψ(x). This transforms the invariance condition to

{HA,Φ} ≡ ∂αH
Aεαβ∂βΦ = ∂αJε

αβ∂βΨA = {J,ΨA} . (2.3)

This condition can be solved identically by assuming that ΦA and Ψ are proportional to arbitrary
smooth function of J :

Φ = f(J) , ΨA = −f(J)HA . (2.4)

Therefore the X2 local symplectomorphisms of H reduce to symplectic transformations of X2

with Hamiltonians depending on single coordinate J of X2. The analogy with conformal in-
variance for which transformations depend on single coordinate z is obvious. As far as the
anti-commutation relations for induced spinor fields are considered this means that J = consant
curves behave as points points. For extrema of J appearing as candidates for points of number
theoretic braids J = constant curves reduce to points.

5. From the structure of the conditions it is easy to see that the transformations generate a Lie-
algebra. For the transformations Φ1

AH
A Φ2

AH
A the commutator is

Φ
[1,2]
A = f BC

A ΦBΦC , (2.5)

where f BC
A are the structure constants for the symplectic algebra of δM4

± × CP2. From this
form it is easy to check that Jacobi identifies are satisfied. The commutator has same form as
the commutator of gauge algebra generators. BRST gauge symmetry is perhaps the nearest
analog of this symmetry. In the case of isometries these transforms realized local color gauge
symmetry in TGD sense.

6. If space-time surface allows a slicing to light-like 3-surfaces Y 3
l parallel to X3

l , these conditions
make sense also for the partonic 2-surfaces defined by the intersections of Y 3

l with δM4
± × CP2

and ”parallel” to X2. The local symplectic transformations also generalize to their local variants
in X3

l . Light-likeness of X3
l means effective metric 2-dimensionality so that 2-D Kähler metric

and symplectic form as well as the invariant J = εαβJαβ exist. A straightforward calculation
shows that the the notion of local symplectic transformation makes sense also now and formulas
are exactly the same as above.

2.3 Identification of Kac-Moody symmetries

The Kac-Moody algebra of symmetries acting as symmetries respecting the light-likeness of 3-surfaces
plays a crucial role in the identification of quantum fluctuating configuration space degrees of freedom
contributing to the metric.
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2.3.1 Identification of Kac-Moody algebra

The generators of bosonic super Kac-Moody algebra leave the light-likeness condition
√
g3 = 0 invari-

ant. This gives the condition

δgαβCof(gαβ) = 0 , (2.6)

Here Cof refers to matrix cofactor of gαβ and summation over indices is understood. The conditions
can be satisfied if the symmetries act as combinations of infinitesimal diffeomorphisms xµ → xµ + ξµ

of X3 and of infinitesimal conformal symmetries of the induced metric

δgαβ = λ(x)gαβ + ∂µgαβξ
µ + gµβ∂αξ

µ + gαµ∂βξ
µ . (2.7)

2.3.2 Ansatz as an X3-local conformal transformation of imbedding space

Write δhk as a super-position of X3-local infinitesimal diffeomorphisms of the imbedding space gen-
erated by vector fields JA = jA,k∂k:

δhk = cA(x)jA,k . (2.8)

This gives

cA(x)
[
Dkj

A
l +Dlj

A
k

]
∂αh

k∂βh
l + 2∂αcAhklj

A,k∂βh
l

= λ(x)gαβ + ∂µgαβξ
µ + gµβ∂αξ

µ + gαµ∂βξ
µ . (2.9)

If an X3-local variant of a conformal transformation of the imbedding space is in question, the first
term is proportional to the metric since one has

Dkj
A
l +Dlj

A
k = 2hkl . (2.10)

The transformations in question includes conformal transformations of H± and isometries of the
imbedding space H.

The contribution of the second term must correspond to an infinitesimal diffeomorphism of X3

reducible to infinitesimal conformal transformation ψµ:

2∂αcAhklj
A,k∂βh

l = ξµ∂µgαβ + gµβ∂αξ
µ + gαµ∂βξ

µ . (2.11)

2.3.3 A rough analysis of the conditions

One could consider a strategy of fixing cA and solving solving ξµ from the differential equations. In
order to simplify the situation one could assume that gir = grr = 0. The possibility to cast the metric
in this form is plausible since generic 3-manifold allows coordinates in which the metric is diagonal.

1. The equation for grr gives

∂rcAhklj
Ak∂rh

k = 0 . (2.12)

The radial derivative of the transformation is orthogonal to X3. No condition on ξα results. If
cA has common multiplicative dependence on cA = f(r)dA by a one obtains

dAhklj
Ak∂rh

k = 0 . (2.13)
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so that JA is orthogonal to the light-like tangent vector ∂rh
k X3 which is the counterpart for

the condition that Kac-Moody algebra acts in the transversal degrees of freedom only. The
condition also states that the components gri is not changed in the infinitesimal transformation.

It is possible to choose f(r) freely so that one can perform the choice f(r) = rn and the notion
of radial conformal weight makes sense. The dependence of cA on transversal coordinates is
constrained by the transversality condition only. In particular, a common scale factor having
free dependence on the transversal coordinates is possible meaning that X3- local conformal
transformations of H are in question.

2. The equation for gri gives

∂rξ
i = ∂rcAhklj

Akhij∂jh
k . (2.14)

The equation states that gri are not affected by the symmetry. The radial dependence of ξi is
fixed by this differential equation. No condition on ξr results. These conditions imply that the
local gauge transformations are dynamical with the light-like radial coordinate r playing the
role of the time variable. One should be able to fix the transformation more or less arbitrarily
at the partonic 2-surface X2.

3. The three independent equations for gij give

ξα∂αgij + gkj∂iξ
k + gki∂jξ

k = ∂icAhklj
Ak∂jh

l . (2.15)

These are 3 differential equations for 3 functions ξα on 2 independent variables xi with r ap-
pearing as a parameter. Note however that the derivatives of ξr do not appear in the equation.
At least formally equations are not over-determined so that solutions should exist for arbitrary
choices of cA as functions of X3 coordinates satisfying the orthogonality conditions. If this
is the case, the Kac-Moody algebra can be regarded as a local algebra in X3 subject to the
orthogonality constraint.

