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PREFACE 
 
  
 

With the advent of computers one needs algebraic structures 
that can simultaneously work with bulk data. One such 
algebraic structure namely n-linear algebras of type I are 
introduced in this book and its applications to n-Markov chains 
and n-Leontief models are given. These structures can be 
thought of as the generalization of bilinear algebras and bivector 
spaces. Several interesting n-linear algebra properties are 
proved.  

This book has four chapters. The first chapter just 
introduces n-group which is essential for the definition of n-
vector spaces and n-linear algebras of type I. Chapter two gives 
the notion of n-vector spaces and several related results which 
are analogues of the classical linear algebra theorems. In case of 
n-vector spaces we can define several types of linear 
transformations.  

The notion of n-best approximations can be used for error 
correction in coding theory. The notion of n-eigen values can be 
used in deterministic modal superposition principle for 
undamped structures, which can find its applications in finite 
element analysis of mechanical structures with uncertain 
parameters. Further it is suggested that the concept of n-
matrices can be used in real world problems which adopts fuzzy 
models like Fuzzy Cognitive Maps, Fuzzy Relational Equations 
and Bidirectional Associative Memories.  The applications of 
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these algebraic structures are given in Chapter 3. Chapter four 
gives some problem to make the subject easily understandable.  

The authors deeply acknowledge the unflinching support of 
Dr.K.Kandasamy, Meena and Kama.  
  

 
W.B.VASANTHA KANDASAMY 
FLORENTIN SMARANDACHE 
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Chapter One 
 
 
 
 
 

BASIC CONCEPTS  
 
 
 
 
 
In this chapter we introduce the notion of n-field, n-groups (n ≥ 
2) and illustrate them by examples. Throughout this book F will 
denote a field, Q the field of rationals, R the field of reals, C the 
field of complex numbers and Zp, p a prime, the finite field of 
characteristic p. The fields Q, R and C are fields of zero 
characteristic. 
 
Now we proceed on to define the concept of n-groups. 
 
DEFINITION 1.1: Let G = G1 ∪ G2 ∪ … ∪ Gn (n ≥ 2) where 
each (Gi, *i, ei) is a group with i∗  the binary operation and ei 
the identity element, such that Gi ≠ Gj, if i ≠ j, 1 ≤ j, i ≤ n. 
Further Gi ⊄ Gj or Gj ⊄ Gi if i ≠ j. Any element x ∈ G would be 
represented as x = x1 ∪ x2 ∪ …∪ xn; where xi ∈ Gi, i = 1, 2, …, 
n. Now the operations on G is described so that G becomes a 
group. For x, y ∈ G, where x = x1 ∪ x2 ∪ …∪ xn and y = y1 ∪ y2 
∪ … ∪ yn; with xi, yi ∈ Gi, i = 1, 2, …, n.  
x * y  =  (x1 ∪ x2 ∪ …∪ xn ) * (y1 ∪ y2 ∪ … ∪ yn)  

=  (x1 *1 y1 ∪ x2 *2 y2 ∪ … ∪ xn *n yn). 
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Since each xi *i yi ∈ Gi we see x * y = (p1 ∪ p2 ∪ …∪ pn) where 
xi *i yi = pi for i = 1, 2, …, n. Thus G is closed under the binary 
operation *. 

Now let e = (e1 ∪ e2 ∪ … ∪ en) where ei ∈ Gi the identity of 
Gi with respect to the binary operation, *i, i = 1, 2, …, n we see 
e * x = x * e = x for all x ∈ G. e will be known as the identity 
element of G under the operation *. 

Further for every x = x1 ∪ x2 ∪ … ∪ xn ∈ G; we have 
1 1 1

1 2 ... nx x x− − −∪ ∪ ∪  in G such that,  
1

1 2* ( ... )nx x x x x− = ∪ ∪ ∪ * 1 1 1
1 2( ... )nx x x− − −∪ ∪ ∪   

=  1 1 1
1 1 1 2 2 2* * ... *n n nx x x x x x− − −∪ ∪ ∪   

=  x-1 * x 
(e1 ∪ e2 ∪ … ∪ en) = e. 

1 1 1 1
1 2 ... nx x x x− − − −= ∪ ∪ ∪   

 
is known as the inverse of x = x1 ∪ x2 ∪ … ∪ xn. We define (G, 
*, e) to be the n-group (n ≥ 2). When n = 1 we see it is the 
group. n = 2 gives us the bigroup described in [37-38] when n 
> 2 we have the n-group. 
 
Now we illustrate this by examples before we proceed on to 
recall more properties about them. 
 
Example 1.1: Let G = G1 ∪ G2 ∪ G3 ∪ G4 ∪ G5 where G1 = S3 
the symmetric group of degree 3 with  
 

1

1 2 3
e

1 2 3
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

, 

 

G2 = 〈g | g6 = e2〉, the cyclic group of order 6, G3 = Z5, the group 
under addition modulo 5 with e3 = 0, G4 = D8 = {a, b | a2 = b8 = 
1; bab = a}, the dihedral group of order 8, e4 = 1 is the identity 
element of G4 and G5 = A4 the alternating subgroup of S4 with  
 

4

1 2 3 4
e

1 2 3 4
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

. 



 9

Clearly G = S3 ∪ G2 ∪ Z5 ∪ D8 ∪ A4 is a n-group with n = 5.  
 
Any x ∈ G would be of the form  
 

2 31 2 3 1 2 3 4
x g 4 b

2 1 3 1 3 4 2
⎛ ⎞ ⎛ ⎞

= ∪ ∪ ∪ ∪⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

. 

 

x-1 = 4 51 2 3 1 2 3 4
g 1 b .

2 1 3 1 4 2 3
⎛ ⎞ ⎛ ⎞

∪ ∪ ∪ ∪⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
The identity element of G is 
 

2

1 2 3 1 2 3 4
e 0 1

1 2 3 1 2 3 4
⎛ ⎞ ⎛ ⎞

∪ ∪ ∪ ∪⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

= e1 ∪ e2 ∪ e3 ∪ e4 ∪ e5. 
 
Thus G is a 5-group. Clearly the order of G is o(G1) × o(G2) ×  
o(G3) × o(G4) × o(G5) = 6 × 6 × 5 × 16 × 12 = 34, 560. 

We see o(G) < ∞. Thus if in the n-group G1 ∪ G2 ∪ … ∪ 
Gn, every group Gi is of finite order then G is of finite order; 1 ≤ 
i ≤ n. 
 
Example 1.2: Let G = G1 ∪ G2 ∪ G3 where G1 = Z10, the group 
under addition modulo 10, G2 = 〈g | g5 = 1〉, the cyclic group of 
order 5 and G3 = Z the set of integers under +.  

Clearly G is a 3-group. We see G is an infinite group for 
order of G3 is infinite.  

Further it is interesting to observe that every group in the 3-
group G is abelian. Thus if G = G1 ∪ G2 ∪ … ∪ Gn, is a n-
group (n ≥ 2), we see G is an abelian n-group if each Gi is an 
abelian group; i = 1, 2, …, n. Even if one of the Gi in G is a non 
abelian group then we call G to be only a non abelian n-group. 
 
Having seen an example of an abelian and non abelian group we 
now proceed on to define the notion of n-subgroup. We need all 
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these concepts mainly to define the new notion of linear n-
algebra or n-linear algebra and n-vector spaces of type I. 
 
DEFINITION 1.2: Let G = G1 ∪ G2 ∪ … ∪ Gn, be a n-group, a 
proper subset H ⊂ G of the form H = H1 ∪ H2 ∪ … ∪ Hn with 
Hi ≠ Gi or {ei} but φ ≠ Hi ⊂ Gi; i = 1, 2, …, n, Hi proper 
subgroup of Gi is defined to be the proper n-subgroup of the n-
group G. If some of the Hi = Gi or Hi = {ei} or Hi = φ for some 
i, then H will not be called as proper n-subgroup but only as m-
subgroup of the n-group, m < n and m of the subgroups Hj in Gj  
are only proper and the rest are either {ej} or φ, 1 ≤ j ≤ n.  
 
We illustrate both these situations by the following example. 
 
Examples 1.3: Let G = G1 ∪ G2 ∪ G3 ∪ G4 be a 4-group where 
G1 = S4, G2 = Z10 group under addition modulo 10, G3 = D12 the 
dihedral group with order 12 given by the set {a, b | a2 = b6 = 1, 
bab = a} and G4 = Z the set of positive and negative integers 
with zero under +.  

Consider H = H1 ∪ H2 ∪ H3 ∪ H4 where H1 = A4 the 
alternating subgroup of S4, H2 = {0, 2, 4, 6, 8} a subgroup of 
order 5 under addition modulo 10. H3 = {1, b, b2, b3, b4, b5}; the 
subgroup of D12 and H4 = {2n | n ∈ Z} a subgroup of Z. Clearly 
H is a proper 4-subroup of the 4-group G. 

Let K = K1 ∪ K2 ∪ K3 ∪ K4 ⊆ G where K1 = A4, K2 = {0, 
5}, K3 = D12 and K4 = Z. Clearly K is not a proper 4-subgroup 
of the 4-group G but only a improper 4-subgroup of G.  

Let T = T1 ∪ T2 ∪ T3 ∪ T4 ⊆ G where T1 = A4, T2 = {0}, T3 
= φ  and T4 = {2n | n ∈ Z}; clearly T is only a 2-subgroup or 
bisubgroup of the 4-group G. 
 
We mainly need in this book n-groups which are only abelian.  
 
Now in this section we define the notion of n-fields. 
 
DEFINITION 1.3: Let F = F1 ∪ F2 ∪ … ∪ Fn ( n ≥ 2) be such 
that each Fi is a field and Fi ≠ Fj, if i ≠ j and Fi ⊄ Fj  or Fj ⊄ Fi, 
1 ≤ i, j ≤ n. Then we define (F, +, ×) to be a n-field if (F, +) is a 
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n-group and F1 \ {0} ∪ F2 \ {0} ∪ … ∪ Fn \ {0} is a n-group 
under ×.  

Further  
 

[(a1 ∪ a2 ∪ … ∪ an) + (b1 ∪ b2 ∪ … ∪ bn)]  
× [(c1 ∪ c2 ∪ … ∪ cn)]  

= (a1 + b1) × c1 ∪ (a2 + b2) × c2 ∪ … ∪ (an + bn) × cn 
 
and  
 

[(c1 ∪ c2 ∪ … ∪ cn)] ×  {[(a1 ∪ a2 ∪ … ∪ an)] 
+ [(b1 ∪ b2 ∪ … ∪ bn)]} 

= 1c × (a1 ∪ b1) ∪ c2 × (a2 ∪ b2) ∪ … ∪ cn × (an ∪ bn) 
 
for all ai, bi, ci ∈ F, i = 1, 2, …, n. Thus (F, +, ×) is a n-field.  
 
 
We illustrate this by the following example. 
 
Example 1.4: Let F = F1 ∪ F2 ∪ F3 ∪ F4 where F1 = Q, F2 = Z2, 
F3 = Z17 and F4 = Z11; F is a 4-field. 
 
Example 1.5: Let F = F1 ∪ F2 ∪ F3 ∪ F4 ∪ F5 ∪ F6 where F1 = 
Z2, F2 = Z3, F3 = Z13, F4 = Z7, F5 = Z19 and F6 = Z31, F is a 6-
field. Let F = F1 ∪ F2 ∪ … ∪ Fn, be a n-field where each Fi is a 
field of characteristic zero, 1 ≤ i ≤ n, then F is called as a n-field 
of characteristic zero. 
 
Let F = F1 ∪ F2 ∪ … ∪ Fm  (m ≥ 2) be a m-field if each field Fi  
is of finite characteristic then we call F to be a m-field of finite 
characteristic. Suppose F = F1 ∪ F2 ∪ … ∪ Fn, n ≥ 2 where 
some Fi’s are finite characteristic and some Fj’s are zero 
characteristic then alone we say F is a n-field of mixed 
characteristic.  
 
Example 1.6: Let F = F1 ∪ F2 ∪ … ∪ F5 where F1 = Q, F2 = Z7, 
F3 = Z23 and F4 = Z17 and F5 = Z2 be a 5-field. F is a 5-field of 
mixed characteristic. 
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Example 1.7: Let F = F1 ∪ F2 ∪ … ∪ F6 = Z4 ∪ R ∪ Z7 ∪ Q ∪ 
R ∪ Z11. Clearly F is not a 6 field as F2 = F5. We need each field 
Fi to be distinct, 1 ≤ i ≤ n. 
 
Note: Clearly F1 ∪ F2 ∪ F3 = Q ∪ R ∪ Z2 is not a 3-field as Q ⊆ 
R. Because we need in this case also as in case of bistructures 
non containment of one set in another set. 
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Chapter Two 
 
 
 
 
 

n-VECTOR SPACES OF TYPE I  
AND THEIR PROPERTIES  
 
 
 
 
 
 
In this chapter we introduce the notion of n-vector spaces and 
describe some of their important properties. 

Here we define the concept of n-vector spaces over a field 
which will be known as the type I n-vector spaces or n-vector 
spaces of type I. Several interesting properties about them are 
derived in this chapter. 
 
DEFINITION 2.1: A n-vector space or a n-linear space of type I 
(n ≥ 2) consists of the following: 
 

1. a field F of scalars  
2. a set V = V1 ∪ V2 ∪ … ∪ Vn of objects called n-vectors  
3. a rule (or operation) called vector addition; which 

associates with each pair of n-vectors α = α1 ∪ α2 ∪ … ∪ 
αn, β = β1 ∪ β2 ∪ … ∪ βn ∈ V = V1 ∪ V2 ∪ …∪ Vn; α + β 
= (α1 ∪ α2 ∪ …∪ αn) + (β1∪ β2 ∪ … ∪ βn) = (α1 + β1 ∪ α2 
+ β2 ∪ … ∪ αn + βn) ∈ V called the sum of α and β in such 
a way 

a. α + β = β + α; i.e., addition is commutative (α, β ∈ V). 
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b. α + (β + γ) = (α + β) + γ, i.e., addition is associative (α, 
β, γ ∈ V). 

c. There is a unique n-vector 0n = 0 ∪ 0 ∪ … ∪ 0 ∈ V 
such that α + 0n = α for all α ∈ V, called the zero n-
vector of V. 

d. For each n-vector α = α1 ∪ α2 ∪ … ∪ αn ∈ V, there 
exists a unique vector – α = –α1 ∪ –α2 ∪ … ∪ –αn ∈ V 
such that α + (–α) = 0n. 

e. A rule (or operation) called scalar multiplication which 
associates with each scalar c in F and a n-vector α in V 
= V1 ∪ V2 ∪ … ∪ Vn a n-vector cα in V called the 
product of c and α in such a way that  

 
1. 1.α   =  1. (α1 ∪ α2 ∪ … ∪ αn) 

=  1.α1 ∪ 1.α2 ∪ … ∪ 1.αn 
= α1 ∪ α2 ∪ … ∪ αn 
= α  

 for every n-vector α  in V. 
 
2. (c1. c2).α   = c1.(c2. α) for all c1 , c2 ∈ F and α ∈ V i.e. if α1 ∪ 
α2 ∪ … ∪ αn is the n-vector in V we have  
 
(c1. c2).α  = (c1. c2) (α1 ∪ α2 ∪ … ∪ αn)  

= c1 [c2((α1 ∪ α2 ∪ … ∪ αn)] 
= c1 [c2α1 ∪ c2α2 ∪ … ∪ c2αn] 
= c1 [c2α]. 

 
3. c(α + β) = c.α + c.β for all α, β ∈ V and for all c ∈ F i.e., if 
α1 ∪ α2 ∪ … ∪ αn and β1 ∪ β2 ∪ … ∪ βn are n-vectors of V then 
for any c ∈ F we have  
 
c(α + β)  = c[(α1 ∪ α2 ∪ … ∪ αn) + ( β1 ∪ β2 ∪ … ∪ βn)]  

=  c[α1 + β1 ∪ α2 + β2 ∪ … ∪ αn + βn] 
=  (c(α1 + β1) ∪ c(α2 + β2) ∪…∪ c(αn + βn)]  
=  (cα1 ∪ cα2 ∪…∪ cαn) + (cβ1 ∪ cβ2 ∪…∪ cβn) 
=  cα + cβ. 

