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TETRON MODEL BUILDING

Bodo Lampe

Abstract

Spin models are considered on a discretized inner symmetry space with tetra-

hedral symmetry as possible dynamical schemes for the tetron model. Parity

violation, which corresponds to a change of sign for odd permutations, is

shown to dictate the form of the Hamiltonian. It is further argued that such

spin models can be obtained from more fundamental principles by consider-

ing a (6+1)- or (7+1)-dimensional spacetime with octonion multiplication.
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1 Introduction

Particle physics phenomena can be described, for example, by the left-right

symmetric Standard Model with gauge group U(1)B−L ×SU(3)c ×SU(2)L ×

SU(2)R [1] and 24 left-handed and 24 right-handed fermion fields which in-

cluding antiparticles amounts to 96 degrees of freedom, i.e. this model has

right handed neutrinos as well as righthanded weak interactions.

In recent papers [2, 3, 4] it was shown that there is a natural one-to-one

correspondence between the quarks and leptons and the elements of the per-

mutation group S4, as made explicit in table 1 and natural in the sense

that the color, isospin and family structure correspond to the K, Z2 and

Z3 subgroups of S4,
1 where Zn is the cyclic group of n elements and K is

the so-called Kleinsche Vierergruppe which consists of the 3 even permuta-

tions 2143, 3412, 4321, where 2 pairs of numbers are interchanged, plus the

identity.

In other words, S4 is a semi-direct product S4 = K � Z3 � Z2 where the

Z3 factor is the family symmetry and Z2 and K can be considered to be the

’germs’ of weak isospin and color symmetry (cf. [3]). Furthermore it does not

only describe quarks and leptons (table 1) but also leads to a new ordering

scheme for the Standard Model gauge bosons, cf. ref. [2].

In refs. [2, 3, 4] a constituent picture was suggested where quarks and leptons

are assumed to be built from 4 tetron ’flavors’ a, b, c and d, whose inter-

changes generate the permutation group S4. In the present paper I follow

a somewhat different approach which relies on the fact that S4 is also the

symmetry group of a tetrahedral lattice or of a fluctuating S4-permutation

(quantum) lattice. In this approach the inner symmetry space is not con-

tinuous (with a continuous symmetry group) but has instead the discrete

structure of a tetrahedral or S4-permutation lattice, and the original dynam-

ics is governed by some unknown lattice interaction instead of by four real

tetron constituents.

The observed quarks and leptons can then be interpreted as excitations on

1S4 is isomorphic to the rotational symmetry group of a regular tetrahedron and, up

to a parity factor, the symmetry group of a 3-dimensional cube and octahedron.
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...1234... ...1423... ...1243...

family 1 family 2 family 3

τ , b1,2,3 µ, s1,2,3 e, d1,2,3

ν 1234(id) 2314 3124

u1 2143(k1) 3241 1342

u2 3412(k2) 1423 2431

u3 4321(k3) 4132 4213

ντ , t1,2,3 νµ, c1,2,3 νe, u1,2,3

l 3214(1 ↔ 3) 1324(2 ↔ 3) 2134(1 ↔ 2)

d1 2341 3142 1243(3 ↔ 4)

d2 1432(2 ↔ 4) 2413 3421

d3 4123 4231(1 ↔ 4) 4312

Table 1: List of elements of S4 ordered in 3 fermion families. ki denote

the elements of K and (a ↔ b) a simple permutation where a and b are

interchanged. Permutations with a 4 at the last position form a S3 subgroup

of S4 and may be thought of giving the set of lepton states. It should be

noted that this is only a heuristic assignment. Actually one has to consider

linear combinations of permutation states as discussed in section 2.
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this lattice and characterized by representations of the lattice symmetry

group S4, i.e. by A1 + A2 + 2E + 3T1 + 3T2 or 2G1 + 2G2 + 4H , just as

in the ’classical’ tetron model [2, 3, 4], and the original dynamics is gov-

erned by some unknown lattice interaction instead of by four real tetron

constituents.

The lattice ansatz also naturally explains the selection rule mentioned in

ref. [2] that all physical states must be permutation states: just because the

lattice excitations must transform under representations of S4.