This algebra contains as a subalgebra the analog of Kac-Moody algebra for which all cA except
the one associated with time translation and fixed by the orthogonality condition depends on
the radial coordinate r only. The larger algebra decomposes into a direct sum of representations
of this algebra.

2.3.4 Commutators of infinitesimal symmetries

The commutators of infinitesimal symmetries need not be what one might expect since the vector
fields ξµ are functionals cA and of the induced metric and also cA depends on induced metric via the
orthogonality condition. What this means that jA,k in principle acts also to φB in the commutator
[cAJ

A, cBJ
B ].

[
cAJ

A, cBJ
B
]

= cAcBJ
[A,B] + JA ◦ cBJB − JB ◦ cAJA , (2.16)

where ◦ is a short hand notation for the change of cB induced by the effect of the conformal transfor-
mation JA on the induced metric.

Luckily, the conditions in the case grr = gir = 0 state that the components grr and gir of the
induced metric are unchanged in the transformation so that the condition for cA resulting from grr
component of the metric is not affected. Also the conditions coming from gir = 0 remain unchanged.
Therefore the commutation relations of local algebra apart from constraint from transversality result.

The commutator algebra of infinitesimal symmetries should also close in some sense. The or-
thogonality to the light-like tangent vector creates here a problem since the commutator does not
obviously satisfy this condition automatically. The problem can be solved by following the recipes of
non-covariant quantization of string model.
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1. Make a choice of gauge by choosing time translation P 0 in a preferred M4 coordinate frame
to be the preferred generator JA0 ≡ P 0, whose coefficient ΦA0

≡ Ψ(P 0) is solved from the
orthogonality condition. This assumption is analogous with the assumption that time coordinate
is non-dynamical in the quantization of strings. The natural basis for the algebra is obtained
by allowing only a single generator JA besides P 0 and putting dA = 1.

2. This prescription must be consistent with the well-defined radial conformal weight for the JA 6=
P 0 in the sense that the proportionality of dA to rn for JA 6= P 0 must be consistent with
commutators. SU(3) part of the algebra is of course not a problem. From the Lorentz vector
property of P k it is clear that the commutators resulting in a repeated commutation have well-
defined radial conformal weights only if one restricts SO(3, 1) to SO(3) commuting with P 0. Also
D could be allowed without losing well-defined radial conformal weights but the argument below
excludes it. This picture conforms with the earlier identification of the Kac-Moody algebra.

Conformal algebra contains besides Poincare algebra and the dilation D = mk∂mk the mutually
commuting generators Kk = (mrmr∂mk − 2mkml∂ml)/2. The commutators involving added
generators are

[
D,Kk

]
= −Kk ,

[
D,P k

]
= P k ,[

Kk,Kl
]

= 0 ,
[
Kk, P l

]
= mklD −Mkl .

(2.17)

From the last commutation relation it is clear that the inclusion of Kk would mean loss of
well-defined radial conformal weights.

3. The coefficient dm0/dr of Ψ(P 0) in the equation

Ψ(P 0)
dm0

dr
= −JAkhkl∂rhl

is always non-vanishing due to the light-likeness of r. Since P 0 commutes with generators of
SO(3) (but not with D so that it is excluded!), one can define the commutator of two generators
as a commutator of the remaining part and identify Ψ(P 0) from the condition above.

4. Of course, also the more general transformations act as Kac-Moody type symmetries but the
interpretation would be that the sub-algebra plays the same role as SO(3) in the case of Lorentz
group: that is gives rise to generalized spin degrees of freedom whereas the entire algebra divided
by this sub-algebra would define the coset space playing the role of orbital degrees of freedom. In
fact, also the Kac-Moody type symmetries for which cA depends on the transversal coordinates
of X3 would correspond to orbital degrees of freedom. The presence of these orbital degrees of
freedom arranging super Kac-Moody representations into infinite multiplets labeled by function
basis for X2 means that the number of degrees of freedom is much larger than in string models.

5. It is possible to replace the preferred time coordinate m0 with a preferred light-like coordinate.
There are good reasons to believe that orbifold singularity for phases of matter involving non-
standard value of Planck constant corresponds to a preferred light-ray going through the tip of
δM4
±. Thus it would be natural to assume that the preferred M4 coordinate varies along this

light ray or its dual. The Kac-Moody group SO(3)×E3 respecting the radial conformal weights
would reduce to SO(2) × E2 as in string models. E2 would act in tangent plane of S2

± along
this ray defining also SO(2) rotation axis.

2.4 Coset space structure for a symmetric space

The key ingredient in the theory of symmetric spaces is that the Lie-algebra of G has the following
decomposition

g = h+ t ,
[h, h] ⊂ h , [h, t] ⊂ t , [t, t] ⊂ h .
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In present case this has highly nontrivial consequences. The commutator of any two infinitesimal
generators generating nontrivial deformation of 3-surface belongs to h and thus vanishing norm in the
configuration space metric at the point which is left invariant by H. In fact, this same condition follows
from Ricci flatness requirement and guarantees also thatG acts as isometries of the configuration space.
This generalization is supported by the properties of the unitary representations of Lorentz group at
the light cone boundary and by number theoretical considerations.

The algebras suggesting themselves as candidates are symplectic algebra of δM± ×CP2 and Kac-
Moody algebra mapping light-like 3-surfaces to light-like 3-surfaces to be discussed in the next section.

The identification of the precise form of the coset space structure is however somewhat delicate.

1. The essential point is that both symplectic and Kac-Moody algebras allow representation in
terms of X3

l -local Hamiltonians. The general expression for the Hamilton of Kac-Moody algebra
is

H =
∑

ΦA(x)HA . (2.18)

Here HA are Hamiltonians of SO(3)× SU(3) acting in δX3
l ×CP2. For symplectic algebra any

Hamiltonian is allowed. If x corresponds to any point of X3
l , one must assume a slicing of the

causal diamond CD by translates of δM4
±.

2. For symplectic generators the dependence of form on r∆ on light-like coordinate of δX3
l × CP2

is allowed. ∆ is complex parameter whose modulus squared is interpreted as conformal weight.
∆ is identified as analogous quantum number labeling the modes of induced spinor field.