 
4. (c1 + c2).α = c1α + c2α  for all c1, c2 ∈ F and α ∈ V. 
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Just like a vector space which is a composite algebraic 
structure containing the field a set of vectors which form a 
group, the n-vector space of type I is a composite of set of n-
vectors or n-group and a field F of scalars. V is a linear n-
algebra or n-linear algebra if V has a multiplicative closed 
binary operation “.” which is associative i.e.; if α, β ∈ V, α.β ∈ 
V, thus if α = (α1 ∪ α2 ∪ … ∪ αn) and β = (β1 ∪ β2 ∪ … ∪ βn) ∈ 
V then if  
 
α.β   =  (α1 ∪ α2 ∪ … ∪ αn) . (β1 ∪ β2 ∪ … ∪ βn)  

= (α1.β1 ∪ α2.β2 ∪ … ∪ αn.βn)∈ V  
 
then the linear n-vector space of type I becomes a linear n-
algebra of type-I. 
 
Now we make an important mention that all linear n-algebras of 
type-I are linear n-vector spaces of type-I; however a n-vector 
space of type-I over F in general need not be a n- linear algebra 
of type I over F.  
 
We now illustrate this by the following example. 
 
Example 2.1: Let V = V1 ∪ V2 ∪ V3 ∪ V4 where V1 = Q[x] the 
vector space of polynomials over Q. V2 = Q × Q, the vector 
space of dimension two over Q,  
 

V3 = 
a b

a,b,c,d Q
c d

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
the vector space of all 2 × 2 matrices with entries from Q and  
 

V4 = 
a b c

a,b,c,d,e,f R
d e f

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 

 
be the vector space of all 2 × 3 matrices with entries from R 
over Q. Thus V is a linear 4-vector space over Q of type-I. 
Clearly V is not a linear 4-algebra of type-I over Q.  
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Now we give yet another example of a linear n-vector space of 
type-I. 
 
Example 2.2: Let V = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 be a 5-vector 
space over Q of type-I, where V1 = Q[x], the set of all 
polynomials with coefficients from Q is a vector space over Q. 
V2 = Q × R × Q is a vector space over Q,  
 

V3 = 
a b c
d e f a,b,c,d,e,f ,g,h,i Q
g h i

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟
⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭

 

 
is a vector space over Q,  
 

V4 = 

a 0 0 0
0 b 0 0

a,b,c,d, R
0 0 c 0
0 0 0 d

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟
⎪ ⎪⎜ ⎟ ∈⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

 

 
is a vector space over Q and V5 = R is a vector space over Q. 
Clearly V = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 is a linear 5-vector space 
of type-I over Q. Also V is a linear 5-linear algebra over Q. 
Thus we have seen from example 2.1 that every vector n-space 
of type-I need not be a linear n-algebra of type-I. Also every 
linear n-algebra of type-I is a linear n-vector space of type-I.  
 
Now we can also define the notion of n-vector space of type-I in 
a very different way. 
 
DEFINITION 2.2: Let V = V1 ∪ V2 ∪ … ∪ Vn (n ≥ 2) where each 
Vi is a vector space over the same field F and Vi ≠ Vj , if i ≠ j 
and Vi ⊄ Vj and Vj ⊄ Vi if i ≠ j, 1 ≤ i, j ≤ n, then V is defined to 
be a n-vector space of type-I over F. 

If each of the Vi’s are linear algebra over F then we call V 
to be a linear n-algebra of type-I over F.  
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Now we proceed on to define the notion of n-subvector space of 
the n-vector space of type-I. 
 
DEFINITION 2.3: Let V = V1 ∪ V2 ∪ … ∪ Vn (n ≥ 2) be a n-
vector space of type I over F. Suppose W = W1 ∪ W2 ∪ … ∪ Wn 

(n ≥ 2) is a proper subset of V such that each Wi is a proper 
subspace of the vector space Vi over F with Wi ≠ Vi, Wi ≠ φ or (0) 
such that Wi ≠ Wj or Wi ⊄ Wj or Wj ⊄ Wi if i ≠ j, 1 ≤ i, j ≤ n, then 
we define W to be a n-subspace of type-I over F. 
 
We now illustrate it by the following example. 
 
Example 2.3: Let V = V1 ∪ V2 ∪ V3 where V1 = R × R, a vector 
space over R and V2 = R[x] a vector space over R and  

 

V3 =
a c

a,b,c,d R
d b

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

, 

 
a vector space over R i.e., V is a 3-vector space of type-I over 
R. Let W = W1 ∪ W2 ∪ W3 ⊂ V = V1 ∪ V2 ∪ V3 where  

 
W1 = R × {0} ⊂ V1, 

 

W2 = 
n

2i
i i 2

i 0
r x r R V

=

⎧ ⎫
∈ ⊂⎨ ⎬

⎩ ⎭
∑ , 

W3 = 3

a 0
a,b R V

0 b
⎧ ⎫⎛ ⎞⎪ ⎪∈ ⊆⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

. 

 
Clearly W is a 3 subspace of V of type-I. Suppose  

 

T = R × {0} ∪ R ∪ 
a 0

a,b R
0 b

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

⊆ V1 ∪ V2 ∪ V3, 

 
then T is not a 3-subspace of type-I as R × {0} and R are same 
or R ⊆ R × {0}. 
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Now we proceed on to define the notion of n-linear dependence 
and n-linear independence in the n-vector space V of type-I. 
 
DEFINITION 2.4: Let V = V1 ∪ V2 ∪ … ∪ Vn be a n-vector 
space of type-I over F. Any proper n-subset S ⊆ V would be of 
the form S = S1 ∪ S2 ∪ … ∪ Sn ⊆ V1 ∪ V2 ∪ … ∪Vn where φ ≠ 
Si contained in Vi, 1 ≤ i ≤ n. Si a proper subset of Vi. If each of 
the subsets Si ⊆ Vi is a linearly independent set over F for i = 1, 
2, …, n then we define S to be a n-linearly independent subset of 
V. Even if one of the subset Sk of Vk is not a linearly independent 
subset of Vk for some 1 ≤ k ≤ n then we call the n-subset of V to 
be a n-linearly dependent subset or a linearly dependent n-
subset of V. 
 
Now we illustrate this situation by the following examples. 
 
Example 2.4: Let V = V1 ∪ V2 ∪ V3 ∪ V4 be a 4- vector space 
over Q, where V1 = Q[x], V2 = Q × Q × Q; V3 = { the set of all 2 
× 2 matrices with entries from Q} and V4 = [the set of all 4 × 2 
matrices with entries from Q, are all vector spaces over Q. Let S 
= S1 ∪ S2 ∪ S3 ∪ S4 be a 4 subset of V,  
 

S1 = {1, x2, x5, x7, 3x8}, 
S2 = {(7, 0, 2), (0, 5, 1)}, 

3

5 1 0 0
S ,

0 0 7 3
⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪= ⎨ ⎬⎜ ⎟ ⎜ ⎟
⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭

 

and  

4

0 2 1 0 0 0
1 0 0 2 0 0

S , , .
0 0 0 0 7 3
3 0 0 1 0 1

⎧ ⎫⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥= ⎨ ⎬⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎪ ⎪⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎩ ⎭

 

 
Clearly we see every subset Si of Vi is a linearly independent 
subset, for i = 1, 2, 3, 4. Thus S is a 4- linearly independent 
subset of V. 
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Example 2.5: Let V = V1 ∪ V2 ∪ V3 be a 3-vector space over R 
where V1 = R[x], V2 = {set of all 3 × 3 matrices with entries 
from R} and V3 = R × R × R × R. Clearly V1, V2 and V3 are all 
vector spaces over R. Let S = S1 ∪ S2 ∪ S3 ⊆ V1 ∪ V2 ∪ V3 = V 
be a proper 3-subset of V; where  
 

S1 = {x3, 3x3 + 7, x5}, 
 

S2 = 
6 0 0 0 1 2
0 0 3 , 1 0 1
1 1 0 0 7 0

⎧ ⎫−⎛ ⎞ ⎛ ⎞
⎪ ⎪⎜ ⎟ ⎜ ⎟
⎨ ⎬⎜ ⎟ ⎜ ⎟
⎪ ⎪⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎩ ⎭

 

and  
S3 = {(3 1 0 0), (0 7 2 1), (5 1 1 1), (0 8 9 1), (2 1 3 0)}. 

 
We see S1 is a linearly dependent subset of V1 over R and S2 is a 
linearly independent subset over R and S3 is a linearly 
dependent subset of V3 over R. Thus S is a 3-linearly dependent 
subset of the 3-vector space V over R.  
 

Now we proceed onto define the notion of n-basis of the n-
vector space V over a field F. 
 
DEFINITION 2.5: Let V = V1 ∪ V2 ∪ … ∪ Vn be a n-vector space 
over a field F. A proper n-subset S = S1 ∪ S2 ∪…∪ Sn of V is 
said to be n-basis of V if S is a n-linearly independent set and 
each Sj ⊆ Vj generates Vj, i.e., Sj is a basis of Vj, true for j = 1, 
2, …, n. Even if one of the Sj is not a basis of Vj for 1 ≤ j ≤ n 
then S is not a n-basis of V.  
 
As in case of vector spaces the n-vector spaces can also have 
many basis but the number of base elements in each of the n 
subsets is the same.  
 
Now we illustrate this situation by the following example. 
 
Example 2.6 : Let V = V1 ∪ V2 ∪ V3 ∪ V4 be a 4-vector space 
over Q. V1 = {all polynomials of degree less than or equal to 5}, 
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V2 = Q × Q × Q, V3 = {the set of all 2×2 matrices with entries 
from Q} and V4 = Q × Q × Q × Q × Q are vector spaces over Q. 
Now let  
B  =  B1 ∪ B2 ∪ B3 ∪ B4  

= {1, x, x2, x3, x4, x5} ∪ {(1 0 0), (0 1 0), (0 2 1)} ∪   
 

0 0 1 0 0 0 0 1
, ,

1 0 0 0 0 1 0 0
⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞⎪ ⎪ ∪⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟
⎪ ⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎩ ⎭

 {(0 0 0 0 1), (0 0 0 

 1 0), (0 0 1 0 0), (0 1 0 0 0), (1 0 0 0 0)}  
⊆ V1 ∪ V2 ∪ V3 ∪ V4 = V.  

 
B is a 4-basis of V as each Bi is a basis of Vi ; i = 1, 2, 3, 4. 
 
Example 2.7: Let V = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 be a 5-vector 
space over Q where V1 = R, V2 = Q × Q, V3 = Q[x], V4 = R × R 
× R and V5 = {set of all 2×2 matrices with entries from Q}. 
Clearly V1, V2, V3, V4 and V5 are vector spaces over Q. We see 
some of the vector spaces Vi over Q are finite dimensional i.e., 
has finite basis and some of the vector spaces Vj have infinite 
number of elements in the basis set. We find means to define the 
new notion of finite n-dimensional space and infinite n-
dimensional space. To be more specific in this example, V1 is an 
infinite dimensional vector space over Q, V2 and V3 are finite 
dimensional vector spaces over Q. V4 is an infinite dimensional 
vector space over Q and V5 is a finite dimensional vector space 
over Q. 
 
DEFINITION 2.6: Let V = V1 ∪ V2 ∪ … ∪ Vn be a n-vector space 
of type-I over F. If every vector space Vi in V is finite 
dimensional over F then we say the n-vector space is finite n-
dimensional over F. Even if one of the vector space Vj in V is 
infinite dimensional then we say V is infinite dimensional over 
F. We denote the dimension of V by (n1, n2, …, nn); ni dimension 
of Vi , i = 1, 2, …, n. 
 
We illustrate the definition by some examples. 
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Example 2.8: Let V = V1 ∪ V2 ∪ V3 be a 3-vector space over Q, 
where V1 = Q[x], V2 = {set of all 2×2 matrices with entries from 
Q} and V3 = Q the one dimensional vector space over Q. 
Clearly 3-dimension of the 3-vector space over Q is (∞, 4, 1). 
Thus V is an infinite 3-dimensional space over Q. 
 
Example 2.9: Let V = V1 ∪ V2  ∪ V3  ∪ V4 be a 4-vector space 
of type-I over Q. Suppose V1 = {set of all 2 × 2, matrices with 
entries from Q}; V2 = Q × Q × Q a vector space over Q,  
V3 = {All polynomials of degree less than or equal to 7 with 
coefficients from Q} and V4 = {the collection of all 5 × 5, 
matrices with entries from Q}, we see V1, V2, V3 and V4 are 
vector spaces over Q. The 4-dimension of V is (4, 3, 8, 25), so, 
V is finite 4-dimension 4 vector space over Q of type-I. 
 
Having seen sub n-spaces, n-basis and n-dimension of n-vector 
spaces of type-I now we proceed on to define the notion of n-
transformation of n-vector space of type-I. 
 
DEFINITION 2.7: Let V = V1 ∪ V2 ∪ … ∪ Vn be a n-vector 
space over a field F of type-I and W = W1 ∪ W2 ∪ … ∪ Wm be 
another m-vector space over the same field F of type I, (n ≤ m) 
(m ≥ 2) and (n ≥ 2). We call T a n-map if T = T1 ∪ T2 ∪ … ∪ 
Tn: V → W is defined as Ti : Vi → Wj, 1 ≤ i ≤ n, 1 ≤ j ≤ m for 
every i. If each Ti is a linear transformation from Vi to Wj, i = 1, 
2, …, n, 1 ≤ j ≤ n then we call the n-map to be a n-linear 
transformation from V to W or linear n-transformation from V 
to W. No two Vi’s are mapped on to the same Wj, 1 ≤ i ≤ n, 1 ≤ j 
≤ m. Even if one of the Ti is not a linear transformation from Vi 
to Wj then T is not a n-linear transformation. 
 
We will illustrate this by the simple example. 
 
Example 2.10: Let V = V1 ∪ V2 ∪ V3 be a 3-vector space over 
Q and W = W1 ∪ W2 ∪ W3 ∪ W4 be a 4-vector space over Q. V 
is of finite (3, 2, 4) dimension and W is of finite (4, 3, 2, 4) 
dimension. T: V → W be a 3-linear transformation defined by T 
= T1 ∪ T2 ∪ T3: V1 ∪ V2 ∪ V3 → W1 ∪ W2 ∪ W3 ∪ W4 as  
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T1: V1 → W1 given by 
 T1

1 1 1 1 1 1 1 1 1 1 1
1 2 3 1 2 2 3 2 1 2 3(a ,a ,a ) (a a ,a ,a a ,a a a )= + + + +  

 

T2:V2 → W3 defined by  
1 2 2 2 2

2 1 2 1 2 1T (a ,a ) (a a ,a )= +  
 

and T3 : V3 → W4 defined by  
3 3 3 3 3 3 3 3 3

3 1 2 3 4 2 4 4 1 2T (a ,a ,a ,a ) (a ,a ,a ,a a )= + , 
 

clearly T is a 3-linear transformation or linear 3-transformation 
or linear 3 transformation of V to W; i.e. from 3-vector space V 
to 4-vector space W.  
 
It may so happen that we may have a n-vector space over a field 
F and it would become essential for us to make a linear n-
transformation to a m-vector space over F where n>m. In such 
situation we define a linear n-transformation which we call as 
shrinking linear n-transformation which is as follows. 
 
DEFINITION 2.8: Let V be a n-vector space over F and W a m-
vector space over F n > m. The shrinking n-map T from V = V1 
∪ V2 ∪ … ∪ Vn to W = W1 ∪ W2 ∪ … ∪ Wm is defined as a map 
from V to W as follows T = T1 ∪ T2 ∪ … ∪ Tn with Ti : Vi → Wj 

; 1 ≤ i ≤ n and 1 ≤ j ≤ m with the condition Tj : Vj → Wk where j 
may be equal to k. i.e. the range space as in case of linear n-
map may not be distinct. 

Now if Ti : Vi → Wj in addition a linear transformation then 
we call, T = T1 ∪ T2 ∪ … ∪ Tn the shrinking n-map to be a 
shrinking linear n-transformation or a shrinking n-linear 
transformation. 
 
We illustrate this situation by the following example. 
 