In the following I will make the additional assumption that not only the

inner symmetry is discrete but that physical space is a lattice, too. The

main reason for this assumption is that although theories with a discrete inner

symmetry over a continuous base manifold have been examined [9] they seem

to me rather artificial because they usually lead to domain walls and other

discontinuities. In addition, this line of thought takes up an old dream that

field theoretical UV-infinities and renormalization problems can eventually be

avoided by considering a fundamental theory living on a discretized instead

of a continuous spacetime, with the average lattice spacing typically of the

order of the Planck scale.

To distinguish the inner S4-symmetry from the symmetries of the spatial

lattice I will denote it by Sin
4 in the following.

Quantum theory dictates that there is an uncertainty in the position of the

lattice points. Therefore instead of a fixed spatial lattice one should allow the

lattice points to fluctuate, with the fluctuations following some (quantum)

stochastic process [10]. Working in a semiclassical approximation one may

neglect these fluctuations to first order and consider a fixed lattice with

tetrahedral symmetry.

There is some relation of this idea to other models which involve a fundamen-

tal length scale, like quantum foam models, which however assume gravity

to play the central role in producing the new length scale, while in the tetron

model gravitational interactions and cosmological phenomena appear only as

byproducts of the spin lattice interactions.

In the present paper, dynamical models based on such lattices will be con-
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sidered. They are typically spin models or fermionic lattice models. Variants

of such models will be presented in the next sections: in section 2 a simple

spin model on a 3-dimensional lattice will be discussed which is assigned to

describe the tetron phenomenology. Such a naive approach, however, may

not lead to a well described continuous field theory like the Standard Model.

Therefore in section 3 I start with continuous spin vectors on a face cen-

tered cubic (fcc) lattice and follow the idea that the S4 inner symmetry is

generated by the interplay within the two fcc sublattices. A more funda-

mental alternative is presented in section 4 by going to higher dimensions,

i.e. assuming that the spatial and inner symmetry lattices can be unified

to a higher dimensional lattice. One intriguing possibility is a 7-dimensional

spatial lattice involving octonions.

2 Single-S Model with a discrete inner sym-

metry space

Starting with a spatial lattice, the most straightforward idea is to consider

spin models. Spin models have been considered in statistical and solid state

physics for a long time, and they have been used to describe magnetism and

magnetic excitations as well as many other phenomena.

Spin models work as follows: since one cannot put a fermion field on the lat-

tice, because this leads to non-local interactions, one considers ’spin vectors’
~Si sitting on each lattice site i together with a Hamiltonian which in simple

cases is just given by

H = gSS

∑

i,j

~Si
~Sj (1)

where gSS is the coupling strength and the sum runs over all neigbouring

lattice sites i and j. One may distinguish the Ising model and its generaliza-

tions where the spin vector can take values only in a discrete set from the

Heisenberg model which works with a continuous spin vector.

Fermionic excitations can arise in spin models [11] when one decomposes the

spin vectors in more fundamental fermion degrees of freedom. In fact one
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may write
~S = f †~σf (2)

where f is a Pauli spinor and ~σ is the triplet of Pauli matrices. 2

In the present case the main challenge is to obtain the excitation spectrum

of the discrete inner Sin
4 symmetry group. To this end we start with a 3-

dimensional spatial lattice as discussed at the end of the last section. In

order to obtain the tetron spectrum, the most straightforward approach (fol-

lowed in this section) is to assume that the spin vectors take values in an at

least 3-dimensional inner symmetry lattice with symmetry group Sin
4 . The

dimension din of the inner symmetry lattice is restricted to be ≥ 3 because it

is required to have a tetrahedral symmetry. The most straightforward choice

is din = 3 but we shall also consider an example with din = 4.

What kind of Hamiltonian to choose? This is a very delicate question be-

cause this Hamiltonian eventually has to generate the full Standard Model

phenomenology.

One essential requirement is that parity violation of the weak interactions

should be described correctly. Usually a natural explanation of weak par-

ity violation in subquark models is a real challenge. In the framework of

the tetron idea the situation is somewhat simpler. The point is that in the

tetron framework, as can be seen in table 1, weak isospin transformations are

related to odd permutations. Therefore the Hamiltonian should transform

non-trivially (i.e. antisymmetric) under odd permutations (of inner symme-

try points as well the base points). Furthermore, odd permutations of the

inner symmetry group should be related to helicity/parity transformations in

the sense that left handed transitions are energetically favoured as compared

to righthanded ones.