3. One can wonder whether the choices of the rM = constant sphere S2 is the only choice. The
Hamiltonin-Jacobi coordinate for X4

X3
l

suggest an alternative choice as E2 in the decomposition

of M4 = M2(x)×E2(x) required by number theoretical compactification and present for known
extremals of Kähler action with Minkowskian signature of induced metric. In this case SO(3)
would be replaced with SO(2). It however seems that the radial light-like coordinate u of X4(X3

l )
would remain the same since any other curve along light-like boundary would be space-like.

4. The vector fields for representing Kac-Moody algebra must vanish at the partonic 2-surface
X2 ⊂ δM4

± × CP2. The corresponding vector field must vanish at each point of X2:

jk =
∑

ΦA(x)JklHA
l = 0 . (2.19)

This means that the vector field corresponds to SO(2)×U(2) defining the isotropy group of the
point of S2 × CP2.

This expression could be deduced from the idea that the surfaces X2 are analogous to origin of
CP2 at which U(2) vector fields vanish. Configuration space at X2 could be also regarded as the
analog of the origin of local S2×CP2. This interpretation is in accordance with the original idea
which however was given up in the lack of proper realization. The same picture can be deduced
from braiding in which case the Kac-Moody algebra corresponds to local SO(2)×U(2) for each
point of the braid at X2. The condition that Kac-Moody generators with positive conformal
weight annihilate physical states could be interpreted by stating effective 2-dimensionality in the
sense that the deformations of X3

l preserving its light-likeness do not affect the physics. Note
however that Kac-Moody type Virasoro generators do not annihilate physical states.

5. Kac-Moody algebra generator must leave induced Kähler form invariant at X2. This is of course
trivial since the action leaves each point invariant. The conditions of Cartan decomposition are
satisfied. The commutators of the Kac-Moody vector fields with symplectic generators are
non-vanishing since the action of symplectic generator on Kac-Moody generator restricted to
X2 gives a non-vanishing result belonging to the symplectic algebra. Also the commutators of
Kac-Moody generators are Kac-Moody generators.
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3 Magnetic and electric representations of the configuration
space Hamiltonians

Symmetry considerations lead to the hypothesis that configuration space Hamiltonians are apart from
a factor depending on symplectic invariants equal to magnetic flux Hamiltonians. One can however
argue that the use of only magnetic flux Hamiltonians implies a genuine 2-dimensionality and that one
must include also electric flux Hamiltonian carrying information about the 4-D tangent space of X2

so that one would have electric-magnetic duality. The problem is that the Kähler electric flux factor
is not invariant under symplectic transformations. The problem can be circumvented by assuming
the weak form of electric-magnetic duality discussed in [5] and in accompanying article of this issue.
Thus flux Hamiltonians would have general form

∫
(1 + K)JHd2x and boundary conditions would

make them effectively topologal. K is proportional to Kähler coupling strength from the condition of
charge quantization.

3.1 Radial symplectic invariants

All δM4
+ × CP2 symplectic transformations leave invariant the value of the radial coordinate rM .

Therefore the radial coordinate rM of X3 regarded as a function of S2 × CP2 coordinates serves as
height function. The number, type, ordering and values for the extrema for this height function in
the interior and boundary components are isometry invariants. These invariants characterize not only
the topology but also the size and shape of the 3-surface. The result implies that configuration space
metric indeed differentiates between 3-surfaces with the size of Planck length and with the size of
galaxy. The characterization of these invariants reduces to Morse theory. The extrema correspond
to topology changes for the two-dimensional (one-dimensional) rM = constant section of 3-surface
(boundary of 3-surface). The height functions of sphere and torus serve as a good illustrations of the
situation. A good example about non-topological extrema is provided by a sphere with two horns.

There are additional symplectic invariants. The ’magnetic fluxes’ associated with the δM4
+ sym-

plectic form
JS2 = r2

Msin(θ)dθ ∧ dφ

over any X2 ⊂ X3 are symplectic invariants. In particular, the integrals over rM = constant sections
(assuming them to be 2-dimensional) are symplectic invariants. They give simply the solid angle
Ω(rM ) spanned by rM = constant section and thus r2

MΩ(rM ) characterizes transversal geometric
size of the 3-surface. A convenient manner to discretize these invariants is to consider the Fourier
components of these invariants in radial logarithmic plane wave basis discussed earlier:

Ω(k) =

∫ rmax

rmin

(rM/rmax)kΩ(rM )
drM
rM

, k = k1 + ik2 , perk1 ≥ 0 . (3.1)

One must take into account that for each section in which the topology of rM = constant section
remains constant one must associate invariants with separate components of the two-dimensional
section. For a given value of rM , rM constant section contains several components (to visualize the
situation consider torus as an example).

Also the quantities

Ω+(X2) =

∫
X2

|J | ≡
∫
|εαβJαβ |

√
g2d

2x

are symplectic invariants and provide additional geometric information about 3-surface. These fluxes
are non-vanishing also for closed surfaces and give information about the geometry of the boundary
components of 3-surface (signed fluxes vanish for boundary components unless they enclose the dip of
the light cone).

Since zero norm generators remain invariant under complexification, their contribution to the
Kähler metric vanishes. It is not at all obvious whether the configuration space integration measure
in these degrees of freedom exists at all. A localization in zero modes occurring in each quantum
jump seems a more plausible and under suitable additional assumption it would have interpretation
as a state function reduction. In string model similar situation is encountered; besides the functional
integral determined by string action, one has integral over the moduli space.
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3.2 Kähler magnetic invariants

The Kähler magnetic fluxes defined both the normal component of the Kähler magnetic field and by
its absolute value

Qm(X2) =

∫
X2

JCP2 = Jαβε
αβ√g2d

2x ,

Q+
m(X2) =

∫
X2

|JCP2
| ≡

∫
X2

|Jαβεαβ |
√
g2d

2x , (3.2)

over suitably defined 2-surfaces are invariants under both Lorentz isometries and the symplectic trans-
formations of CP2 and can be calculated once X3 is given.