Example 2.11: Let V = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 be a 5-vector 
space defined over Q of 5-dimenion (3, 2, 5, 7, 6) and W = W1 

∪ W2 ∪ W3 be a 3-vector space defined over Q of 3-dimension 
(5, 3, 6). T = T1 ∪ T2 ∪ … ∪ T5 : V → W can only be a 
shrinking 5-linear transformation defined by  
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T1 : V1 → W3
,
 

T2 : V2 → W1, 

T3 : V3 → W2, 

T4 : V4 → W3 
and 

T5 : V5 → W1 
where  

 
1 1 1 1 1 1 1 1 1 1 1 1

1 1 2 3 1 2 3 2 2 3 1 3 1T (x ,x ,x ) (x x ,x ,x ,x x ,x x , x )= + + +  
where 1 1 1

1 2 3 1x ,x , x V∈ ,  
 

2 2 2 2 2 2 2 2 2
2 1 2 1 2 2 1 2 1 2T (x ,x ) (x x ,x ,x x , x , x ),= + +  

where 2 2
1 2 2,x x V∈ ,  

 
3 3 3 3 3 3 3 3 3 3 3

3 1 2 3 4 5 1 2 2 3 4 5T (x ,x ,x ,x ,x ) (x x ,x x ,x x )= + + +  
where 3 3 3 3

1 2 3 4x ,x ,x ,x  and 3
5 3x V∈ ,  

 
4 4 4 4 4 4 4

4 1 2 3 4 5 6 7T (x ,x ,x ,x ,x ,x ,x )  
= 4 4 4 4 4 4 4 4 4 4 4 4

1 2 2 3 3 4 4 5 5 6 6 7(x x ,x x ,x x , x x ,x x ,x x )+ + + + + +  
for all 4 4 4

1 2 7 4x ,x ,..., x V∈  and 
 

5 5 5 5 5 5 5 5 5 5 5 5
5 1 2 3 4 5 6 1 2 3 4 5 6T (x , x ,x , x , x ,x ) (x ,x , x x , x ,x )= +  

for 5 5 5
1 2 6 5x , x ,..., x V∈ .  

 
Clearly T is a shrinking linear 5 transformation. 
 
Note: It may be sometimes essential for one to define a linear n-
transformation from a n-vector space V into a m-vector space 
W, m > n where all the n spaces of the m-vector space may not 
be used only a set of r vector spaces from W may be needed r < 
n < m, in such cases we call the linear n-transformation as a 
special shrinking linear n-transformation of V into W.  
 
We illustrate this situation by the following example. 
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Example 2.12: Let V = V1 ∪ V2 ∪ V3 be a 3-vector space over 
Q and W = W1 ∪ W2 ∪ W3 ∪ W4 ∪ W5 be a 5-vector space over 
Q. Suppose V is a finite 3-dimension (3, 5, 4) space and W be a 
finite 5-dimension (3, 5, 4, 8, 2) space. Let T = T1 ∪ T2 ∪ T3 : V 
→ W be defined by T1: V1 → W1, T2: V2 → W3, T3: V3 → W1 as 
follows; 

1 1 1 1 1 1 1 1
1 1 2 3 1 2 2 3 2T (x ,x ,x ) (x x ,x x , x )= + +  

for all 1 1 1
1 2 3 1x ,x , x V∈ ;  

 
2 2 2 2 2 2 2 2 2 2

2 1 2 3 4 5 2 1 3 5 4T (x ,x , x ,x ,x ) (x ,x ,x x , x )= +  
for all 2 2 2 2 2

1 2 3 4 5 2x ,x , x ,x ,x V∈ ,  
 

3 3 3 3 3 3 3 3 3 3
3 1 2 3 4 1 2 4 1 2 3T (x ,x , x ,x ) (x x ,x x ,x x )= + + +  

for all 3 3 3
1 2 3x ,x ,x and 3

4x  in V3.  
 

Thus T:V → W is only a special shrinking linear 3-
transformation. 
 
DEFINITION 2.9: Let V be a n-vector space over the field F and 
W be a n-vector space over the same field F. T = T1 ∪ T2 ∪ … ∪ 
Tn is a linear one to one n transformation if each Ti is a 
transformation from Vi to Wj and for no Vk we have Tk : Vk → Wj 
i.e. no two distinct domain space can have the same range 
space. Then we call T to be a one to one vector space 
preserving linear n-transformation.  
 
We just show this by a simple example. 
 
Example 2.13: Let V = V1 ∪ V2 ∪ V3 ∪ V4 be a 4- vector space 
over Q and W = W1 ∪ W2 ∪ W3 ∪ W4 be another 4-vector 
space over Q. Let V be of (3, 4, 5, 2) finite 4 dimensional space 
and W a (2, 5, 6, 3) finite 4-dimensional space. Let T = T1 ∪ T2 

∪ T3 ∪ T4: V = V1 ∪ V2 ∪ V3 ∪ V4 → W1 ∪ W2 ∪ W3 ∪ W4 
given by T1: V1 → W2 , T2: V2 → W3 , T3: V3 → W4 and T4: V4 

→ W1 where T1, T2, T3 and T4 are linear transformation. Clearly 
T is a linear one to one 4-transformation.  
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Note: In the definition 2.9 it is interesting and important to note 
that all Ti’s need not be 1-1 linear transformation with dim Vi = 
dim Wj if Ti: Vi → Wj i.e., Ti’s are not vector space 
isomorphism for i = 1, 2, …, n. Now we give a new name for a 
n-linear transformation T: V → W where T = T1 ∪ T2 ∪ … ∪ 
Tn with each Ti a vector space isomorphism or Ti is 1-1 and onto 
linear transformation from Vi to Wj, 1 ≤ i ≤ n, 1 ≤ j ≤ n.  
 
DEFINITION 2.10: Let V and W be n vector spaces defined over 
a field F. We say V and W are of same n-dimension if and only 
if n-dimension of V is (n1, …, nn) then the n-dimension of W is 
just a permutation of (n1 , n2 , … , nn). 
 
Example 2.14: Let V = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 be a 5-
dimension vector space over R of 5-dimension (7, 2, 3, 4, 5). 
Suppose W = W1 ∪ W2 ∪ W3 ∪ W4 ∪ W5 is a 5-dimension 
vector space over R of 5-dimension (2, 5, 4, 7, 3) then we say V 
and W are of same 5-dimension. If X = X1 ∪ X2 ∪ X3 ∪ X4 ∪ 
X5 is a 5-vector space of 5-dimension (2, 7, 9, 3, 4) then clearly 
X and V are not 5-vector spaces of same dimension. So for any 
n-dimensional n-vector space V we have only n  number of n-
vector spaces of same dimension including V.  
 
We just show this by an example. 
 
Example 2.15: Let V = V1 ∪ V2 ∪ V3 be a 3-vector space of 3-
dimension (7, 5, 3). Then W, X, Y, Z and S of 3-dimension (5, 
7, 3), (5, 3, 7), (7, 3, 5), (3, 5, 7) and (3, 7, 5) are of same 
dimension.  
 
In view of this we have the following interesting theorem. 
 
THEOREM 2.1: Let V be a finite n-dimension n-vector space 
over the field F of n-dimension (n1, n2, …, nn), then their exist 
n  finite n-dimension n-vector spaces of same dimension as that 

of V including V over F.  
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Proof: Given V is a finite n-vector space of n-dimension (n1, n2, 
…, nn) i.e. each 1 ≤ ni ≤ ∞ and i ≠ j implies ni ≠ nj we know two 
n-vector spaces V and W are of same dimension if and only if 
the n-dimension of one (say V) can be got from permuting the 
n-dimension of W, or vice versa. Further from group theory we 
know for a set (1, 2, …, n) we have n  permutations of the set 
(1, 2, …, n). Thus we have n  n-vector spaces of dimension (n1, 
n2, …, nn).  
 
Note: If we have a n-vector space of n-dimension (m1, m2, …, 
mn) with some mi ≠ nj, 1 ≤ i ≤ n then we get another set of n  n-
vector spaces of n-dimension (m1, m2, …, mn) and all its 
permutations. Clearly this set of m-vector spaces with n-
dimension (n1, n2, …, nn) are distinct from the n-vector spaces 
of n-dimension (m1, m2, …, mn). From this one can conclude we 
have infinite number of n-vector spaces of varying dimensions. 
Only same n-dimension vector spaces can be n-isomorphic. 
 
DEFINITION 2.11: Let V and W be n-vector spaces of same 
dimension. Let n-dimension of V be (n1, n2, …, nn) and that of W 
be (n4, n2, nn, …, n5) i.e. let V = V1 ∪ V2 ∪ … ∪ Vn and W = W1 

∪ W2 ∪ … ∪ Wn. A linear n-transformation T = T1 ∪ T2 ∪ … ∪ 
Tn : V → W is defined to be a n-vector space linear n-
isomorphism if and only if Ti : Vi → Wj is such that dim Vi = 
dim Wj; 1 ≤ i, j ≤ n. 
 
We illustrate this situation by an example. 
 
Example 2.16: Let V = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 and W = W1 
∪ W2 ∪ W3 ∪ W4 ∪ W5 be two 5-vector spaces of same 
dimension. Let the 5-dimension of V and W be (3, 2, 5, 4, 6) 
and (4, 2, 5, 3, 6) respectively. Suppose T = T1 ∪ T2 ∪ T3 ∪ T4 

∪ T5: V → W given by T1(V1) = W4, T2(V2) = W2, T3(V3) = W3, 
T4(V4) = W1 and T5(V5) = W5; then T is a one to one n-
isomorphic, n-linear transformation of V to W (n = 5). Suppose 
P : V → W where P = P1 ∪ P2 ∪ P3 ∪ P4 ∪ P5 given by P1:V1 
→ W2, P2: V2 → W3, P3: V3 → W4, P4: V4 → W5, and P5: V5 → 
W1 the linear transformation so that P is a 5-linear 
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transformation from V to W. Clearly P is not the one to one 
isomorphic 5-linear transformation of V. P is only a one to one 
5-linear transformation of V. 
 
Now having seen different types of linear n-transformation of a 
n-vector space V to W, W a linear n-space we proceed on to 
define the notion of n-kernel of T. 
 
DEFINITION 2.12: Let V = V1 ∪ V2 ∪ … ∪ Vn be a n-vector 
space over the field F and W = W1 ∪ W2 ∪ … ∪ Wm be a m-
vector space over the field F. Let T = T1 ∪ T2 ∪ … ∪ Tn be n-
linear transformation of T from V to W defined by Ti: Vi  → Wj; 
1 ≤ i ≤ n and 1≤ j ≤ m such that no two domain spaces are 
mapped on to the same range space. The n-kernel of T denoted 
by ker T = ker T1 ∪ kerT2 ∪ … ∪ kerTn where  

ker Ti = {vi ∈ Vi | T(vi) = 0 }, i = 1, 2, …, n. 
Thus  

ker T = {(v1, v2, …, vn)  ∈ V1 ∪ V2 ∪ … ∪ Vn | T(v1, v2, …, vn)  
= T(v1) ∪ T(v2) ∪ … ∪ T(vn) = 0 ∪ 0 ∪ … ∪ 0}. 

 
It is easily verified that Ker T is a proper n-subgroup of V. 
Further Ker T is a n-subspace of V.  
 
We will illustrate this situation by the following example. 
 
Example 2.17: Let V = V1 ∪ V2 ∪ V3 be a 3-vector space over 
Q of 3-dimension (3, 2, 4). Let W = W1 ∪ W2 ∪ W3 ∪ W4 be a 
4-vector space over Q of 4-dimension (4, 3, 2, 5). Let T = T1 ∪ 
T2 ∪ T3: V → W be a 3-linear transformation given by  
 

T1:V1 → W4, 
1 1 1 1 1 1 1 1 1 1

1 1 2 3 1 2 3 1 1 3 2T ( x , x , x ) ( x x , x , x , x x , x )= + +  
 
for all 1 1 1

1 2 3 1x ,x , x V∈ ,  
1 1 1 1 1 1

1 1 2 3 1 2 3ker T {(x ,x ,x ) T(x ,x , x ) (0)= = i.e. 1
3x 0= , 1

1x 0= , 
1
2x 0=  and 1 1

1 2x x 0+ = and 1 1
1 3x x 0+ = }  
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Thus ker T1 = {(0, 0, 0)} is the trivial subspace of V1,  
T2: V2 → W3, 2 2 2 2 2

2 1 2 1 2 1T (x , x ) (x x ,x )= +  
for all 2 2

1 2 2x ,x V∈ .  
ker T2 = 2 2 2 2

1 2 1 2{(x ,x ) T(x ,x ) (0)}=  

i.e. 2 2
1 2x x 0+ = and 2

1x 0=  which forces 2
2x 0= . Thus ker T2 = 

{(0 0)}.  
Now  

T3: V3 → W1 
given by  

3 3 3 3 3 3 3 3 3 3
3 1 2 3 4 1 2 3 4 3 4T (x ,x , x ,x ) (x x ,x ,x ,x x )= + +  

for all 3 3 3 3
1 2 3 4 3x ,x , x ,x V∈ .  

Now ker T3 gives  
3 3
1 2x x 0+ = , 3

3x 0= , 3
4x 0= , 3 3

3 4x x 0+ = . 
This gives the condition 3 3

1 2x x= −  and 3 3
3 4x x 0= = . Thus  

ker T3 = 3 3
1 1{(x , x ,0,0)}− . 

Thus a subspace of V3. Hence we see the 3-kernel of T is a 1-
susbspace of V i.e. 〈{(0 0 0 0) ∪ (0 0) ∪ 3 3

1 1(x , x ,0,0)− }〉. We 
can define kernel for any n-linear transformation T be it a usual 
n-linear transformation or a one to one n-linear transformation. 
It is easily verified that for any n-vector space V = V1 ∪ V2 ∪ … 

∪ Vn and any m-vector space W = W1 ∪ W2 ∪ … ∪ Wm over 
the same field F. Suppose T: V → W is any n-linear 
transformation from V to W then ker T = ker T1 ∪ ker T2 ∪ … 

∪ ker Tn would be always a t-subspace of V as each ker Ti is a 
subspace of Vi , i = 1, 2, …, n. It may so happen that some of the 
ker Ti may be the zero space in such case we will call the 
subspace of V only as a t-subspace of V where 1 ≤ t ≤ n. If all 
the subspaces given by ker Ti is zero then we call ker T to be the 
n zero subspace of V; i = 1, 2, …, n. 
 
Now we proceed on to give some more results in case of n-
vector spaces and their related linear n-transformation. 
 
DEFINITION 2.13: Let V = V1 ∪ V2 ∪ … ∪ Vn be a n-vector 
space over a field F of type-I. Let T = T1 ∪ T2 ∪ … ∪ Tn : V → 
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V be a linear n-transformation of V such that each Ti : Vi → Vi, i 
= 1, 2, …, n. i.e., each Ti is a linear operator on Vi then we 
define T = T1 ∪ T2 ∪ … ∪ Tn to be a n-linear operator on V. 
Clearly all n-linear transformations need not be n-linear 
operator on V. Thus T is a n-linear operator on V if and only if 
each Ti is a linear operator from Vi to Vi, 1≤  i ≤ n. 
 
This is the marked difference between the linear operator on a 
vector space and a n-linear operator on a n-vector space. All n-
linear transformations from the n-vector space V to the same n-
vector space V need not always be a n-linear operator.  
 
We illustrate this situation by the following example. 
 
Example 2.18 : Let V = V1 ∪ V2 ∪ V3 ∪ V4 be a 4-vector space 
over Q of 4-dimension (5, 4, 2, 3). Let T = T1 ∪ T2 ∪ T3 ∪ T4 : 
V → V be a 4-linear transformation given by T1: V1 → V2 , T2: 
V2 → V3, T3: V3 → V4 and T4: V4 → V1. Clearly none of the 
linear transformation Ti’s are linear operators for they have 
different domain and range spaces; i = 1, 2, 3, 4. So T though is 
on the same n-vector space V still T is a linear n-transformation 
and not a linear n-operator on V, where n = 4.  

Suppose we define a 4-linear transformation P = P1 ∪ P2 ∪ 
P3 ∪ P4 : V → V defined by P1: V1 → V1, P2: V2 → V2, P3: V3 
→ V3, and P4: V4 → V4, clearly the 4-linear transformation P is 
a 4-linear operator of V. 

 
The above example shows the reader that in general a n-linear 
transformation of a n-vector space V need not in general be a n-
linear operator on V. But of course trivially every n-linear 
operator on V is a n-linear transformation on V.  
 
We have the following result in case of finite n-dimensional n-
vector spaces over the field F.  
 