A simple Heisenberg like spin model Hamiltonian eq. (1) fails to fulfil this

requirement. However, there are two reasonable alternatives:

2For the moment I work in the nonrelativistic limit and postpone the discussion of the

relativistic case and antiparticles to the last section.
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• on an inner 3-dimensional tetrahedral lattice there is the triple product

H = gSSS

∑

t

(~S4 −
~S1)[(~S3 −

~S1) × (~S2 −
~S1)] (3)

where gSSS is the coupling strength and the sum runs over all tetrahe-

dral plaquettes t = 1, 2, 3, 4 of the lattice and ~Si is the value of spin

vector on site i.

• on an inner 4-dimensional tetrahedral lattice there is the antisymmetric

combination

H = gSSSS

∑

t

εabcdS
a
1S

b
2S

c
3S

d
4 (4)

where Sa
i are the four components of the vector ~Si sitting on site i.

In both cases the interaction is antisymmetric under odd permutations in

the base lattice as well as in the inner symmetry lattice. This is precisely

what is needed to describe the parity violation in the tetron view on particle

physics. The point is that all suggested Hamiltonians give a negative energy

contribution to the partition function, if an odd transformation is applied

to the points of the base tetrahedron. This odd permutation is a reflection

(proper rotation times parity transformation) both in the inner and in the

spatial lattice. A combination of an odd and an even fermion corresponds to

a parity violating weak vector boson (even×odd=odd).

There are several disadvantages of the approach presented in this section.

First of all in terms of the fundamental fermion f (eq. (2)), eqs. (3) and (4)

correspond to effective 6- or 8-fermion interactions, which does not look very

fundamental. Secondly, it is neither straigtforward nor natural to obtain a

field theory for fermions from discrete (Ising-like) inner symmetry spaces.

In the next two sections I will consider alternatives which overcome this

dificulty.

3 Tetrons on a FCC Lattice

Here I want to suggest a spin model with continuous spin vectors which works

in 3 dimensions and leads to an Sin
4 spectrum of excitations.
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I will assume that space has the structure of an fcc cubic lattice (like the

NaCl crystal), or a fluctuating quantum version thereof, i.e. it consists of 2

tetrahedral sublattices with 2 types of continuous inner spin vectors ~S and
~T sitting on the Na and Cl sites of the crystal.

The lattice allows for ordinary spatial symmetry transformations, but in

addition there is a discrete inner Sin
4 symmetry arising from relative rotations

of the S and T sublattices.

Such a model is more likely to produce excitations effectively described by

field theories than the models with a discrete inner symmetry lattice consid-

ered in the last section.

One can also consider it as being inspired or even induced by the 7 dimen-

sional models presented below, because, as we shall see, it relates the inner

S4 tetron symmetry to spatial transformations.

A Heisenberg-like Hamiltonian for such a system is given by

H = gSS

∑

i,j

~Si
~Sj + gTT

∑

i,j

~Ti
~Tj + gST

∑

i,j

~Si
~Tj (5)

where in the first 2 terms the sums run over 12 face diagonal next neighbours

and in the last term it runs over 8 body diagonal next neighbours.

As stated, quark and lepton degrees of freedom arise from the relative rota-

tions of the S and T sublattices, and in particular the appearance of weak

isospin is related to odd permutations in this inner S4 symmetry. 3 In con-

trast, spatial parity transformations in this lattice correspond to the exchange

of ~S and ~T sublattices. Therefore the model will show parity violation as

soon as the couplings gSS and gTT are different.

Similar to eq. (2) the spin vectors ~S and ~T may be decomposed in 2 funda-

mental fermions f and g: ~S = f †~σf and ~T = g†~σg.

3More precisely, and if one includes antiparticles in the discussion, fermions and an-

tifermions sit on the S and T sublattices, respectively. When an odd fermion and an even

antifermion (each with inner symmetry Sin

4 ) approach each other to interact, they form a

parity violating state. For a more extensive discussion of antiparticle, see the next section.
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4 Higher dimensional Models

In the foregoing sections I have tried to set up spin models in 3 spatial

dimensions in an attempt to obtain the phenomenology of the tetron model.