For a closed surface Qm(X2) vanishes unless the homology equivalence class of the surface is
nontrivial in CP2 degrees of freedom. In this case the flux is quantized. Q+

M (X2) is non-vanishing for
closed surfaces, too. Signed magnetic fluxes over non-closed surfaces depend on the boundary of X2

only: ∫
X2 J =

∫
δX2 A .

J = dA .

Un-signed fluxes can be written as sum of similar contributions over the boundaries of regions of X2

in which the sign of J remains fixed.

Qm(X2) =

∫
X2

JCP2
= Jαβε

αβ√g2d
2x ,

Q+
m(X2) =

∫
X2

|JCP2 | ≡
∫
X2

|Jαβεαβ |
√
g2d

2x , (3.3)

There are also symplectic invariants, which are Lorentz covariants and defined as

Qm(K,X2) =

∫
X2

fKJCP2
,

Q+
m(K,X2) =

∫
X2

fK |JCP2
| ,

fK≡(s,n,k) = eisφ × ρn−k

(1 + ρ2)k
× (

rM
r0

)k (3.4)

These symplectic invariants transform like an infinite-dimensional unitary representation of Lorentz
group.

There must exist some minimal number of symplectically non-equivalent 2-surfaces of X3, and the
magnetic fluxes over the representatives these surfaces give thus good candidates for zero modes.

1. If effective 2-dimensionality is accepted, the surfaces X2
i defined by the intersections of light like

3-D causal determinants X3
l and X3 provide a natural identification for these 2-surfaces.

2. Without effective 2-dimensionality the situation is more complex. Since symplectic transfor-
mations leave rM invariant, a natural set of 2-surfaces X2 appearing in the definition of fluxes
are separate pieces for rM = constant sections of 3-surface. For a generic 3-surface, these sur-
faces are 2-dimensional and there is continuum of them so that discrete Fourier transforms of
these invariants are needed. One must however notice that rM = constant surfaces could be be
3-dimensional in which case the notion of flux is not well-defined.

3.3 Isometry invariants and spin glass analogy

The presence of isometry invariants implies coset space decomposition ∪iG/H. This means that
quantum states are characterized, not only by the vacuum functional, which is just the exponential
exp(K) of Kähler function (Gaussian in lowest approximation) but also by a wave function in vacuum
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modes. Therefore one might expect the functional integral over the configuration space decomposes
into an integral over zero modes for approximately Gaussian functionals determined by exp(K). The
weights for the various vacuum mode contributions are given by the probability density associated with
the zero modes. It however turns out that the symmetric space property leads to a non-perturbative
formulation of WCW integration in terms of harmonic analysis in symmetric spaces.

The integration over the zero modes is a problematic notion and it could be eliminated if a
localization in the zero modes occurs in quantum jumps. The localization would correspond to a
state function reduction and zero modes would be effectively classical variables correlated in one-one
manner with the quantum numbers associated with the quantum fluctuating degrees of freedom.

For a given orbit K depends on zero modes and thus one has mathematical similarity with spin
glass phase for which one has probability distribution for Hamiltonians appearing in the partition
function exp(−H/T ). In fact, since TGD Universe is also critical, exact similarity requires that also
the temperature is critical for various contributions to the average partition function of spin glass
phase. The characterization of isometry invariants and zero modes of the Kähler metric provides a
precise characterization for how TGD Universe is quantum analog of spin glass.

3.4 Magnetic flux representation of the symplectic algebra

In principle the basis of flux Hamiltonians can be chosen freely to some extent as long as they are
consistent with effective 2-dimensionality. It is only the Poisson brackets in which the WCE Kähler
form makes itself visible. Accepting the strong form of general coordinate invariance implying effective
two-dimensionality WCW Hamiltonians correspond to the fluxes associated with various 2-surfaces
X2
i defined by the intersections of light-like light-like 3-surfaces X3

l,i with X3 at the boundaries of CD
considered. Bearing in mind that zero energy ontology is the correct approach, one can restrict the
consideration on fluxes at δM4

+×CP2 One must also remember that if the proposed symmetries hold
true, it is in principle choose any partonic 2-surface in the conjectured slicing of the Minkowskian
space-time sheet to partonic 2-surfaces parametrized by the points of stringy world sheets.

It must be however emphasized that the flux Hamiltonians make sense only when one identifies
WCW in terms of partonic 2-surfaces. One must of course specify the transformation of the 3-surface
and also 4-surface induced by these Hamiltonians and the conservation laws implied by the effective
2-dimensionality can in principle be used to deduce this action.

One can also ask why the 3-D flux Hamiltonians defined by using Chern-Simons action [21] as
a weighting factor for a 3-dimensional integral over X3 could not be consistent with the effective
2-dimensionality. Consistency could be due to the fact that imbedding space Hamiltonians are used.
This form would be not gauge invariant but the gauge transforms of Kähler potential have interpre-
tation in terms of the coding of quantum numbers to the WCW geometry so that this would not
be a catastrophe. These gauge terms would however reduce to total divergences and would reduces
to 2-D integrals over the wormhole throats proportional to 2-D flux Hamiltonians. At this moment
there is no clearcut argument eliminating the flux Hamiltonians based on Chern-Simons action from
consideration. The following consideration restricts to 2-D flux Hamiltonians. The generalization to
Chern-Simons case is however obvious.

3.4.1 Generalized magnetic fluxes

Isometry invariants are just special case of the fluxes defining natural coordinate variables for the
configuration space. Symplectic transformations of CP2 act as U(1) gauge transformations on the
Kähler potential of CP2 (similar conclusion holds at the level of δM4

+ × CP2).
One can generalize these transformations to local symplectic transformations by allowing the

Hamiltonians to be products of the CP2 Hamiltonians with the real and imaginary parts of the
functions fm,n,k defining the Lorentz covariant function basis HA, A ≡ (a,m, n, k) at the light cone
boundary: HA = Ha × f(m,n, k), where a labels the Hamiltonians of CP2.

One can associate to any Hamiltonian HA of this kind both signed and unsigned magnetic flux
via the following formulas:
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Qm(HA|X2) =

∫
X2

HAJ ,

Q+
m(HA|X2) =

∫
X2

HA|J | .