THEOREM 2.2: Let V = V1 ∪ V2 ∪ … ∪ Vn and W = W1 ∪ W2 ∪ 
… ∪ Wn be any two n-vector spaces over the field F. Let B = 

1 2

1 1 1 2 2 2
1 2 1 2 1 2{( , ,..., ) ( , ,..., ) ... ( , ,..., )}∪ ∪ ∪

n

n n n
n n nα α α α α α α α α  be a  
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n-basis of V1 ∪ V2 ∪ … ∪ Vn; i.e., 1 2( , ,..., )
i

i i i
nα α α is a basis of Vi

, 

i = 1, 2, … , n. Let  

1 2

1 1 1 2 2 2
1 2 1 2 1 2{( , ,..., ) ( , ,..., ) ... ( , ,..., )}= ∪ ∪ ∪

n

n n n
n n nC β β β β β β β β β  

be any n-vector in W = W1 ∪ W2 ∪ … ∪ Wn then there is 
precisely only one linear n-transformation T = T1 ∪ T2 ∪…∪ Tn 
from V on to W such that =i i

j jTα β , j = 1, 2, …, ni, 1< i<n.  
 
Proof: To prove that there is some n-linear transformation T 
with T(B) = C, it is enough if we show for the T = T1 ∪ T2 ∪… 
∪ Tn we have i i

i j jTα = β , i = 1, 2, …, n and j = 1, 2, …, ni. 

Given 
i

i i i
1 2 n( , ,..., )α α α in Vi there is a unique ni tuple 

i

i i i
1 2 n(x ,x ,..., x ) such that 

i i

i i i i i i i
1 1 2 2 n nx x ... xα = α + α + + α , for this 

vector αi we define  
Tiαi = 

i i

i i i i i i
1 1 2 2 n nx x ... xβ + β + + β  

true for each i; i = 1, 2, …, n.  
 
Clearly Ti is a well defined rule for associating with each vector 
αi in Vi a vector Ti αi in Wi. From the definition it is clear that 

i i
i j jTα = β  for each j. To see that Ti is linear; let βi = 

i i

i i i i i i
1 1 2 2 n ny y ... yα + α + + α be in Vi and ci be any scalar.  

i i i

i i i i i i i i
i i 1 1 1 i n n nT(c ) (c x y ) ... (c x y )α + β = + β + + + β . 

On the other hand,  
 

i i
i i ic (T ( )) T ( )α + β  = 

i in n
i i i i

i j j j j
j 1 j 1

c x y
= =

β + β∑ ∑  

= 
in

i i i
i j j j

j 1
(c x y )

=

+ β∑  

 
and thus Ti( ciαi + βi ) = ci(Tiαi) + Ti βi true for each i; i = 1, 2, 
…, n. If U = U1 ∪ U2 ∪ … ∪ Un is a linear n-transformation 
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from V on to W with i i
i j jU α = β , j = 1, 2, …, ni and true for each 

i; i = 1, 2, … , n. then for the vector 
in

i i i
j j

j 1
x

=

α = α∑  we have  

 
in

i i i
i i j j

j 1
U U ( x )

=

α = α∑  

= 
in

i i
j i j

j 1
x U

=

α∑  

in
i i
j j

j 1
x

=

= β∑ , 

 
true for each and every i; i = 1, 2, .., n. Thus Ui is exactly the 
rule Ti , i = 1, 2, … , n hence U is exactly the rule T which we 
have defined. This shows the n-linear transformation T = T1 ∪ 
T2 ∪ … ∪ Tn is unique.  
 
Having defined n-kernel of a n-linear transformation T we now 
proceed on to define the n-range of the n-linear transformation 
T = T1 ∪ T2 ∪ … ∪ Tn. 
 
DEFINITION 2.14: Let T = T1 ∪ T2 ∪ … ∪ Tn be a n-linear 
transformation from the n-vector space V = V1 ∪ V2 ∪ … ∪ Vn 
in to another m-vector space W, m > n. The range of T is called 
the n-range of T denoted by n

TR , is a p-subspace of W p < m 
that is n

TR = {β = β1 ∪ β2 ∪ … ∪ βm ∈ W} such that β = T(α) 
for some α = α1 ∪ α2 ∪ … ∪ αn in V. Clearly if β, γ ∈ n

TR and c 
any scalar, then there are n-vectors α, δ in V such that Tα = β 
and Tβ = γ. Since T is n-linear. 

T (cα + δ)  =  cTα + Tδ 
=  cβ1 + β2 

which is in n
TR . Now V and W be any two n-vector space and m 

vector space respectively defined over the field F and let T = T1 

∪ T2 ∪ … ∪ Tn be a linear n-transformation from V into W. The 
n-null space T is a n set of all n-vectors α in V such that  
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Tα   =  T(α1 ∪ α2 ∪ … ∪ αn) 
=  (T1 ∪ T2 ∪ … ∪ Tn) (α1 ∪ α2 ∪ … ∪ αn) 

  =  T1α1 ∪ T2α2 ∪ … ∪ Tnαn 
=  0 ∪ 0 ∪ … ∪ 0.  

If the n-vector space V is finite n-dimensional, the n-rank of T is 
the n-dimension of the n-range of T and will vary depending on 
the nature of the n-linear transformation like if T is a shrinking 
n-linear transformation, it would be different and so on. 
 
Now we can prove the most important theorem relating the n-
rank of T and n-nullity of T for a n-linear transformation only as 
for other n-linear transformation like shrinking n-linear 
transformation the result in general may not be true. 
 
THEOREM 2.3: Let V and W be two n-vector space and m-
vector space over the field F, m > n and let T is be linear n-
transformation i.e. T = T1 ∪ T2 ∪ … ∪ Tn from V to W is such 
that Ti: Vi → Wj and the Wj’s are distinct spaces for each Ti, i.e. 
no two subspaces of V are mapped on to the same subspace in 
W. Suppose V is (n1, n2, … , nn) finite dimensional, then n rank T 
+ n nullity T = n dim V. 
 
Proof: Given V = V1 ∪ V2 ∪ … ∪ Vn is a n-vector space over F 
and W = W1 ∪ W2 ∪ … ∪ Wn is a m-vector space over F (m > 
n) of dimensions (n1, n2, …, nn) and (m1, m2, …, mn) 
respectively. T = T1 ∪ T2 ∪ … ∪ Tn is a n-linear transformation 
such that each Ti is a linear transformation from Vi to a unique 
Wj, i.e. no two vector spaces Vi and Vk can be mapped to same 
Wj, if i ≠ k; 1 ≤ i, k ≤ n and 1 ≤ j ≤ m . Now n-rank T + n nullity 
T = n dim W  
i.e. n-rank (T1 ∪ T2 ∪ … ∪ Tn) + n nullity of (T1 ∪ T2 ∪ … ∪ 
Tn) = n dim (V1 ∪ V2 ∪ … ∪ Vn). 
i.e. rank T1 ∪ rank T2 ∪ … ∪ rank Tn + nullity T1 ∪ nullity T2 ∪ 
… ∪ nullity Tn = (dim V1, dim V2, …, dim Vn) = (n1, n2, …, nn).  

Suppose N = N1 ∪ N2 ∪… ∪ Nn be the p-null space of the 
n-space V; 0 ≤ p ≤ n. Let  
α = ( ) ( ) ( ){ }i 2 n

1 1 1 2 2 2 n n n
1 2 k 1 2 k 1 2 k, ,..., , ,..., ... , ,...,α α α ∪ α α α ∪ ∪ α α α  
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be a n-basis for N. Here 0 ≤ ki ≤ ni ; i = 1, 2, … , n. If ki = 0 then 
the corresponding null space is the zero space. Now we show 
the working for any i; Ti: Vi  → Wj. This result which we would 
prove is true for all i = 1, 2, …, n.  
 
Let { }i i i

1 2 k, ,...,α α α  be a basis for Ni, the null space of Ti. There 

are vectors 
i i

i i
k 1 n,...,+α α  in Vi such that { }i

i i i
1 2 n, ,...,α α α is a basis 

for Vi; true for each i; i = 1, 2, …, n. We shall now prove that 
{ }i ii k 1 i nT ,...,T+α α is a basis for the range of Ti. The vectors 

i i i
i 1 i 2 i nT ,T ,...,Tα α α certainly span the range of Ti and since 

i
i jT 0α =  for j ≤ ki we see that 

i ii k 1 i nT ,...,T+α α span the range, to 
see that these vectors are linearly independent, suppose we have 
scalars cj’s such that  

i

i

n
i

j i j
j k 1

c T ( ) 0
= +

α =∑ . 

This says that  
i

i

n
i

i j j
j k 1

T ( c ) 0
= +

α =∑  

and accordingly the vector  
i

i

n
i i

j j
j k 1

c
= +

α = α∑  

is in the null space of Ti. Since 
i

i i i
1 2 n, ,...,α α α form a basis for Ni 

there must be scalars 
i

i i i
1 2 n, ,...,β β β  such that 

ik
i i i

j j
j 1=

α = β α∑ . Thus  

ik
i i
j j

j 1=

β α∑  –
i

i

n
i i
j j

j k 1= +

β α∑  = 0. 

 
Since 

i

i i i
1 2 n, ,...,α α α are linearly independent we must have i

1b  = 

… = 
i

i
kb = 

i 1

i
kc

+
 = … = 

i

i
nc = 0. If ri is the rank of Ti the fact that 

Ti i 1

i
k +

α , . . . , Ti i

i
nα  form a basis, for the range of Ti tells us that 

ri = ni – ki . Since ki is the nullity of Ti and ni is the dimension of  
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Vi, we get rank Ti + nullity Ti = dim. Vi. This is true for each 
and every i. That is  
(rank T1 + nullity T1) ∪ (rank T2 + nullity T2) ∪ … ∪ (rank Tn 
+ nullity Tn)  

=  dim (V1 ∪ V2 ∪ … ∪ Vn)  
i.e., (rank T1 ∪ rank T2 ∪ … ∪ rank Tn) + (nullity T1 ∪ nullity 
T2 ∪ … ∪ nullity Tn)  

=  dim (V1 ∪ V2 ∪ … ∪ Vn) that is  
rank (T1 ∪ T2 ∪ … ∪ Tn) + nullity (T1 ∪ T2 ∪ … ∪ Tn)  

=  (n1, n2, … , nn).  
n rank T + n nullity T = n dim V.  
 
Now in the relation  

n rank T + n nullity T = n dim (V) = (n1, n2, …, nn). 
We assume the n-linear transformation is such that it is not 
shrinking it is a n-linear transformation given in definition 2.12. 
Also we see if nullity Ti = 0 for some i in such cases we have 
rank Ti = dim Vi. Since a p-nullspace in general need not always 
be a nontrivial subspace we may have the p-nullspace of the n-
vector space be such that p < n.  
 
Now we proceed on to the algebra of n-linear transformations. 
Let us assume V and W are two n-vector space and m-vector 
space respectively defined over the field K. 
 
THEOREM 2.4: Let V and W be any two n-vector space and m-
vector space respectively defined over the field F(m > n). Let T 
and U be n-linear transformations as given in definition from V 
into W. The n-function (T + U) defined by (T + U)α = Tα + Uα 
is a n-linear transformation from V into W, if c is any element 
from F, the function cT defined by (cT)α = cTα is a n-linear 
transformation from V into W. 

The set of all n-linear transformations from V into W with 
addition and scalar multiplication defined above is an n-vector 
space over the field F. 
 
Proof: Let V = V1 ∪ V2 ∪ … ∪ Vn be a n-vector space over F 
and W = W1 ∪ W2 ∪ … ∪ Wm (m>n) a m-vector space over F. 
T = T1 ∪ T2 ∪ … ∪ Tn a n-linear transformation from V to W. 
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If U = U1 ∪ U2 ∪ …∪ Un is a n-linear transformation from V 
into W; define the n-function (T + U) for α = α1 ∪ α2 ∪ … ∪ αn 
∈ V by (T + U) α = Tα + Uα then (T + U) is a n-linear 
transformation of V into W. 
 
(T + U) (cα + β)   
= [(T1 ∪ T2 ∪ … ∪ Tn) + (U1 ∪ U2 ∪ … ∪ Un)] [cα + β]  
=  [(T1 + U1) ∪ (T2 + U2) ∪ … ∪ (Tn + Un)]  

[c(α1 ∪ α2 ∪ … ∪ αn) + (β1 ∪ β2 ∪ … ∪ βn))]  
=  [(T1 + U1) ∪ (T2 + U2) ∪ … ∪ (Tn + Un)]  

[(cα1 + β1) ∪ (cα2 + β2) ∪ … ∪ (cαn + βn)]  
=  [(T1 + U1) (cα1 + β1)] ∪ [(T2 + U2) (cα2 + β2)] ∪ … ∪  
 [(Tn + Un) (cαn + βn)]. 
 
Now using the properties of linear transformation on linear 
vector space we get (Ti + Ui) (cαi + βi) = c (Ti + Ui) (αi) + (Ti + 
Ui) (βi) for each i = 1, 2, …, n. 
 
Thus (T + U) (cα + β) = {[c(T1 + U1) α1 ∪ c(T2 + U2) α2 ∪ … ∪ 
c(Tn + Un) αn] + (T1 + U1) β1 ∪ (T1 + U1) β2 ∪ … ∪ (Tn + Un) 
βn} = c(T + U) α + (T + U)β, which shows (T + U) is a n-linear 
transformation from V into W. 
 
cT(dα + β)  
=  c[(T1 ∪ T2 ∪ … ∪ Tn) [d(α1 ∪ α2 ∪ … ∪ αn) + (β1 ∪ β2 ∪ 
 … ∪ βn)] 
= c[T1 ∪ T2 ∪ … ∪ Tn] [(dα1 + β1) ∪ (dα2 + β2) ∪ … ∪  
 (dαn + βn)] 
=  c[T1(dα1 + β1) ∪ T2(dα2 + β2) ∪ … ∪ Tn(dαn + βn)] 
=  T1(c(dα1 + β1)) ∪ T2(c(dα2 + β2)) ∪ … ∪ Tn(c(dαn + βn)  

(since each cTi is a linear transformation) 
=  T[c(dα + β)] 
=  c[T(dα + β)] 
=  d[(cT)α] + (cT)β.  
 
This shows cT is a n-linear transformation of V into W. 
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THEOREM 2.5: Let V be a n-vector space of n-dimension (n1, n2, 
…, nn) over the field F, and let W be a m dimensional m-vector 
space over the same field F with m-dimension (m1, m2, …, mn) 
(m > n). Then Ln(V,W) is the finite dimensional n-space over F 
of n-dimension ( )1 21 2, ,...,

ni i i nm n m n m n  where Ln(V,W) denotes 

the space of all n-linear transformations of V into W, 1 ≤ i1, i2, 
… , in ≤ m. 
 
Proof: Let  
B = {

1

1 1 1
1 2 n( , ,..., )α α α ∪ 

2

2 2 2
1 2 n( , ,..., )α α α  ∪ … ∪ n

n n n
1 2 n( , ,..., )α α α } 

be a n-basis for V = V1 ∪ V2 ∪ … ∪ Vn of the n-vector space of 
n-dimension (n1, n2, … , nn). 

Let  
C = {

1

1 1 1
1 2 m( , ,..., )β β β  ∪ 2

2 2 2
1 2 m( , ,..., )β β β  ∪ … ∪ n

m m m
1 2 m( , ,..., )β β β } 

be a m-basis of the m-vector space W = W1 ∪ W2 ∪ … ∪ Wm 
of m-dimension (m1, m2, …, mn). 

Let Ln(V, W) be the set of all n-linear transformation of V 
into W. For every pair of integers (pj, qi), 1 ≤ j ≤ m and 1 ≤ i ≤ 
n, 1 ≤ pj ≤ mj and 1 ≤ qi ≤ ni, we define a linear transformation 

j ip ,qE ; 1≤ i ≤ n and kj ≤ m of Vi into Wj by  
 

j ip ,qE  (αi
t) = 

j

i

j i
p

0 if t q
if t q

⎧ ≠⎪
⎨β =⎪⎩

 i j
j

tq p
= δ β . 