In this section we follow a more universal idea, namely, that spatial and inner

symmetry lattices can be united to one big lattice with a universal lattice

constant in some n-dimensional space R
n.

In contrast to ref. [12] I will ignore gravity and consider all spaces to be flat.

Furthermore, at this point I still restrict to the nonrelativistic limit, i.e. work

without antiparticles. Antiparticles will be included later by going from R
n

to R
(n,1).

It is an old dream that inner symmetries may be obtained by extending

ordinary 3-dimensional space to higher dimensions, and in particular to 7

dimensions, because a division algebra with a corresponding spinor structure

can be defined there, namely the nonassociative algebra of octonions [5, 6,

7, 8]. 4 It is related to SO(7) just as the algebra of quaternions is related to

SO(3). More precisely, the group of unit octonions can be identified with the

covering group Spin(7) of SO(7) just as the group of unit quaternions defines

the covering group SU(2) of SO(3).

Considering R
7 one is automatically led to SO(4) as inner symmetry group.

In fact, any evidence for an SO(4) inner symmetry particle spectrum would

long since have lead to physical models based on octonions with a ’compact-

ification’ SO(7, 1) → SO(4) × SO(3, 1) to a (3+1)-dimensional spacetime

R
(3,1)
sp corresponding to a trivial fibration R

(7,1) → R
4
in ⊕R

(3,1)
sp with fibers R

4
in

(where sp and in stands for spatial and inner, respectively).

In the tetron model we do not consider continuous SO(4) but the discrete

inner symmetry group S4. This may be considered a subgroup of SO(4), and

this fact will now be used to suggest a tetron model based on a discretized

7-dimensional space, i.e. a lattice in R
7. Concerning the ’compactification’

of such a lattice we encounter a situation which is depicted graphically in

4While in continuous field theories there are many restrictions for such an approach

(from the Coleman to the Weinberg-Witten theorem), this is not the case for the discrete

spin models considered here.
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figure 1 for the corresponding fibration R
3 → R

2
in ⊕ R

1
sp of a 3-dimensional

space.

To be concrete, we consider a 7-dimensional lattice with S8 rotational symme-

try. Such a lattice is spanned by the 7-simplex in R
7 just as a 3-dimensional

lattice with S4 tetrahedral symmetry is spanned by the 3-simplex (=tetra-

hedron) in R
3 (fig. 1).

Next, the S8 lattice is assumed to ’compactify’ by some unknown mecha-

nism into two R
3 lattices, one inner symmetry part and one one spatial part

with symmetry Sin
4 and S

sp
4 , respectively. These lattices can be explicitly

constructed in the following way: we ignore quantum fluctuations of lattice

points and make the semiclassical approximation of a fixed 7-dimensional lat-

tice with a symmetry group which contains Sin
4 × S

sp
4 . It is straightforward

to define this lattice as the span of the regular 7-simplex in R
7, i.e. to have

it spanned by 8 linear independent unit vectors P1−8 regularly distributed on

the 6-sphere in R
7. The first four of these points P1−4 are assumed to span

a regular tetrahedral lattice with symmetry group S
sp
4 in what is assumed to

be ordinary space. They can therefore be given in terms of quaternions I, J

and K = IJ .

P1 = (−1,−1,−1) = −I − J − K

P2 = (−1, +1, +1) = −I + J + K

P3 = (+1,−1, +1) = I − J + K

P4 = (+1, +1,−1) = I + J − K (6)

where as usual in quaternion constructions I, J and K are taken to form

an orthogonal basis of R
3 (just as the octionion basis I,J,K,L,IL,JL and KL

will be used form an orthogonal basis of R
7). The rest of the points P5−8

span another tetrahedral lattice with symmetry Sin
4 in another R

3 within

R
7, which forms a tower of tetrahedral lattices in the 7th dimension. The

situation is depicted graphically in figure 1 where instead of the reduction

R
7 → R

3
in⊕R

3
sp I have drawn R

3 → R
1
in⊕R

1
sp and instead of symmetry group

Sin
4 × S

sp
4 one has Sin

2 × S
sp
2 (the reflections of a line at the origin).