(3.5)

Here X2 corresponds to any surface X2
i resulting as intersection of X3 with X3

l,i. Both signed and
unsigned magnetic fluxes and their superpositions

Qm(HA|X2) = αQm(HA|X2) + βQ+
m(HA|X2) , A ≡ (a, s, n, k) (3.6)

provide representations of Hamiltonians. Note that symplectic invariants Qm correspond to HA = 1
and HA = fs,n,k. HA = 1 can be regarded as a natural central term for the Poisson bracket algebra.
Therefore, the isometry invariance of Kähler magnetic and electric gauge fluxes follows as a natural
consequence.

The obvious question concerns about the correct values of the parameters α and β. One possibility
is that the flux is an unsigned flux so that one has β = 0. p-Adicization favors this option since the
notion of absolute value does not make sense p-adically and the considerations are restricted to this
option in the sequel so that one has

Qm(HA|X2) ≡ Qm(HA|X2) , A ≡ (a, s, n, k) (3.7)

Magnetic flux Hamiltonians do not carry information about the 4-D tangent space of space-time
surface at X2 so that the situation would reduce to 2-dimensional one. Only effective 2-dimensionality
can be tolerated. This motivates the proposal that also electric fluxes are present. One can define the
electric counterparts of the flux Hamiltonians by replacing J in the defining formulas with its dual ∗J

∗Jαβ = ε γδ
αβ Jγδ.

For HA = 1 these fluxes reduce to ordinary Kähler electric fluxes.
These fluxes are however not symplectic covariants since the definition of the dual involves the

induced metric, which is not symplectic invariant. The weak form of electric magnetic duality [5]
resolves this problem. This duality has two different forms.

1. The simplest form of the duality implies J03√g4 = KJ12 at the ends of space-time sheet and
effectively reduces these Hamiltonians to magnetic flux Hamiltonians:

Q(HA|X2) ≡ (1 +K)×Qm(HA|X2) , A ≡ (a, s, n, k) . (3.8)

The formula defining K assumes weak form of self-duality (03 refers to the coordinates in the
complement of X2 tangent plane in the 4-D tangent plane). K is assumed to be symplectic
invariant and constant for given X2. The condition that the flux of F 03 = (~/gK)J03 defining
the counterpart of Kähler electric field equals to the Kähler charge gK gives the condition
K = g2

K/~, where gK is Kähler coupling constant. Within experimental uncertainties one has

αK = g
/
K4π~0 = αem ' 1/137, where αem is finite structure constant in electron length scale

and ~0 is the standard value of Planck constant.

2. The most radical assumption is that Kähler form defining Kähler action is the sum J + J1 in
which case one has the same formulas as above but for the flux Hamiltonian in which J is defined
by J + J1. This option can be criticized because of the breaking of Lorentz invariance. This
breaking however occurs already for a given CD and is compensated because Lorentz boosts of
CDs are possible. It is also now clear that this is the only internally consistent option [5].
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One can avoid clumsy formulas by writing

Q(HA|X2) =

∫
X2

HAJtot . (3.9)

where Jtot depends on the option considered.
The electric gauge fluxes for Hamiltonians in various representations of the color group ought to

be important in the description of hadrons, not only as string like objects, but quite generally. These
degrees of freedom would be identifiable as non-perturbative degrees of freedom involving genuinely
classical Kähler field whereas quarks and gluons would correspond to the perturbative degrees of
freedom, that is the interactions between CP2 type extremals. Weak form of electric-magnetic duality
is not in conflict with this and actually leads to a detailed vision about electro-weak massivation and
color confinement in terms of magnetic monopoles assigned to wormhole throats [5].

3.4.2 Poisson brackets

From the symplectic invariance of the radial component of Kähler magnetic field it follows that the
Lie-derivative of the flux Qm(HA) with respect to the vector field X(HB) is given by

X(HB) ·Qm(HA) = Qm({HB , HA}) . (3.10)

The transformation properties of Qm(HA) are very nice if the basis for HB transforms according to
appropriate irreducible representation of color group and rotation group. This in turn implies that the
fluxes Qm(HA) as functionals of 3-surface on given orbit provide a representation for the Hamiltonian
as a functional of 3-surface. For a given surface X3, the Poisson bracket for the two fluxes Qm(HA)
and Qm(HB) can be defined as

{Qm(HA), Qm(HB)} ≡ X(HB) ·Qm(HA) = Qm({HA, HB}) . (3.11)

The study of configuration space gamma matrices identifiable as symplectic super charges demon-
strates that the supercharges associated with the radial deformations vanish identically so that radial
deformations correspond to zero norm degrees of freedom as one might indeed expect on physical
grounds. The reason is that super generators involve the invariants jakγk which vanish by γrM = 0.

The natural central extension associated with the symplectic group of CP2 ({p, q} = 1!) induces
a central extension of this algebra. The central extension term resulting from {HA, HB} when CP2

Hamiltonians have {p, q} = 1 equals to the symplectic invariant Qm(f(ma +mb, na + nb, ka + kb)) on
the right hand side. This extension is however anti-symmetric in symplectic degrees of freedom rather
than in loop space degrees of freedom and therefore does not lead to the standard Kac Moody type
algebra.

Quite generally, the Virasoro and Kac Moody algebras of string models are replaced in TGD
context by much larger symmetry algebras. Kac Moody algebra corresponds to the the deformations
of light-like 3-surfaces respecting their light-likeness and leaving partonic 2-surfaces at δCD intact
and are highly relevant to the elementary particle physics. This algebra allows a representation in
terms of X3

l local Hamiltonians generating isometries of δM4
± × CP2. Hamiltonian representation is

essential for super-symmetrization since fermionic super charges anti-commute to Hamiltonians rather
than vector fields: this is one of the deep differences between TGD and string models. Kac-Moody
algebra does not contribute to configuration space metric since by definition the generators vanish at
partonic 2-surfaces. This is essential for the coset space property.