  
By the theorem i j

j j i(T )α = β their is a unique linear transformation 

from Vi into Wj. We claim that mjni transformation 
j ip ,qE form a 

basis for Li(Vi, Wj). This is true for each i, i = 1, 2, …, n and the 
appropriate j, 1≤ j ≤ m with no two spaces Vi of V mapped into 
the same Wj. Let Ti be a linear transformation from Vi into Wj, 1 
≤ i ≤ n, 1 ≤ j ≤ m. For each ki ≤ k ≤ ni. Let A1k, …, 

jm kA  be the 

coordinates of the vector Tiαi
k in the ordered basis 

(
j

j j j
1 2 m, ,...,β β β ) the n-basis of W given in C. 
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Ti αi
k =

j

k

m
j
pp

p 1
A

=

β∑         (1) 

We wish to show that  

Ti = 
j i j j

j i
j i

m n
p ,q

p q
p 1 q 1

A E
= =

∑∑       (2) 

Let Ui be the linear transformation in the right hand member 
of (2). Then for each k 

 
j, i

j i
j i

i p q i
i k kp q

p 1 q 1

U A E ( )
= =

α = α∑∑  

= j i i j
j i

j
p q kq p

p q

A δ β∑∑  

=
j

j j
j

m
j

p k p
p 1

A
=

β∑  

= i
i kTα ; 

 
and consequently Ui = Ti. Now from 2 we see 

j ip ,qE  spans 
Li(Vi,Wj). We must only now show they form a linearly 
independent set. This is very clear from the fact  

Ui = 
j, i

j i
j i

p q
p q

p q

A E∑∑  

is the zero transformation, then Uiαi
k = 0 for each k, so that  

j

j j
j

m
j

p k p
p 1

A 0
=

β =∑  

and thus the independence of the j
j
p

β  implies that jp k
A = 0 for 

every pj and k. Since this is true of every i, i = 1, 2, … , n. We 
have  

Ln(V,W) = n
1L (V1, 1i

W ) ∪ n
2L (V2, 2i

W ) ∪ … ∪ n
nL (Vn, ni

W ); 
 
where i1, i2, …, in are distinct elements from the set {1, 2, …,m} 
and m > n. Hence Ln(V,W) is a n-space of dimension 

1 2 ni 1 i 2 i n(m n ,m n ,...,m n ) over the same field F. This n-space will 
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be known as the n-space of n-linear transformation of the n-
vector space V= V1 ∪ V2 ∪ … ∪ Vn of n-dimension (n1, n2, …, 
nn) into the m-vector space W = W1 ∪ W2 ∪ … ∪ Wm of m-
dimension (m1, m2, …, mn), m > n. 
 
Now having proved that the space of all n-linear transformations 
of a n-vector space V into a m-vector space W forms a n-vector 
space over the same field F, we prove another interesting 
theorem. 
 
THEOREM 2.6: Let V and W be two n-vector spaces of n-
dimensions (n1, n2, … , nn) and (t1, t2, … , tn) respectively defined 
over the field F. Z be a m-vector space defined over the same 
field F(m > n). Let T be a n-linear transformation of V into W 
and U be a n linear transformation from W into Z. Then the 
composed function UT defined by (UT)(α) = U(T(α)) is a n-
linear transformation from V into Z, α ∈ V. 
 
Proof: Given V = V1 ∪ V2 ∪ … ∪ Vn and W = W1 ∪ W2 ∪ … 
∪ Wn are 2 n-vector spaces over F. Z = Z1 ∪ Z2 ∪ … ∪ Zm is 
given to be a m-vector space over F, m > n. T: V → W is a n-
linear transformation; that is T = T1 ∪ T2 ∪ … ∪ Tn : V → W 
with Ti: Vi → Wj and no two vector spaces in V are mapped into 
the same vector space Wj, i = 1, 2, …, n and 1 ≤ j ≤ n. 
Now U = U1 ∪ … ∪ Un: W → Z is a n-linear transformation 
such that Uj: Wj → Zk, j = 1, 2, … , n and 1 ≤ k ≤ m such that no 
two subspaces of W are mapped into the same Zk. 
 
Now  
(Uj Ti) (cαi + βi)  = Uj [Ti (cαi + βi)  

=  Uj [Ti (cαi ) + T (βi)]  
=  Uj [c Ti (αi) + Ti (βi)]  
= Uj [cωj + δj ]  

(as Ti : Vi → Wj ; ωj, δj ∈ Wj) 
=  c Uj (ωj) + Uj (δj)  
=  cak + bk; ak, bk ∈ Zk.  
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Thus UjTi is a n-linear transformation from Wj to Zk. Hence the 
claim; for the result is true for each i and each j. Thus UT is a n-
linear transformation from W to Z. 
So  
U o T  = (U1 ∪ U2 ∪ … ∪ Un) o (T1 ∪ T2 ∪ … ∪ Tn)  

= U1 1i
T  ∪ U2 2i

T ∪ … ∪ Un ni
T   

 
(i1, i2, … , in) is a permutation of 1, 2, 3, … , n. Now we for the 
notational convenience recall that if V = V1 ∪ V2 ∪ … ∪ Vn is a 
n vector space over a field F then Vi’s are called as component 
subvector spaces of V. Vi is also unknown as the component of 
V.  
 
Now we proceed on to define the notion of linear n-operator. 
 
DEFINITION 2.15: Let V = V1 ∪ V2 ∪ … ∪ Vn be a n-vector 
space over F, a n-linear operator on V is a n-linear 
transformation T from V to V, such that T = T1 ∪ T2 ∪ … ∪ Tn 
with Ti:Vi → Vi for 1 ≤ i ≤ n. Thus in the above theorem not only 
V = W = Z but U and T are such that Ti: Vi → Vi; Ui: Vi → Vi so 
that U and T are n-linear operators on the n space V, we see 
composition UT is again a n-linear operator on V. 

Thus the n-space Ln (V, V) has a multiplication defined as 
composition. In this case the operator TU is also defined. In 
general TU ≠ UT i.e., UT – TU ≠ 0. 

Now Ln (V, V) would be only a n-vector space of dimension 
2 2 2
1 2( , ,..., ),nn n n  n-dimension of V is (n1, n2, … , nn).  

 
UT   =  (U1 ∪ U2 ∪ …∪ Un) ○ (T1 ∪  T2 ∪ …∪ Tn)  

=  (U1T1 ∪ U2 T2 ∪ … ∪ UnTn).  
TU   =  (T1 ∪ T2 ∪ … ∪ Tn) ○ (U1 ∪  U2 ∪  … ∪  Un)  

=  T1U1 ∪ T2U2 ∪ … ∪ TnUn.  
Here Ti : Vi → Vi and Ui : Vi → Vi , i = 1, 2, … , n. 
 
Now only in this case T2 = TT and in general Tn = TT … T; n 
times for n = 1, 2, …, n. We define Tº = I1 ∪ I2 ∪ … ∪ In = 
identity n-function of V = V1 ∪ V2 ∪ … ∪ Vn. It may so happen 
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depending on each Vi we will have different power of Ti to be 
approaching identity for varying linear transformation. i.e. if T 
: T1 ∪ T2 ∪ … ∪ Tn on V = V1 ∪ V2 ∪ … ∪ Vn, such that Ti : Vi 
→ Vi (only) for i = 1, 2, …, n since n-dimension of V is (n1, n2, 
…, nn). so T o T = T2 = (T1 ∪ T2 ∪ … ∪ Tn) (T1 ∪ T2 ∪ … ∪ Tn) 
= 2 2 2

1 2( , ,..., )nT T T . Like wise any power of T. I = I1 ∪ I2 ∪ … ∪ 
In is the identity function on V i.e. each Ii : Vi → Vi is such that 
Ii(μi) = μi for all μi ∈ Vi ; i = 1, 2, …, n. Only under these 
special conditions we define Ln (V, V); elements of Ln(v, v) are 
called special n-linear operators.   
 
LEMMA 2.1: Let V = V1 ∪ V2 ∪ … ∪ Vn be a n-vector space 
over the field F; let U, T1 and T2 be n-linear operators on V; let 
c be an element of F  
 

a. IU = UI = U where I = I1 ∪ I2 ∪ … ∪ In is the n-
identity transformation  

b. U (T1 + T2) = UT1 + UT2  
(T1 + T2)U = T1U + T2U 

c. C(U T1) = (C U) T1 = U (C T1). 
 
Proof: Given V = V1 ∪ V2 ∪ … ∪ Vn be a n-vector space over 
F, F a field. I = I1 ∪ I2 ∪ … ∪ In be the n-identity 
transformation of V to V i.e. Ij: Vj → Vj; is the identity 
transformation of each Vj, j = 1, 2, …, n. U = U1 ∪ U2 ∪ … ∪ 
Un: V → V such that Ui: Vi → Vi for i = 1, 2, …, n. Ti . 

i i i
1 2 nT T ... T∪ ∪ ∪  : V → V such that i

jT : Vj → Vj; j = 1, 2, …, n 
and i = 1, 2.  

U  = (U1 ∪ U2 ∪ … ∪ Un) (I1 ∪ I2 ∪ … ∪ In)  
= U1 ○ I1 ∪ U2 ○ I2 ∪  Un In  
=  U1 ∪ … ∪ Un.  

Further  
IU  = (I1 ∪ I2 ∪ … ∪ In) ○ (U1 ∪ U2 ∪ …∪ Un)  

=  I1 ○ U1 ∪  I2 ○ U2 ∪ In o Un  
=  U1 ∪ U2 ∪ … ∪ Un.  

Thus IU=UI. 
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U(T1 + T2)  = UT1 + UT2  
= [U1 ∪ U2 ∪ … ∪ Un] [(T11 ∪ T12 ∪ … ∪ T1n) + 

  (T21 ∪ T22 ∪ … ∪ T2n)]  
=  [U1 ∪ U2 ∪ … ∪ Un] (T11 + T21) ∪ (T12 + T22) 

  ∪ … ∪ (T1n + T2n).  
 
We know from the results in linear algebra U (T1 + T2) = UT1 + 
UT2 for any U, T1, T2 ∈ L(V1 ; V1) where V1 is a vector space 
and L(V1 ,V1) is the collection of all linear operators from V1 to 
V1. 
 Now in Ui (T1i + T2i), Ui T1i and T2i are linear operators 
from Vi to Vi true for each i = 1, 2, …, n. Thus U (T1 + T2) = 
UT1 + UT2 and (T1 + T2) U = T1U + T2U. Further C(UT1) = 
(CU) T1 = U(CT1) for all U, T1 ∈ Ln(V,V). Let U = U1 ∪ U2 ∪ 
… ∪ Un and T1 = ( 1 1 1

1 2 nT T ... T∪ ∪ ∪ ) where Ui: Vi → Vi for 
each i and 1

iT : Vi → Vi for each i = 1, 2, …, n.  
 
C[(U1 ∪ U2 ∪ … ∪ Un) 1 1 1

1 2 n(T T ... T )∪ ∪ ∪ ]  
=  C [ 1 1 1

1 1 2 2 n nU T U T ... U T∪ ∪ ∪ ]  
= ( 1 1 1

1 1 1 2 n nCU T CU T ... CU T∪ ∪ ∪ ).  
 
(CU1 ∪ CU2 ∪ … ∪ CUn) (T1

1 ∪ T1
2 ∪ … ∪ T1

n) = (CU)T1.  
 
But  
 
C(UT1) =  (CU1 ∪ CU2 ∪ … ∪ CUn) (T1

1 ∪ T1
2 ∪ …∪ T1

n)  
=  (U1 ∪ U2 ∪ … ∪ Un) (CT1)  
=  (U1 ∪ U2 ∪ … ∪ Un) ( 1 1 1

1 2 nCT CT ... CT∪ ∪ ∪ )  
=  1 1 1

1 1 2 2 n nU (CT ) U (CT ) ... U (CT )∪ ∪ ∪   
=  (U1 ∪ U2 ∪ … ∪ Un) 1 1 1

1 2 n(CT CT ... CT )∪ ∪ ∪  
=  U(CT1). 

 
Let us denote the set of all n-linear transformation from V to V; 
this will also include the set of all n-linear operator T = T1 ∪ T2 
∪ … ∪ Tn with Ti : Vi → Vi, i = 1, 2, …, n. Let us denote the n-
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linear transformation on V by n
TL  (V, V). Clearly Ln (V, V) ⊆ 

n
TL (V, V). This is the marked difference between the usual 

linear operator and n-linear operator. For a n-linear 
transformation can be n-linear operator or n-linear 
transformation. But every linear operator from V to V is always 
a linear transformation. 

Let V to W be two n-linear vector spaces of same 
dimension say (n1, n2, …, nn) and (

1i
n ,

2i
n ,…, 

ni
n ) where (i1, i2, 

…, in) is a permutation of (1, 2, …, n). 
Let Ts: V → W be a n-linear transformation where Ts = T1 

∪ T2 ∪ … ∪ Tn; Ti: Vi → Wj where Wj is such that dim Vi = 
dim Wj, this is the way every Vi is matched. This will certainly 
happen because the n-dimension of both V and W are one and 
the same. We call such n-linear transformation from same 
dimensional space V into W satisfying the conditions mentioned 
by each Ti; i = 1, 2, …, n. denoted by Ts, for this is a special n-
linear transformation. 

If each Ti in Ts; i = 1, 2, …, n is invertible; then we can find 
a special n-linear transformation Us : W → V such that TsUs = 
UsTs and is the identity function on W. If Ts is invertible the 
function Us is unique and is denoted by 1

sT− . Further more Ts is 
1-1 that is Tsα = Tsβ implies α = β where α = α1 ∪ α2 ∪ … ∪ αn 
and β = β1 ∪ β2 ∪ … ∪ βn. Ts is onto, that is the range of Ts is 
all of W.  
 
THEOREM 2.7: Let V and W be n-vector spaces over the field F 
of same dimension (n1, n2, …, nn) over the field F. If Ts is a 
special n-linear transformation from V into W and Ts is 
invertible then the inverse function 1−

sT  is a special n-linear 
transformation from W into V. 
 
Proof: Let Ts = T1 ∪ T2 ∪ … ∪ Tn be a special n-linear 
transformation from the same n-dimensional spaces V into W, 
where n-dimension of V is (n1, n2, …, nn) and that of W is 
( )1 2 ni i in ,n ,...,n ; (i1, i2, …, in) a permutation of (1, 2, 3, …, n). 
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i.e., Ts: V → W; Ti: Vi → Wj where dim Vi = dim Wj. 
1 1 1 1

s 1 2 nT T T ... T− − − −= ∪ ∪ ∪  is the inverse of Ts. 
Let β1, β2 be vectors in W let C ∈ F. To show 1

sT−  (Cβ1 + 
β2) = C 1

1T−  β1 + 1
1T− β2 where β1 = 1 1 1

1 2 n...β ∪ β ∪ ∪ β  and β2 = 
2 2 2
1 2 n...β ∪ β ∪ ∪ β .  

 
1

sT−  (Cβ1 + β2)  
= 1

sT− ( )1 2 1 2 1 2
1 1 2 2 n nC C ... Cβ + β ∪ β + β ∪ ∪ β + β  

= ( )1 1 2 1 1 2 1 1 2
1 1 1 2 2 2 n n nT (C ) T (C ) ... T (C )− − −β + β ∪ β + β ∪ ∪ β + β   

1 1 1 2 1 1 1 2 1 1 1 2
1 1 1 1 2 2 2 2 n n n n(CT T ) (CT T ) ... (CT T )− − − − − −= β + β ∪ β + β ∪ ∪ β + β  

= C 1
sT− β1 + 1

sT− β2.  
 
Let αi = C 1

sT− βi ; i = 1, 2, that is let αi be the unique n-vector in 
the V such that Tsαi = βi. Since Ts is n-linear;  
 

Ts(Cα1 + α2) = CTsα1 + Tsα2 = Cβ1 + β2. 
 
Thus Cα1 + α2 is the unique n-vector in V which is sent by Ts 
into Cβ1 + β2 and so 
  

1
sT−  (Cβ1 + β2) = Cα1 + α2 = C( 1

sT− β1) + 1
sT− β2 

 
and 1

sT−  is n-linear, the proof is similar to the earlier one using 
Ts = 1 2 nT T ... T∪ ∪ ∪  and 1

sT−  = 1 1 1
1 2 nT T ... T− − −∪ ∪ ∪  and α1 = 

1 1 1
1 2 n...α ∪ α ∪ ∪ α and β1 = 1 1 1

1 2 n...β ∪ β ∪ ∪ β . 
 