Having set the geometrical framework one can now fix the physical objects
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to be spin vectors in 7 dimensions. These can be decomposed as

~S = F †~eF (7)

where F are spinors under SO(7) and ~e = (e1, ..., e7) are the generalizations

of the Pauli matrices in 7 dimensions, i.e. they span the space of the 7-

dimensional representation 7 of SO(7) just as the ordinary Pauli matrices

span the 3-dimensional representation of SO(3). Furthermore, the ei, i.e. the

7 of SO(7) can be constructed can be obtained from the spinor representation

8 of SO(7) in the same way as the 3 of SO(3) can be obtained from 2⊗ 2 =

3 + 1, namely

8 ⊗ 8 = 1 + 7 + 21 + 35 (8)

The ei are closely related to the octonion algebra, just as the Pauli matrices

are to the quaternion. While the Pauli matrices can be identified more or less

directly with the quaternion units, the situation in 7 dimensions is somewhat

more subtle because the octonion algebra is not associative, i.e. cannot be

represented by the matrices ei. An explicit representation of the marices ei

can be found, for example, in the book by Dixon [8].

From the tetron point of view the big advantage to consider spin models on

higher dimensional lattices is that one can have continuous spin vectors and

at the same time an energy spectrum of the discrete S4 inner symmetry. The

point is that half of the spatial lattice serves as inner Sin
4 symmetry while

the field values can remain continuous.

The totality of excitations on the Sin
4 ×S

sp
4 lattice can be classified according

to [12]

(A1 + A2 + 2E + 3T1 + 3T2)
in
⊗ (G1 + G2 + 2H)sp (9)

where the first factor contains the 24 inner symmetry d.o.f of quarks and

leptons, and G
sp
1 describes their (spin 1/2) spatial transformation behavior.

If one takes serious the assumption that Sin
4 × S

sp
4 originally stems from a

higher (S8) symmetry, eq. (9) should better be replaced by

(G1 + G2 + 2H)in ⊗ (G1 + G2 + 2H)sp (10)
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Figure 1: One dimensional spin chain from a three dimensional tetrahedral

lattice in R
3 → R

1
in ⊕R

1
sp as visualization for R

7 → R
3
in ⊕R

3
sp. The depicted

lattice is assumed to possess a tetrahedral (S4) symmetry with S4 → Sin
2 ×

S
sp
2 . Transitions 1 ↔ 2 correspond to spatial S2 transformations, transitions

1′ ↔ 2′ to inner S2 transformations.

i.e. one should work with projective representations of the tetrahedral group

both in the inner symmetry and in the spatial sector, simply because there

are no mixed bosonic and fermionic S8 representations.

5 Conclusions

In conclusion, in the present paper lattice spin models have been discussed

as possible dynamical schemes for the implementation of the tetron idea.

Possible Hamiltonians have been presented, while the calculation of partition

functions and expectation values for the excitation states is postponed to a

forthcoming publication.

It is probable that the presented models are only effective descriptions of a

more fundamental theory yet to be developed. However, presently there is

no indication that this fundamental theory will have anything to do with

the nowadays popular string or brane like structures. On the contrary, the
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appearance of S4 symmetric states points to discrete structures at small

distances and that the superstring ansatz is not opportune to describe natural

phenomena.

The tetron idea is not only in opposition to string theories. It also reduces

the celebrated gauge theories and the U(1)B−L ×SU(3)c ×SU(2)L ×SU(2)R

Standard model gauge symmetry to what they are: a nice and logical theo-

retical framework which however holds true only on a certain level of matter

(the TeV energy range). Tetrons are an idea that go beyond this level (just

as quarks go beyond nuclear physics) and also offer explanations for out-

standing cosmological problems [12]. Why did I suggest several dynamical

schemes? Because it is difficult und ambiguous to formulate dynamics for

tetrons, because one does not have many informations apart from the low

energy behavior (the Standard Model).

In fact, such a situation is not unusual in the development of science. It is well

known from the macroscopic world as well as from nano physics, molecular

and atomic physics that when going to a lower level of matter one has to

give up the full understanding of some emergent phenomena known from

the higher levels. In the present case we have given up continuus Lorentz

invariance (which is restaurated at low energies) in favor of a fluctuating

quantum lattice picture. Furthermore we consider the appearance of gauge

symmetries as collective emergent effects.

It is possible that eventually the underlying structure (e.g. involving octo-

nions as in section 3) turns out to be in some sense supersymmetric. However

at the present stage I consider this option far from being compelling.
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