A completely new algebra is the CP2 symplectic algebra localized with respect to the light cone
boundary and relevant to the configuration space geometry. This extends to S2 × CP2 -or rather
δM4
±×CP2 symplectic algebra and this gives the strongest predictions concerning configuration space

metric. The local radial Virasoro localized with respect to S2 × CP2 acts in zero modes and has
automatically vanishing norm with respect to configuration space metric defined by super charges.
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4 General expressions for the symplectic and Kähler forms

One can derive general expressions for symplectic and Kähler forms as well as Kähler metric of the
configuration space. The fact that these expressions involve only first variation of the Kähler action
implies huge simplification of the basic formulas. Duality hypothesis leads to further simplifications
of the formulas.

4.1 Closedness requirement

The fluxes of Kähler magnetic and electric fields for the Hamiltonians of δM4
+×CP2 suggest a general

representation for the components of the symplectic form of the configuration space. The basic
requirement is that Kähler form satisfies the defining condition

X · J(Y,Z) + J([X,Y ], Z) + J(X, [Y,Z]) = 0 , (4.1)

where X,Y, Z are now vector fields associated with Hamiltonian functions defining configuration space
coordinates.

4.2 Matrix elements of the symplectic form as Poisson brackets

Quite generally, the matrix element of J(X(HA), X(HB)) between vector fields X(HA)) and X(HB))
defined by the Hamiltonians HA and HB of δM4

+ × CP2 isometries is expressible as Poisson bracket

JAB = J(X(HA), X(HB)) = {HA, HB} . (4.2)

JAB denotes contravariant components of the symplectic form in coordinates given by a subset of
Hamiltonians. The flux Hamiltonians Q(HA) of Eq. 3.9 provide an explicit representation for the
Hamiltonians at the level of configuration space so that the components of the symplectic form of the
configuration space are expressible as classical charges for the Poisson brackets of the Hamiltonians
of the light cone boundary:

J(X(HA), X(HB)) = Q({HA, HB}) . (4.3)

Note that Q contains unspecified conformal factor depending on symplectic invariants characterizing
Y 3 and is unspecified superposition of signed and unsigned magnetic fluxes.

WCW Hamiltonians vanish for the extrema of the Kähler function as variational derivatives of the
Kähler action. Hence Hamiltonians are good candidates for the coordinates appearing as coordinates in
the perturbative functional integral around extrema (with maxima giving dominating contribution). It
is clear that configuration space coordinates around a given extremum include only those Hamiltonians,
which vanish at extremum (that is those Hamiltonians, which span the tangent space of G/H).

In Darboux coordinates the Poisson brackets reduce to the symplectic form

{P I , QJ} = JIJ = JIδ
I,J .

JI = 1 . (4.4)

It is not clear whether Darboux coordinates with JI = 1 are possible in the recent case: probably the
unit matrix on right hand side of the defining equation is replaced with a diagonal matrix depending
on symplectic invariants so that one has JI 6= 1. The integration measure is given by the symplectic
volume element given by the determinant of the matrix defined by the Poisson brackets of the Hamil-
tonians appearing as coordinates. The value of the symplectic volume element is given by the matrix
formed by the Poisson brackets of the Hamiltonians and reduces to the product

V ol =
∏
I

JI

in generalized Darboux coordinates.
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Kähler potential (that is gauge potential associated with Kähler form) can be written in Darboux
coordinates as

A =
∑
I

JIPIdQ
I . (4.5)

4.3 General expressions for Kähler form, Kähler metric and Kähler func-
tion

The expressions of Kähler form and Kähler metric in complex coordinates can obtained by transform-
ing the contravariant form of the symplectic form from symplectic coordinates provided by Hamilto-
nians to complex coordinates:

JZ
iZ̄j

= iGZ
iZ̄j

= ∂HAZi∂HB Z̄jJAB , (4.6)

where JAB is given by the classical Kahler charge for the light cone Hamiltonian {HA, HB}. Complex
coordinates correspond to linear coordinates of the complexified Lie-algebra providing exponentiation
of the isometry algebra via exponential mapping. What one must know is the precise relationship
between allowed complex coordinates and Hamiltonian coordinates: this relationship is in principle
calculable. In Darboux coordinates the expressions become even simpler:

JZ
iZ̄j

= iGZ
iZ̄j

=
∑
I

J(I)(∂P iZi∂QI Z̄j − ∂QIZi∂P I Z̄j) . (4.7)

Kähler function can be formally integrated from the relationship

AZi = i∂ZiK ,

AZ̄i = −i∂ZiK . (4.8)

holding true in complex coordinates. Kähler function is obtained formally as integral

K =

∫ Z

0

(AZidZi −AZ̄idZ̄i) . (4.9)

4.4 Diff(X3) invariance and degeneracy and conformal invariances of the
symplectic form

J(X(HA), X(HB)) defines symplectic form for the coset space G/H only if it is Diff(X3) degenerate.
This means that the symplectic form J(X(HA), X(HB)) vanishes whenever Hamiltonian HA or HB

is such that it generates diffeomorphism of the 3-surface X3. If effective 2-dimensionality holds true,
J(X(HA), X(HB)) vanishes if HA or HB generates two-dimensional diffeomorphism d(HA) at the
surface X2

i .
One can always write

J(X(HA), X(HB)) = X(HA)Q(HB |X2
i ) .

If HA generates diffeomorphism, the action of X(HA) reduces to the action of the vector field XA of
some X2

i -diffeomorphism. Since Q(HB |rM ) is manifestly invariant under the diffemorphisms of X2,
the result is vanishing:

XAQ(HB |X2
i ) = 0 ,

so that Diff2 invariance is achieved.
The radial diffeomorphisms possibly generated by the radial Virasoro algebra do not produce

trouble. The change of the flux integrand X under the infinitesimal transformation rM → rM + εrnM



4.5 Complexification and explicit form of the metric and Kähler form 21

is given by rnMdX/drM . Replacing rM with r−n+1
M /(−n + 1) as variable, the integrand reduces to

a total divergence dX/du the integral of which vanishes over the closed 2-surface X2
i . Hence radial

Virasoro generators having zero norm annihilate all matrix elements of the symplectic form. The
induced metric of X2

i induces a unique conformal structure and since the conformal transformations
of X2

i can be interpreted as a mere coordinate changes, they leave the flux integrals invariant.