THEOREM 2.8: Let T = T1 ∪ T2 ∪ … ∪ Tn be a n-linear 
transformation from V = V1 ∪ V2 ∪ … ∪ Vn and W = W1 ∪ W2 
∪ … ∪ Wn where dim V = (n1, n2, … , nn) and dim W = 
( )1 2

, ,...,
ni i in n n  where i1, i2, …, in is a permutation of (1, 2, …, 

n.). Then Ts is non singular if and only if Ts carries each n-
linearly independent n-subset of V into a n-linearly independent 
n-subset of W. 
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Proof: Suppose first we assume Ts is non singular. Let S = S1 ∪ 
S2 ∪ … ∪ Sn be a n-linearly independent n-subset of V = V1 ∪ 
V2 ∪ … ∪ Vn i.e. Si ⊆ Vi is a linearly independent subset of Vi, 
i = 1, 2, …, n. Let  
S = { ( )1

1 1 1
1 2 k, ,...,α α α ∪ ( )2

2 2 2
1 2 k, ,...,α α α ∪…∪ ( )n

n n n
1 2 k, ,...,α α α }  

= S1 ∪ S2 ∪ … ∪ Sn ⊂  V1 ∪ V2 ∪ … ∪ Vn. Given Ts = T1 ∪ 
T2 ∪ … ∪ Tn. Here Ti: Vi → Wj, ( )i

i i i
i 1 i 2 i kT ,T ,...,Tα α α are 

linearly independent for each i for if  
i i
1 i 1C (T )α  + … + 

i i

i i
k i kC (T )α  = 0, 

then Ti ( i i
1 1C α + … + 

i i

i i
k kC α ) = 0 and since Ti is non singular 

( i i
1 1C α + … + 

i i

i i
k kC α ) = 0 from which it follows each i

jC  = 0, j = 
1, 2, …, ki, because Si is an independent set. This is true of each 
i, i.e. S = S1 ∪ S2 ∪ … ∪ Sn is an independent n-set. This shows 
the image of S under Ts is independent. Suppose Ts carries 
independent n-sets onto independent n sets. Let α = α1 ∪ α2 ∪ 
… ∪ αn be a non zero n vector of V. 
 Then if S = S1 ∪ S2 ∪ … ∪ Sn = α1 ∪ α2 ∪ … ∪ αn with Si 
= {αi}; i = 1, 2, …, n; is independent. The image n-set of S is 
the n-row vector T1α1 ∪ T2α2 ∪ … ∪ Tnαn and this set is 
independent. Hence Ts(α) = T1α1 ∪ T2α2 ∪ … ∪ Tnαn ≠ 0 
because the set consisting of the zero n-vector alone is 
dependent. Thus null space of Ts is 0 ∪ 0 ∪ … ∪ 0.  

The following concept of non singular n-linear 
transformation is little different. 
 
DEFINITION 2.16: Let V and W be two same n-dimension spaces 
over F i.e. dim V = (n1, n2, …, nn) and dim W = ( )1 2

, ,...,
ni i in n n  

where (i1, i2, … , in) is a permutation of ((1, 2, 3, …, n). If T = 
T1∪ T2 ∪ … ∪ Tn is a special n-linear transformation of V into 
W i.e. if Ti: Vi → Wj then dim Vi = dim Wj = ni for every i. Then 
T is n-non singular if each Ti is non singular.  
 
In view of this the reader is expected to prove the following 
theorem. 
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THEOREM 2.9: Let V and W be two n-vector spaces of same 
dimension defined over the same field F. T is special n-linear 
transformation from V into W. Then T is n-invertible if and only 
if T is non-singular. 
 
Note: We say the special n-linear transformation is n-invertible 
if and only if each Ti = T1 ∪ T2 ∪ … ∪ Tn is invertible for i = 1, 
2, …, n.  
 
Now we proceed on to define the n-representation of n-
transformations by n-matrices. (n ≥ 2). 
 
Let V be a n-vector space of n dimension (n1, n2, … , nn) and W 
be a m-vector space of m-dimension (m1, m2, … , mn) defined 
over the same field F. Let  
B = {

1

1 1 1
1 2 n( , ,..., )α α α  ∪

2

2 2 2
1 2 n( , ,..., )α α α  ∪ … ∪

n

n n n
1 2 n( , ,..., )α α α }  

be a n-ordered n-basis of V. We say the n-basis is an n-ordered 
n-basis if each of the basis (αi

1, αi
2, … , i

i
nα ) of Vi is an ordered 

basis for i = 1, 2, …, n and  
 
B1 = {(

1

1 1 1
1 2 m, ,...,β β β ) ∪ (

2

2 2 2
1 2 m, ,...,β β β ) ∪ … ∪ (

m

m m m
1 2 m, ,...,β β β )}  

 
be a m-ordered m basis of W. If T is any n-linear transformation 
from V into W i.e. T = T1 ∪ T2 ∪ … ∪ Tn then each Ti: Vi → 
Wk is determined by its action on the vector i

jα ; 1 ≤ k ≤ m ; true 
for each i = 1, 2, …, n and i ≤ j ≤ ni. Each of the ni vector Tiαj is 
uniquely expressible as a linear combination  

Ti
i
jα  =

k

i

m
k

ij
i 1

A
=

β∑      (1) 

1 ≤ k ≤ m and k
iβ ∈ Wk, the scalars A1j, A2j, …, 

km jA being 
coordinates of Tiαi

j in the m-ordered m-basis B1. Accordingly 
the transformation Ti is determined by the mkni scalars; Aij via 
equation (1). The mk × ni matrix k

iA  defined by 
jiA  is called 

the submatrix relative to the n-linear transformation T = T1 ∪ T2 
∪ … ∪ Ti ∪ … ∪ Tn of the pair of ordered basis  
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{
i

i i i
1 2 n( , ,..., )α α α } and {

k

k k k
1 2 m( , ,..., )β β β } 

of Vi and Wk respectively. This is true for each i and k, 1 ≤ i ≤ n 
and 1 ≤ k ≤ m i.e. the m-matrix of T is given by  

i i i1 2 n

1 2 n

m m m
n n nA  A   A∪ ∪ ∪…  

= A (m, n) here ( )1 2 ni i im , m ,...,m ⊂  (m1, m2, …, 
nmm ). Clearly 

A is only a n-linear transformation map Vi → Wj and no two 
Vi’s are mapped onto same Wj, 1 ≤ i ≤ n and 1 ≤ j ≤ m. Thus if 
αi is a vector in Vi then αi =

i i

i i i i
1 1 n nx a ... x a+ + is a vector in Vi 

then  
 

Tiαi = Ti 
in

i i
j j

j 1
x

=

⎛ ⎞
α⎜ ⎟

⎝ ⎠
∑  

= 
in

i i
j j

j 1
x .(T )

=

⎛ ⎞
α⎜ ⎟

⎝ ⎠
∑  

=
i kn m

i k
j ij j

j 1 i 1
x A

= =

β∑ ∑  

=
k im n

i k
ij j i

j 1 i 1
A x

= =

⎛ ⎞
β⎜ ⎟

⎝ ⎠
∑ ∑ . 

 
This is true for each i, i = 1, 2, ..., n. If X = X1 ∪ X2 ∪ … ∪ Xn 
is the coordinate n-matrix of α in the n-basis B then the 
computation above shows that  
AX = ( i i i1 2 n

1 2 n

m m m
n n nA  A  A∪ ∪ ∪… ) (X1 ∪ X2 ∪ … ∪ Xn) is the 

coordinate n-matrix of the n-vector Tα in the ordered basis B1 
because the scalars 

1
i1

n
m 1
ij j

j 1
A x

=
∑ ∪ 

2
i2

n
m 2
ij j

j 1
A x

=
∑ ∪ …∪

n
in

n
m n
ij j

j 1
A x

=
∑  

is the entry of the ith n-row of the n-column matrix AX. Let us 
observe that A is given by the mi × nj, n-matrices over the field 
F, then  

T1

1n
1 1
j j

j 1
x

=

⎛ ⎞
α⎜ ⎟

⎝ ⎠
∑  ∪ T2

2n
2 2
j j

j 1
x

=

⎛ ⎞
α⎜ ⎟

⎝ ⎠
∑ ∪ … ∪ Tn

nn
n n
j j

j 1
x

=

⎛ ⎞
α⎜ ⎟

⎝ ⎠
∑  
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= 
i1 1

i1 1

m n
m i1
ij j i

i 1 j 1
A x

= =

⎛ ⎞
β⎜ ⎟

⎝ ⎠
∑ ∑ ∪ 

i2 2
i2 2

m n
m i2
ij j i

i 1 j 1
A x

= =

⎛ ⎞
β⎜ ⎟

⎝ ⎠
∑ ∑ ∪ … ∪ 

in n
in n

m n
m in
ij j i

i 1 j 1
A x

= =

⎛ ⎞
β⎜ ⎟

⎝ ⎠
∑ ∑ , 

 
where (i1, i2, …, in) ⊂ {1, 2, …, m} taken in some order, defines 
a n-linear transformation T from V into W, the n-matrix of A 
relative to the n-basis B and m-basis B1 which is stated by the 
following theorem. 
 
THEOREM 2.10: Let V = V1 ∪ V2 ∪ … ∪ Vn be a finite n-
dimensional i.e., (n1, n2, …, nn) n-vector space over the field F 
and W = W1 ∪ W2 ∪ … ∪ Wm, an m-dimensional (m1, m2, …, 
mn) vector space over the same field F, (m > n). For each n-
linear transformation T from V into W there is a n-mixed 
rectangular matrices A of orders (m1× n1, m2 × nn , …, mn × nn) 
with entries in F such that [ ] 1B

Tα  = A[α]B for every α ∈ V. T → 
A is a one to one correspondence between the set of all n-linear 
transformations from V into W and the set of all mi × ni, mixed 
rectangular n-matrices, i = 1, 2, …, n over the field F. The 
matrix A = ∪ ∪ ∪… ii i n1 2

1 2 n

mm m
n n nA  A   A is the associated n-

matrix with T; the n-linear transformation of V into W relative 
to the basis B and B1. 
 
Several interesting results true for the usual vector spaces can be 
derived in case of n-vector spaces n ≥ 2 with appropriate 
modifications. 

Now we give the definition of n-inner product on a n-vector 
space V. 
 
DEFINITION 2.17: Let F be a field of reals or complex numbers 
and V = V1 ∪ V2 ∪ … ∪ Vn a n-vector space over F. An n-inner 
product on V is a n-function which assigns to each ordered pair 
of n-vectors α = α1 ∪ α2 ∪ … ∪ αn and β = β1 ∪ β2 ∪ … ∪ βn in 
the n-vector space V a scalar n-tuple from F. 〈α | β〉 = 〈α1 ∪ α2 
∪ … ∪ αn | β1 ∪ β2 ∪ … ∪ βn〉 = (〈α1| β1〉, 〈α2| β2〉, … , 〈αn| βn〉), 
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where 〈αi| βi〉 is a inner product on Vi as αi, βi ∈ Vi, this is true 
for each i, i = 1, 2, …, n; satisfying the following conditions: 
 
a. 〈α + β | γ〉 = 〈α | γ〉 + 〈β | γ〉 (where α = α1 ∪ α2 ∪ … ∪ αn, β 

= β1 ∪ β2 ∪ … ∪ βn and γ = γ1 ∪ γ2 ∪ … ∪ γn where αi, βi, 
γi ∈ Vi for each i = 1, 2, …, n.) = (〈α1 | γ1〉, 〈α2 | γ2〉, …, 〈αn | 
γn〉) + (〈β1 | γ1〉 〈β2 | γ2〉, …, 〈βn | γn〉) = (〈α1 | γ1〉 + 〈β1 | γ1〉, 〈α2 

| γ2〉 + 〈β2 | γ2〉, …, 〈αn | γn〉 + 〈βn | γn〉) 
b. 〈Cα | β〉 = C〈α | β〉 = (C1〈α1 | β1〉, C2〈α2 | β2〉, …, Cn〈αn | βn〉) 
c. 〈β | α〉 = α β , the bar denoting the complex conjugation. 

d. 〈α | α〉 > (0, 0, … , 0) if α ≠ 0 i.e., (〈α1 | α1〉, 〈α2 | α2〉, … 〈αn| 
αn〉) > (0, 0, … , 0) each αi ≠ 0 in α = α1 ∪ α2 ∪ … ∪ αn, i = 
1, 2, …, n.  

 
On F = 1 2 . . .∪ ∪ ∪ nnn nF F F there is a n-inner product 
which we call the n-standard inner product. It is defined on  
α = (

1

1 1 1
1 2, ,..., nx x x ) ∪ (

2

2 2 2
1 2, ,..., nx x x ) ∪ … ∪ ( 1 2, ,...,

n

n n n
nx x x ) 

and  
β = (

1

1 1 1
1 2, ,..., ny y y ) ∪ (

2

2 2 2
1 2, ,..., ny y y ) ∪ … ∪ ( 1 2, ,...,

n

n n n
ny y y ) ∈ P 

by  

〈α | β〉 = (
1

1 1

1=
∑

n

j j
j

x y , 
2

2 2

1=
∑
n

j j
j

x y , …, 
1=

∑
nn

n n
j j

j

x y ) 

if F is a real field. If F is the field of complex numbers then 
 

〈α | β〉 = (
1 11

1=
∑

n

j j
j

x y ,
2 22

1=
∑
n

j j
j

x y , …, 
1=

∑
nn

nn
j j

j
x y ). 

 
The reader is expected to work out the properties related with n-
inner products on the n-vector spaces over the field F.  
 
Now we proceed on to define n-orthogonal sets. 
 
DEFINITION 2.18: Let V = V1 ∪ V2 ∪ … ∪ Vn be a n-vector 
space over the field F. We say V is a n-inner product space if on 
V is defined an n-inner product. Let α = (α1 ∪ α2 ∪ … ∪ αn) and 
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β = (β1 ∪ β2 ∪ … ∪ βn) ∈ V with αi, βi ∈ Vi, i = 1, 2, …, n. We 
say α is n-orthogonal to β if 〈α|β〉 = (0, 0, … , 0) = (〈α1|β1〉, …, 
〈αn|βn〉) i.e. if each αi is orthogonal to βi ∈ Vi i.e. 〈αi|βi〉 = 0 for i 
= 1, 2, …, n. This equivalently implies β is n-orthogonal to α. 
Hence we simply say α and β are orthogonal. 
 
If S = S1 ∪ S2 ∪ … ∪ Sn ⊆ V1 ∪ V2 ∪ … ∪ Vn = V be a n-set of 
n-vectors in V. S is called an n-orthogonal set provided all pairs 
of distinct n-vectors in S are orthogonal. An n-orthogonal set is 
called an n-orthonormal set if ||α|| = (1, 1, … , 1) for every α in 
S = S1 ∪ S2 ∪ … ∪ Sn. 
 
We denote 〈α | β〉 also by (α|β).  
 
THEOREM 2.11: Let V = V1 ∪ V2 ∪ … ∪ Vn be a n-vector space 
which is a n-inner product space defined over the field. Let S = 
S1 ∪ S2 ∪ … ∪ Sn be an n-orthogonal set in V. The set of non 
zero vectors in S are n-linearly independent. 
 
Proof: Let V = V1 ∪ V2 ∪ … ∪ Vn be a n-vector space over F. 
Let S = S1 ∪ S2 ∪ … ∪ Sn ⊂ V = V1 ∪ V2 ∪ … ∪ Vn be a 
orthogonal n-set of V. To show the elements in the n-sets are n-
orthogonal. Let i i

1 2,α α , …, 
i

i
mα ∈ Si for i = 1, 2, …, n. i.e. 

1 1
1 2,α α , …, 

1

1
mα ∈ S1, 2 2

1 2,α α , …, 
2

2
mα  ∈ S2 and so on. n n

1 2,α α , 

…, 
n

n
mα ∈ Sn. Let i i

1 2,α α , …, 
i

i
mα be the distinct set of n-vectors 

in Si and that βi = i i
1 1c α  + i i

2 2c α  + … + 
i i

i i
m mc α . Then  

(βi | i
kα ) = 

im
i i i
j j k

j 1
c |

=

⎛ ⎞
α α⎜ ⎟

⎝ ⎠
∑  

= i i i
j j k

j 1
c ( | )

=

α α∑  

= i
kc  ( i i

k k|α α ). 
Since ( i i

k k|α α ) ≠ 0, i
kc 0≠ . 
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Thus when βi = 0 then each i
kc = 0 for each i. So each Si is an 

independent set. Hence S = S1 ∪ S2 ∪  … ∪ Sn is a n-
independent set. 

Several interesting results including Gram-Schmidt n-
orthogonalization process can be derived.  

We now proceed onto define the notion of n-best 
approximation to the n-vector β relative to a n-sub-vector space 
W. 
 
DEFINITION 2.19: Let V = V1 ∪ V2 ∪ … ∪ Vn be a n-inner 
product n-vector space over the field F. W = W1 ∪ W2 ∪ … ∪ 
Wn be a n-subspace of V. Let β = 1 1

1 2 ...∪ ∪ ∪ n
nβ β β  ∈ V the n-

best approximation to β by n-vectors in W is a n-vector α = 
1 1
1 2 ...∪ ∪ ∪ n

nα α α  in W such that ||β – α|| ≤ ||β – γ|| for every n-
vector γ in W i.e. ||βi

i – αi
i|| ≤ || βi

i – γi
i|| for every γi

i ∈ Wi and 
this is true for each i; i = 1, 2, …, n. We know if β = 

1 1
1 2 ...∪ ∪ ∪ n

nβ β β  and if β is a n-linear combination of an n-
orthogonal sequence of non zero-vectors α1, α2, …, αm where 
each αi = αi

1 ∪ αi
2 ∪ … ∪ αi

n, i = 1,2,…, m, then  
 

β = 
( ) ( ) ( )1 2

1 1 1 2 2 2
1 2

2 2 21 21 1 1
...

= = =

⎛ ⎞
⎜ ⎟∪ ∪ ∪
⎜ ⎟
⎝ ⎠
∑ ∑ ∑

n
n n nmm m

k k k k n k k

nk k kk k k

β α α β α α β α α

α α α
. 

 
The following theorem is left as an exercise for the reader to 
prove. 
 
THEOREM 2.12: Let W = W1 ∪ W2 ∪ … ∪ Wn be a n-subspace 
of an n-inner product space V = V1 ∪ V2 ∪ … ∪ Vn and β = 

1 1
1 2 ...∪ ∪ ∪ n

nβ β β be a n-vector in V 
 

1. The n-vector α = 1 1
1 2 ...∪ ∪ ∪ n

nα α α  in W is a n-best 
approximation to β by the n-vector in W if and only if β-
α is n-orthogonal to every n-vector in W. 

2. If a n-best approximation to β by n-vectors in W exists, 
it is unique. 
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3. If W is n-finite n-dimensional and { 1 1

1 2 ...∪ ∪ ∪ n
nα α α } 

is any n-orthonormal n-basis for W then the n-vector  
 

α = 
1 1 1 2 2 2
1 2

1 2 2 2

( | ) ( | )
|| || || ||

∪∑ ∑k k k k

k kk k

β α α β α α
α α

 

 2

( | )
|| ||

∪ ∪ ∑…
n n n
n k k

n
k k

β α α
α

 

is the unique n-best approximation to β by n-vector in W.  
 
Now we proceed on to define the notion of n-orthogonal 
complement. 
 
DEFINITION 2.20: Let V be a n-inner product n-space and S any 
n-set of n vectors in V. The n-orthogonal complement of S is the 
n-set S⊥ of all n-vectors in V which are n-orthogonal to every n-
vector in S; where S = S1 ∪ S2 ∪ … ∪ Sn ⊆ V = V1 ∪ V2 ∪ … ∪ 
Vn and S⊥ = 1 2 ...⊥ ⊥ ⊥∪ ∪ ∪ nS S S  ⊆ V. i.e. each ⊥

iS is the 
orthogonal complement of Si for every i, i = 1, 2, …, n. We call 
α to be the n-orthogonal projection of β on W. If every n-vector 
in V has an n-orthogonal projection on W, the n-mapping that 
assigns to each n-vector in V its n-orthogonal projection on W 
is called the n-orthogonal projection of V on W.  
 
The reader is expected to prove the following theorems. 
 
THEOREM 2.13: Let V = V1 ∪ V2 ∪ … ∪ Vn be a n-inner 
product n-vector space defined over the field F. W a finite 
dimensional n-subspace of V and E the n-orthogonal projection 
of V on W, Then the n-mapping β → (β – Eβ) is the n-
orthogonal projection of V on W⊥. 
 
THEOREM 2.14: Let W = W1 ∪ W2 ∪ … ∪ Wn ⊂ V be a finite 
dimensional n-subspace of the n inner product space V = V1 ∪ 
V2 ∪ … ∪ Vn and let E = E1 ∪ E2 ∪ … ∪ En be the n-orthogonal 
projection of V on W. Then E is an n-idempotent n-linear 
transformation of V onto W and W⊥ is the n-null space of E and 
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V = W ⊕ W⊥ i.e. if V = V1 ∪ V2 ∪ … ∪ Vn and W = W1 ∪ W2 ∪ 
… ∪ Wn and W⊥ = 1 2 ...⊥ ⊥ ⊥∪ ∪ ∪ nW W W  then V = (W ⊕ W⊥) = 
(W1 ⊕ 1

⊥W ) ∪ (W2⊕ 2
⊥W ) ∪ … ∪ (Wn⊕ ⊥

nW ). 
 
THEOREM 2.15: Under the conditions of the above theorems, I-
E is the n-orthogonal projection of V on W⊥. It is an n-
idempotent linear n-transformation of V onto W⊥, with null 
space W. 
 
THEOREM 2.16: Let { 1 1

1 2 ...∪ ∪ ∪ n
nα α α } be an orthogonal n-

set of non-zero vectors in an n-inner product space V. If β is any 
vector in V then ∑k |(β| k

kα )|2 / || k
kα ||2 ≤ ||β||2 where β = 

1 1
1 2 ...∪ ∪ ∪ n

nβ β β  ∈ V.  
 
It is pertinent to mention here that the notion of linear functional 
dual space or adjoints cannot be extended in an analogous way 
in case of n-vector spaces of type I. 
 
Now we proceed on to define the notion of n-unitary operators 
on n-inner product n vector spaces V over the field F. 
 
DEFINITION 2.21: Let V and W be n-inner product n-vector 
space and m vector space over the same field F respectively. Let 
T be a n-linear transformation from V into W. We say that T 
preserves n inner products if (Tα | Tβ) = (α | β) for all α,β ∈ V 
i.e. if V = V1 ∪ V2 ∪ … ∪ Vn and W = W1 ∪ W2 ∪ … ∪ Wn and 
T = T1 ∪ T2 ∪ … ∪ Tn with α = α1 ∪ α2 ∪ … ∪ αn and β = β1 ∪ 
β2 ∪ … ∪ βn ∈ V. Ti: Vi → Wj. with no two Vi mapped on to the 
same Wj, then Tiαi,Tiβi ∈ Wj and (Tiαi | Tiβi) = (αi | βi) for every i, 
i = 1, 2, …, n. An n-isomorphism of V into W is a n-vector space 
isomorphism T of V onto W which also preserves n-inner 
products. 
 
THEOREM 2.17: Let V and W be n-finite dimensional n-inner 
vector spaces of same n-dimension i.e. dim V = (n1, n2, … , nn) 
and dim W = ( )1 2

, ,...,
ni i in n n where (i1, i2, … , in) is a 
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permutation of (1, 2, …, n) defined over the same field T. If T = 
T1 ∪ T2 ∪ … ∪ Tn is a n-linear transformation from V into W 
the following are equivalent  
 

1. T preserves inner products i.e., each Ti in T preserves 
inner product i.e. Ti: Vi → Wj; 1 ≤ i , j ≤ n. 

2. T is an n-inner product n- isomorphism 
3. T carries every n-orthonormal n-basis for V onto an n-

orthogonal n-basis for W. 
4. T carries some n-orthogonal n-basis for V onto an n-

orthonormal basis for W i.e. Ti carries some orthogonal 
basis of Vi into an orthogonal basis for Wj. 

 
The reader is expected to prove the following theorems. 
 
THEOREM 2.18: Let V and W be n-dimensional finite inner 
product n-spaces over the same field F. Then V = V1 ∪ V2 ∪ … 
∪ Vn is n-isomorphic with W = W1 ∪ W2 ∪ … ∪ Wn i.e. each Ti: 
Vi → Wj is an isomorphism for i = 1, 2, …, n if V and W are of 
same n-dimension. 
 
THEOREM 2.19: Let V and W be two n-inner product spaces 
over the same field F. Let T = T1 ∪ T2 ∪ … ∪ Tn be a n-linear 
transformation from V into W. Then T preserves n-inner product 
if and only if ||Tα|| = ||α|| i.e. ||(T1 ∪ T2 ∪ … ∪ Tn ) 
( 1 1

1 2 ...∪ ∪ ∪ n
nα α α )|| = ||T1( 1

1α ) ∪ T2( 2
2α ) ∪ … ∪ Tn( n

nα )|| = 
(|| 1

1α ||, || 2
2α ||, … , || n

nα ||) for every α ∈ V i.e. for every αi ∈ Vi, 
i = 1, 2, …, n.  
 
We define the notion of n unitary operator of a n-vector space V 
over the field F. 
 
DEFINITION 2.22: A n-unitary operator on an n-inner product 
space V is a n-isomorphism of V onto itself. 
 
DEFINITION 2.23: If T is a n-linear operator on an n-inner 
product space V = V1 ∪ V2 ∪ … ∪ Vn, then we say T = T1 ∪ T2 
∪ … ∪ Tn has an n-adjoint on V if there exists a n-linear 
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operator T*= 1 2 ...∗ ∗ ∗∪ ∪ ∪ nT T T  on V such that (Tα | β) = (α | 
T*β) for all α = 1 1

1 2 ...∪ ∪ ∪ n
nα α α  , β = 1 1

1 2 ...∪ ∪ ∪ n
nβ β β  in V 

= V1 ∪ V2 ∪ … ∪ Vn i.e. Ti( |i i
i iα β ) = ( | *i i

i iTα β ) for each i = 
1, 2, …, n. 
 
It is easily verified as in case of adjoints the n-adjoints of T not 
only depends on T but also on the n-inner product on V. 
 
Interesting results in this direction can be derived for any reader. 
The following theorems are also left as an exercise for the 
reader. 
 
THEOREM 2.20: Let V = V1 ∪ V2 ∪ … ∪ Vn be a finite n-
dimensional n-inner product n-space defined over the field F. If 
T and U are n-linear operators on V and c is a scalar, then  
 

1. (T + U)* = T* + U* i.e. if T = T1 ∪ T2 ∪ … ∪ Tn and U 
= U1 ∪ U2 ∪ … ∪ Un then in (T + U)* we have for each 
i, (Ti + Ui)* = *

iT  + *
iU , i = 1, 2, …, n. 

 
2. (cT)* = cT* 

 
3. (TU)* = T*U*, here also (TiUi)* = *

iU *
iT  for i = 1, 2, 

…, n. i.e. (TU)* = (T1U1)* ∪ (T2U2)* ∪ … ∪ (TnUn)* = 
*
1U *

1T  ∪ *
2U *

2T  ∪ … ∪ *
nU *

nT  
 

4. (T*)* = T since ( *
iT )* = Ti, for each i = 1, 2, …, n. 

 
THEOREM 2.21: Let U be a n-linear operator on an n-inner 
product space V, defined over the field F. Then U is n-unitary if 
and only the n-adjoint, U* of U exists and UU* = U*U = I. 
 
THEOREM 2.22: Let V = V1 ∪ V2 ∪ … ∪ Vn be a n-vector space 
of a n-inner vector space of finite dimension and U be a n-linear 
operator on V. Then U is n-unitary if and only if the n-matrix 
related with U in some ordered n-orthonormal n-basis is also a 
n-unitary matrix i.e. if A = A1 ∪ A2 ∪ … ∪ An is the n-matrix 
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each Ai in A is unitary i.e. Ai * Ai = I for each i, i.e. A * A = 
A1*A1 ∪ A2*A2 ∪ … ∪ An*An = I1 ∪ … ∪ In.  
 
Several interesting results can be obtained using appropriate and 
analogous proper modifications. 

Now we proceed on to define the notion of n-normal 
operator or normal n-operators on a n-vector space V. The 
principle objective for doing this is we can obtain some 
interesting properties about the n-orthonormal n-basis of V = V1 
∪ V2 ∪ … ∪ Vn.  
 
Let the n-orthonormal n-basis of V be denoted by B = 
{(

1

1 1 1
1 2, ,..., nα α α ) ∪ (

2

2 2 2
1 2, ,..., nα α α )∪ … ∪ ( 1 2, ,...,

n

n n n
nα α α )} 

where each ( 1 2, ,...,
i

i i i
nα α α ) is a orthogonal basis of Vi for i = 1, 

2, …, n. Let T = T1 ∪ T2 ∪ … ∪ Tn the n-linear operator on V 
be defined by Ti

i
jα = i i

j jc α  for j = 1, 2, …, ni and for each Ti, i = 
1, 2, …, n. This simply implies that the n-matrix of T 
(consequently each matrix of Ti in the ordered basis 
( 1 2, ,...,

i

i i i
nα α α ) is a diagonal matrix with the diagonal entries 

( 1 2, ,...,
i

i i i
nc c c ) is a n-diagonal n matrix given by 

 

D =

1

1
1

1
2

1

0

0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

%

n

c
c

c

 ∪ 

2

2
1

2
2

2

0

0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

%

n

c
c

c

  

∪ … ∪ 

1

2

0

0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

%

n

n

n

n
n

c
c

c

. 
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The n-adjoint operator T*= T*1 ∪ T*2 ∪ … ∪ T*n of T = T1 ∪ 
T2 ∪ … ∪ Tn is represented by the n-conjugate transpose n 
matrix i.e. once again a n-diagonal n matrix with diagonal 
entries 1 1

1 2, ,...,− −c c −
i

i
nc  ; i = 1, 2, …, n. If V is a real n-vector 

space over the real field F then of course we have T = T* 
 
DEFINITION 2.24: If V = V1 ∪ V2 ∪ … ∪ Vn be a n-dimensional 
n-inner product n-vector space and T a n-linear operator on V 
be say T is n-normal if it commutes with its n-adjoint T* of T i.e. 
TT* = T*T.  
 
Now in order to define some more properties we now proceed 
onto define the notion of n-characteristic values or n-eigen 
values of a n-vector space V and so on. 
 
DEFINITION 2.25: Let V = V1 ∪ V2 ∪ … ∪ Vn be a n-vector 
space over the field F of type I. Let T = T1 ∪ T2 ∪ … ∪ Tn be a 
n-linear operator on V. A n-characteristic value (or 
equivalently characteristic n-value) of T is a n-tuple of scalars 

1 2
1 2 ...∪ ∪ ∪ n

nc c c  such that their exists a non zero n vector α = 
1 2
1 2 ...∪ ∪ ∪ n

nα α α  in V with Tα = cα. i.e. ( 1 2
1 2 ...∪ ∪ ∪ n

nc c c ) 
( 1 2

1 2 ...∪ ∪ ∪ n
nα α α ) = 1 1

1 1c α  ∪ 2 2
2 2c α  ∪ … ∪ n n

n nc α  = T1
1
1α  ∪ 

T2
2
2α  ∪ … ∪ Tn

n
nα ; If c = 1 2

1 2 ...∪ ∪ ∪ n
nc c c  is the n-

characteristic value of T then 
 

a. any α = 1 2
1 2 ...∪ ∪ ∪ n

nα α α  such that Tα = cα is called 
the n-characteristic n-vector of T associated with the n-
characteristic value c = 1 2

1 2 ...∪ ∪ ∪ n
nc c c . 

 
b. The collection of all α = 1 2

1 2 ...∪ ∪ ∪ n
nα α α  such that Tα 

= cα is called the n-characteristic space associated 
with c. n-characteristic values will also be known as n-
eigen values or n-spectral values. 