4.5 Complexification and explicit form of the metric and Kähler form

The identification of the Kähler form and Kähler metric in symplectic degrees of freedom follows
trivially from the identification of the symplectic form and definition of complexification. The re-
quirement that Hamiltonians are eigen states of angular momentum (and possibly Lorentz boost
generator), isospin and hypercharge implies physically natural complexification. In order to fix the
complexification completely one must introduce some convention fixing which states correspond to
’positive’ frequencies and which to ’negative frequencies’ and which to zero frequencies that is to
decompose the generators of the symplectic algebra to three sets Can+, Can− and Can0. One must
distinguish between Can0 and zero modes, which are not considered here at all. For instance, CP2

Hamiltonians correspond to zero modes.
The natural complexification relies on the imaginary part of the radial conformal weight whereas

the real part defines the g = t + h decomposition naturally. The wave vector associated with the
radial logarithmic plane wave corresponds to the angular momentum quantum number associated
with a wave in S1 in the case of Kac Moody algebra. One can imagine three options.

1. It is quite possible that the spectrum of k2 does not contain k2 = 0 at all so that the sector Can0

could be empty. This complexification is physically very natural since it is manifestly invariant
under SU(3) and SO(3) defining the preferred spherical coordinates. The choice of SO(3) is
unique if the classical four-momentum associated with the 3-surface is time like so that there
are no problems with Lorentz invariance.

2. If k2 = 0 is possible one could have

Can+ = {Ha
m,n,k=k1+ik2 , k2 > 0} ,

Can− = {Ha
m,n,k, k2 < 0} ,

Can0 = {Ha
m,n,k, k2 = 0} . (4.10)

3. If it is possible to n2 6= 0 for k2 = 0, one could define the decomposition as

Can+ = {Ha
m,n,k, k2 > 0 or k2 = 0, n2 > 0} ,

Can− = {Ha
m,n,k, k2 < 0 ork2 = 0, n2 < 0} ,

Can0 = {Ha
m,n,k, k2 = n2 = 0} . (4.11)

In this case the complexification is unique and Lorentz invariance guaranteed if one can fix the
SO(2) subgroup uniquely. The quantization axis of angular momentum could be chosen to be
the direction of the classical angular momentum associated with the 3-surface in its rest system.

The only thing needed to get Kähler form and Kähler metric is to write the half Poisson bracket
as

Jf (X(HA), X(HB)) = 2Im (iQf ({HA, HB}−+)) ,

Gf (X(HA), X(HB)) = 2Re (iQf ({HA, HB}−+)) . (4.12)

Symplectic form, and thus also Kähler form and Kähler metric, could contain a conformal factor
depending on the isometry invariants characterizing the size and shape of the 3-surface. At this stage
one cannot say much about the functional form of this factor.
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4.6 Cartan algebra decomposition at the level of configuration space

The discussion of the properties of CP2 Kähler metric at origin provides valuable guide lines in an
attempt to understand what happens at the level of the configuration space. The use of the half
bracket for the configuration space Hamiltonians in turn allows to calculate the matrix elements of
the configuration space metric and Kähler form explicitly in terms of the magnetic or electric flux
Hamiltonians.

The earlier construction was rather tricky and formula-rich and not very convincing physically.
Cartan decomposition had to be assigned with something and in lack of anything better it was assigned
with Super Virasoro algebra, which indeed allows this kind of decompositions but without any strong
physical justification. The realization that super-symplectic and super Kac-Moody symmetries define
coset construction at the level of basic quantum TGD, and that this construction provides a realization
of Equivalence Principle at microscopic level, forced eventually the realization that also the coset space
decomposition of configuration space realizes Equivalence Principle geometrically.

It must be however emphasized that holography implying effective 2-dimensionality of 3-surfaces
in some length scale resolution is absolutely essential for this construction since it allows to effectively
reduce Kac-Moody generators associated with X3

l to X2 = X3
l ∩ δM4

± × CP2. In the similar manner
super-symplectic generators can be dimensionally reduced to X2. Number theoretical compactification
forces the dimensional reduction and the known extremals are consistent with it [10]. The construction
of configuration space spinor structure and metric in terms of the second quantized spinor fields [7]
relies to this picture as also the recent view about M -matrix [9].

In this framework the coset space decomposition becomes trivial.

1. The algebra g is labeled by color quantum numbers of CP2 Hamiltonians and by the label
(m,n, k) labeling the function basis of the light cone boundary. Also a localization with respect
to X2 is needed. This is a new element as compared to the original view.

2. Super Kac-Moody algebra is labeled by color octet Hamiltonians and function basis of X2. Since
Lie-algebra action does not lead out of irreps, this means that Cartan algebra decomposition is
satisfied.

4.7 Generalization of WCW Hamiltonians to take into account the inter-
action term between the ends of CD

This picture requires a generalization of the view about configuration space Hamiltonians since also
the interaction term between the ends of the line is present not taken into account in the previous
approach.

1. The proposed representation of WCW Hamiltonians as flux Hamiltonians [6, 7] reads as

Q(HA) =

∫
HAJtotd

2x ,

J = εαβJαβ , . (4.13)

Here Jtot (see Eq. 3.9) is the sum of electric and magnetic fluxes and works for the kinetic terms
only since J cannot be the same at the ends of the line.

The assumption that Poisson bracket of WCW Hamiltonians reduces to the level of imbed-
ding space - in other words {Q(HA), Q(HB} = Q({HA, HB}) - can be justified. One starts
from the representation in terms of say flux Hamiltonians Q(HA) and defines JA,B as JA,B ≡
Q({HA, HB}). One has ∂HA/∂tB = {HB , HA}, where tB is the parameter associated with the
exponentiation of HB . The inverse JAB of JA,B = ∂HB/∂tA is expressible as JA,B = ∂tA/∂HB .
From these formulas one can deduce by using chain rule that the bracket {Q(HA), Q(HB} =
∂tCQ(HA)JCD∂tDQ(HB) of flux Hamiltonians equals to the flux Hamiltonian Q({HA, HB}).

2. One should be able to assign to WCW Hamiltonians also a part corresponding to the interac-
tion term. The symplectic conjugation associated with the interaction term permutes the WCW
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coordinates assignable to the ends of the line. One should reduce this apparently non-local sym-
plectic conjugation (if one thinks the ends of line as separate objects) to a non-local symplectic
conjugation for δCD × CP2 by identifying the points of lower and upper end of CD related
by time reflection and assuming that conjugation corresponds to time reflection. Formally this
gives a well defined generalization of the local Poisson brackets between time reflected points at
the boundaries of CD. The connection of Hermitian conjugation and time reflection in quantum
field theories is is in accordance with this picture.

3. The only manner to proceed is to assign to the flux Hamiltonian also a part obtained by the
replacement of the flux integral over X2 with an integral over the projection of X2 to a sphere
S2 assignable to the light-cone boundary or to a geodesic sphere of CP2, which come as two
varieties corresponding to homologically trivial and non-trivial spheres. The projection is defined
as by the geodesic line orthogonal to S2 and going through the point of X2. The hierarchy of
Planck constants assigns to CD a preferred geodesic sphere of CP2 as well as a unique sphere
S2 as a sphere for which the radial coordinate rM or the light-cone boundary defined uniquely
is constant: this radial coordinate corresponds to spherical coordinate in the rest system defined
by the time-like vector connecting the tips of CD. Either spheres or possibly both of them could
be relevant.

Recall that also the construction of number theoretic braids and symplectic QFT [9] led to
the proposal that braid diagrams and symplectic triangulations could be defined in terms of
projections of braid strands to one of these spheres. One could also consider a weakening for
the condition that the points of the number theoretic braid are algebraic by requiring only that
the S2 coordinates of the projection are algebraic and that these coordinates correspond to the
discretization of S2 in terms of the phase angles associated with θ and φ.

This gives for the corresponding contribution of the WCW Hamiltonian the expression

Q(HA)int =

∫
S2
±

HAXδ
2(s+, s−)d2s± =

∫
P (X2

+)∩P (X2
−)

∂(s1, s2)

∂(x1
±, x

2
±)
d2x± . (4.14)

Here the Poisson brackets between ends of the line using the rules involve delta function
δ2(s+, s−) at S2 and the resulting Hamiltonians can be expressed as a similar integral of H[A,B]

over the upper or lower end since the integral is over the intersection of S2 projections.

The expression must vanish when the induced Kähler form vanishes for either end. This is
achieved by identifying the scalar X in the following manner:

X = Jkl+ J
−
kl ,

Jkl± = ∂αs
k∂βs

lJαβtot,± . (4.15)

The tensors are lifts of the induced Kähler form of X2
± to S2 (not CP2). The explicit expression

for the sum of electric and magnetic fluxes

Jαβtot,± = Jαβe,± + Jαβm,±

depends on the the form of electric-magnetic duality one is willing to adopt (see Eq. 3.9 ).

4. One could of course ask why these Hamiltonians could not contribute also to the kinetic terms
and why the brackets with flux Hamiltonians should vanish. This relate to how one defines
the Kähler form. It was shown above that in case of flux Hamiltonians the definition of Kähler
form as brackets gives the basic formula {Q(HA), Q(HB)} = Q({HA, HB} and same should hold
true now. In the recent case JA,B would contain an interaction term defined in terms of flux
Hamiltonians and the previous argument should go through also now by identifying Hamiltonians
as sums of two contributions and by introducing the doubling of the coordinates tA.
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4.8 Symmetric space property implies Ricci flatness and isometric action
of symplectic transformations

The basic structure of symmetric spaces is summarized by the following structural equations

g = h+ t ,
[h, h] ⊂ h , [h, t] ⊂ t , [t, t] ⊂ h .

(4.16)

In present case the equations imply that all commutators of the Lie-algebra generators of Can( 6= 0)
having non-vanishing integer valued radial quantum number n2, possess zero norm. This condition is
extremely strong and guarantees isometric action of Can(δM4

+ ×CP2) as well as Ricci flatness of the
configuration space metric.

The requirement [t, t] ⊂ h and [h, t] ⊂ t are satisfied if the generators of the isometry algebra possess
generalized parity P such that the generators in t have parity P = −1 and the generators belonging
to h have parity P = +1. Conformal weight n must somehow define this parity. The first possibility
to come into mind is that odd values of n correspond to P = −1 and even values to P = 1. Since
n is additive in commutation, this would automatically imply h⊕ t decomposition with the required
properties. This assumption looks however somewhat artificial. TGD however forces a generalization
of Super Algebras and N-S and Ramond type algebras can be combined to a larger algebra containing
also Virasoro and Kac Moody generators labeled by half-odd integers. This suggests strongly that
isometry generators are labeled by half integer conformal weight and that half-odd integer conformal
weight corresponds to parity P = −1 whereas integer conformal weight corresponds to parity P = 1.
Coset space would structure would state conformal invariance of the theory since super-symplectic
generators with integer weight would correspond to zero modes.

Quite generally, the requirement that the metric is invariant under the flow generated by vector
field X leads together with the covariant constancy of the metric to the Killing conditions

X · g(Y,Z) = 0 = g([X,Y ], Z) + g(Y, [X,Z]) . (4.17)

If the commutators of the complexified generators in Can( 6= 0) have zero norm then the two terms
on the right hand side of Eq. (4.17) vanish separately. This is true if the conditions

Qm({HA, {HB , HC}}) = 0 , (4.18)

are satisfied for all triplets of Hamiltonians in Can6=0. These conditions follow automatically from the
[t, t] ⊂ h property and guarantee also Ricci flatness as will be found later.

It must be emphasized that for Kähler metric defined by purely magnetic fluxes, one cannot pose
the conditions of Eq. (4.18) as consistency conditions on the initial values of the time derivatives of
imbedding space coordinates whereas in general case this is possible. If the consistency conditions are
satisfied for a single surface on the orbit of symplectic group then they are satisfied on the entire orbit.
Clearly, isometry and Ricci flatness requirements and the requirement of time reversal invariance might
well force Kähler electric alternative.
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