 
If T is any n-linear operator on the n-vector space V and c any n 
scalar the set of n-vector α in V = V1 ∪ V2 ∪ … ∪ Vn such that 



 57

Tα = cα is a n-subspace of V. It is the n-null space of the n-
linear transformation (T – cI) = (T1 ∪ T2 ∪ … ∪ Tn) – 
( 1 2

1 2 ...∪ ∪ ∪ n
nc c c ) (I1 ∪ I2 ∪ … ∪ In)) = (T1 – 1

1c I1) ∪ (T2 –
2
2c I2) ∪ … ∪ (Tn – n

nc In). We call c the n-characteristic value of 
T and if this n-subspace is different from the zero subspace i.e. 
if (T – cI) = (T1 – 1

1c I1) ∪ … ∪ (Tn – n
nc In) fails to be one to one 

i.e. each Ti – i
ic Ii fails to be one to one. If V is a finite n-

dimension n-vector space, (T – cI) fails to be one to one. Only 
when the n determinant i.e. det(T – cI) = det(T1 – 1

1c I1) ∪ det(T2 

– 2
2c I2) ∪  … ∪  det(Tn – n

nc In) ≠ (0 ∪ 0 ∪ … ∪ 0) i.e. each 
det(Ti – i

ic Ii) ≠ 0 for i = 1, 2, …, n.  
 
This is made into the following nice theorem 
 
THEOREM 2.23: Let T be a n-linear operator on a finite n-
dimensional n-vector space V = V1 ∪ V2 ∪ … ∪ Vn and c = 

1 2
1 2 ...∪ ∪ ∪ n

nc c c  be a n scalar then the following are equivalent  
 

a. c = 1 2
1 2 ...∪ ∪ ∪ n

nc c c  is a n-characteristic value of T = 
T1 ∪ T2 ∪ … ∪ Tn i.e. each ci

i is a characteristic value 
of Ti ; i = 1, 2, …, n.  

b. The n-operator (T – cI) = (T1 – 1
1c I1) ∪  … ∪  (Tn – 

n
nc In) is non singular (i.e. non invertible) i.e. each (Ti – 
i
ic Ii) is non invertible i.e. non singular for each n-vector 

spaces, i = 1, 2, …, n.  
c. det(T – cI) = (0 ∪ 0 ∪ … ∪ 0) i.e. det ( )− i

i i iT c I = 0 for 
each i = 1, 2, …, n. 

  
Now we give the analogous for n-matrix.  
 
DEFINITION 2.26: Let A = A1 ∪ A2 ∪ …∪ An be a n-square 
matrix where each matrix Ai is ni × ni matrix i = 1, 2, …, n; if i ≠ 
j then ni ≠ nj, 1 ≤ i, j ≤ n over the field F, a n-characteristic 
value of A in F is a n scalar C= 1 2

1 2 ...∪ ∪ ∪ n
nC C C ; ∈i

iC F , i =   
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1, 2, 3, … , n such that the n-matrix (A – CI) = 1
1 1 1( )−A C I  ∪ 

2
2 2 2( )−A C I ∪ … ∪ ( )− n

n n nA C I  is singular, i.e. C is a n-
characteristic value of A if and only if det (A – CI) = 0 ∪ 0 ∪ … 
∪ 0 or equivalently det (CI – A) = 0 ∪ 0 ∪ … ∪ 0, i.e. if 
det ( )i

i i iA C I−  = 0 for each and every i, i = 1, 2, …, n we form 
the matrix (xI – A) where x = x1 ∪ x2 ∪ … ∪ xn with polynomial 
entries and consider the n-polynomial f = det(xI – A) = det(x1I1 
– A1) ∪ det(x2I2 – A2) ∪ … ∪ det(xnIn – An) = f1 ∪ f2 ∪ … ∪ fn in 
n variables x1, x2, … , xn. Clearly the n-characteristic values of 
A in F are just the n-tuple scalars C = 1 2

1 2 ... n
nC C C∪ ∪ ∪  in F 

such that  
f(C)   =   0 ∪ 0 ∪ … ∪ 0  

 =  1 2
1 1 2 2( ) ( ) ... ( )n

n nf C f C f C∪ ∪ ∪ .  
 

For this reason f is called the n-characteristic n-polynomial 
of A.  
 
It is important to note that f is a n-monic polymonial which has 
degree exactly (n1, n2, …, nn ) is the n-degree of the n-monic 
polynomial f = f1 ∪ f2 ∪ … ∪ fn.  
 
We can prove the following simple lemma. 
 
LEMMA 2.2: Similar n-matrices have same n-characteristic 
polynomial. 
 
Proof: We just recall if A and B are the mixed square n-
matrices of dimension (n1, n2, …, nn ) and (n1, n2, …, nn ) i.e. 
same dimension i.e. identity permutation of (n1, n2, …, nn ) . We 
say A is similar to B or B is similar to A if their exists a 
invertible n matrix P of dimension (n1, n2, …, nn ) such that if A 
= A1 ∪ A2 ∪ … ∪ An, B = B1 ∪ B2 ∪ … ∪ Bn and P = P1 ∪ P2 
∪ … ∪ Pn then B = P-1AP i.e. B = B1 ∪ B2 ∪ … ∪ Bn = 1

1P− A1 
P1 ∪ 1

2P− A2 P2 ∪ … ∪ 1
nP− An Pn; i.e. each Ai is similar Bi for i 

= 1, 2, …, n. 
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Suppose A and B are similar n-mixed square matrices of 
identical dimension i.e. order Ai = order Bi for i = 1, 2, …, n 
then B = P-1AP the  
 
n-det (xI – B)   =   n-det(xI – P-1 A P)  

 =  n-det (P-1(xI –A) P)  
 =  n-det P-1 det(xI – A) .det P 
 =  1 1

1 1 1 1 1det P det(x I A )det P− −  ∪ 
1 2

2 2 2 2 2det P det(x I A )det P− −  ∪ … ∪ 
1 n

n n n n ndet P det(x I A )det P− −  
 =   det(xI – B)  
 =  1

1 1 1det(x I B )− ∪ 2
2 2 2det(x I B )− ∪ … ∪ n

n n ndet(x I B )−   
i.e. n-det (xI – B) = n-det (xI – A) . 
 
DEFINITION 2.27: Let T = T1 ∪ T2 ∪ … ∪ Tn be a special n-
linear operator on a finite dimension n-vector space V = V1 ∪ 
V2 ∪ … ∪ Vn. We say T is n diagonalizable if there is a n-basis 
for V each n-vector of which is a n-characteristic n-vector of T.  
 
The following two lemmas are left as an exercise to the reader. 
 
LEMMA 2.3: Suppose Tα = Cα where T = T1 ∪ T2 ∪ … ∪ Tn, α 
= 1 2

1 2 ... n
nα α α∪ ∪ ∪  and C = 1 2

1 2 ... n
nC C C∪ ∪ ∪ . If F = F1 ∪ 

F2 ∪ … ∪ Fn is any n-polynomial then f(T) α = f(C) α i.e.,  
1 2

1 1 1 2 2 2( ) ( ) ... ( ) n
n n nf T f T f Tα α α∪ ∪ ∪  = 

1 1 2 2
1 1 1 2 2 2( ) ( ) ... ( )n n

n n nf C f C f Cα α α∪ ∪ ∪ . 
 
LEMMA 2.4: Let T = T1 ∪ T2 ∪ … ∪ Tn be a n-linear operator 
on a finite (n1, n2, … , nn ) dimensional n-vector space V = V1 ∪ 
V2 ∪ … ∪Vn. Let {(

1

1 1 1
1 2, ,..., kC C C ) ∪ (

2

2 2 2
1 2, ,..., kC C C ) ∪ … ∪ 

( 1 2, ,...,
n

n n n
kC C C ) } be distinct n-characteristic values of T1 ∪ T2 

∪ … ∪ Tn and let 
1

1 1 1
1 2, ,..., kW W W be the subspaces of V1 

associated with characteristic values 
1

1 1 1
1 2, ,..., kC C C  respectively, 

2

2 2 2
1 2, , ..., kW W W  be the subspaces of V2 with associated 



 60

characteristic values 
2

2 2 2
1 2, , , kC C C…  respectively; and so on and 

let 1 2, ,...,
n

n n n
kW W W  be the subspaces of Vn with associated 

characteristic values 1 2, ,...,
n

n n n
kC C C  and if  

1

1 1 1 1
1 2 ... kW W W W= + + +  

and if  

2

2 2 2 2
1 2 ... kW W W W= + + + , …, 1 2 ...

n

n n n n
kW W W W= + + +  

and if W = W1 ∪ W2 ∪ … ∪ Wn the n-dim W = (dimW1, dimW2, 
…, dimW 

n) with dim W 
j = 1 2 j

j j j
kdimW dimW ... dimW+ + +  for 

each j = 1, 2, …, n; and if i
iB  is an ordered basis of W 

i, i = 1, 
2, …, k; then ( 1 2

1 2, ,..., n
nB B B ) is the n-ordered n-basis of W 

1 W 2 
… W k. 
 
Using these lemmas the reader is expected to prove the 
following theorem. 
 
THEOREM 2.24: Let T = T1 ∪ T2 ∪ … ∪ Tn be a n-linear 
operator of the finite n-dimensional n vector space V = V1 ∪ V2 
∪ … ∪ Vn. Let {(

1

1 1 1
1 2, ,..., kC C C ) , (

2

2 2 2
1 2, ,..., kC C C ) ∪ … ∪ 

( 1 2, ,...,
n

n n n
kC C C ) } be the distinct n-characteristic n-values of T 

and let (W1 ∪ W2 ∪ … ∪ Wn) be the null n-subspace of (T – CI) 
i.e. Wi is a subspace of ( )i

i iT C I−  for i = 1, 2, …, n. Then the 
following are equivalent 
 

1. T is n-diagonalizable 
2. The n-characteristic polynomial for T is 

 
f = f1 ∪ f2 ∪… ∪ fn where fi = 

1 2
1 2( ) ( ) ...( )

ii i
ki

i

dd di i i
i i i kx C x C x C− − −  for every i = 1, 2, … , n. and 

dim Wi = di where 1 2 ...= + + +
i

i i i i
kd d d d  for every i = 1, 2, … , 

n. dim W1 + dim W2 + … + dimWk = dim V = (n1, n2, … nn ) i.e., 
dim W1 = dim 1

1W  + dim 1
2W  + … + dim 

1

1
1=kW n , dimW2 = 
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dim 2
1W  + dim 2

2W  + … + dim 
2

1
2=kW n and so on and dimWn = 

dim 1
nW  + dim 2

nW  + … + dim =
n

n
k nW n . 

 
The proof left as an exercise for the reader. 
 
Now we proceed on to define the notion of n-annihilating 
polynominals.  

Let T = T1 ∪ T2 ∪ … ∪ Tn be a n-linear operator on a n-
vector space V over the field F. If p(x) = p1(x) ∪ p2(x) ∪ … ∪ 
pn(x) be a n-polynominal in x with coefficients from F then p(T) 
= p1(T1) ∪ p1(T1) ∪ … ∪ pn(Tn) is again a n-linear operator on 
V. If q(x) = q1(x) ∪ q2(x) ∪ … ∪ qn(x) is another n-polynomial 
over F then  

(p + q) (T) = p(T) + q(T) . 
pq(T) = p(T) q(T) 

= p1(T) q1(T) ∪ p2(T) q2(T) ∪ … ∪ pn(T) qn(T) . 
 
Therefore the collection of n-polynomials p(x) which n-
annihilate T in the sense that p(T) = 0, is a n ideal in the n-
polynomial algebra F[x]. Clearly Ln (V, V) is a n-linear space of 
dimension ( 2 2 2

1 2 nn ,n ...,n ) where ni is the dimension of the vector 
space Vi in V = V1 ∪ V2 ∪ … ∪ Vn. If we take in the n-linear 
operator T = T1 ∪ T2 ∪ … ∪ Tn, for each Ti a 2

in 1+  power of 

Ti for i = 1, 2, …, n then 
2
i

2
i

ni i i 2 i
0 1 i 2 i in

C C T C T ... C T 0+ + + + =  for 

some scalars i
jC  not all zero, 1 ≤ j ≤ 2

in . 
So the n-ideal of polynomials which n-annihilate T contains 

a non zero n-polynomial of n-degree ( 2 2 2
1 2 nn ,n ,...,n ) or less.  

Now we define the notion of n-minimal polynomial for T = 
T1 ∪ T2 ∪ … ∪ Tn. 
 
DEFINITION 2.28: If T is a n-linear operator on a finite 
dimensional n-vector space V over the field F. The n-minimal 
polynomial for T = T1 ∪ T2 ∪ … ∪ Tn is the unique n-monic 
generator of the n-ideals of polynomial over F which n-
annihilate T, i.e., the n-monic generator of the n-ideals of 
polynomials over F which annihilate each Ti for i = 1, 2, …, n. 
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The term n-minimal comes from the fact that the n-generator of 
a polynomial n-ideal is characterized by being the n-monic 
polynomials each of minimum degree that is every ideal in the 
n-ideals; that is the n-minimal polynomial p = p1 ∪ p2 ∪ … ∪ 
pn for the n-linear operator T is uniquely determined by these 
three properties. In p = p1 ∪ p2 ∪ … ∪ pn, each pi is a monic 
polynomial over the scalar field F, which we shortly call as the 
n-monic polynomial over F. p(T) = 0 implies pi(Ti) = 0 for each 
i, i = 1, 2, …, n; i.e., p1(T1) ∪ p2(T2) ∪ … ∪ pn(Tn) = 0 ∪ 0 ∪ … 
∪ 0. No n-polynomial over F which n-annihilates T has smaller 
degree than p, i.e., polynomial over F which annihilates Ti has 
smaller degree than pi for each i = 1, 2, …, n. If A is a n-mixed 
square matrix over F i.e., A = A1 ∪ A2 ∪ … ∪ An is a n-mixed 
matrix where each Ai is a ni × ni matrix over F, we define the n-
minimal polynomial for A in an analogous way as unique n-
monic generator ideal of all n-polynomials over F which n-
annihilate A or annihilates Ai for each i, i = 1, 2, …, n. 
 
Similar results which hold good in case of linear vector spaces 
can be analogously extended to the case of n-vector spaces with 
proper and appropriate modifications.  
 
The proof of the following interesting theorem can be obtained 
by any interested reader. 
 
THEOREM 2.25: Let T = T1 ∪ T2 ∪ … ∪ Tn be a n-linear 
operator on a (n1, n2, …, nn) finite dimensional n-vector space 
[or let A = A1 ∪ A2 ∪ … ∪An, a n-mixed square matrix where 
each Ai is a ni × ni matrix, i = 1, 2, …, n] then n-characteristic 
and n-minimal polynomial for T[for A] have the same n-roots 
except for multiplicities. 
 
The Cayley-Hamilton theorem for n-linear operator T on the n-
vector space V is stated, the proof is also left as an exercise for 
the reader. 
 
THEOREM 2.26: (CAYLEY HAMILTON THEOREM FOR n-VECTOR 
SPACES) Let T = T1 ∪ T2 ∪ … ∪ Tn be a n-linear operator on a 
finite (n1, n2, …, nn) dimensional n-vector space V = V1 ∪ V2 ∪ 
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… ∪ Vn over a field F. If f = f1 ∪ f2 ∪ … ∪ fn is the n-
characteristic polynomial for T = T1 ∪ T2 ∪ … ∪ Tn then f(T) = 
0 ∪ 0 ∪ … ∪ 0 i.e., f1(T1) ∪ f2(T2) ∪ … ∪ fn(Tn) = 0 ∪ 0 ∪ … 
∪ 0; in other words the n-minimal polynomial divides the n-
characteristic polynomial for T.  
 
We just give an hint of the proof. 
 
Hint: Choose a n-ordered n-basis {(

1

1 1 1
1 2 n, ,...,α α α ) ∪ 

(
2

2 2 2
1 2 n, ,...,α α α ) ∪ … ∪ (

n

n n n
1 2 n, ,...,α α α ) } for V = V1 ∪ V2 ∪ … 

∪ Vn and let A = 1
1A ∪ 2

1A ∪ … ∪ n
nA  be the n matrix which 

represents T = T1 ∪ T2 ∪ … ∪ Tn in the given n-basis. Then 
i

i kTα  = 
in

i i
jk j

j 1
A

=

α∑ ; 1 ≤ j ≤ ni. This is true for each i; i.e., true for 

each Ti. Thus 
kn

k k
k ij k ji k j

j 1
p ( T A I ) 0

=

= δ − α =∑ , this equation being 

true for k = 1, 2, … , n, i.e., P = P1 ∪ P2 ∪ … ∪ Pn. Suppose K 
= K1 ∪ K2 ∪ … ∪ Kn be a commutative n-ring with identity 
consisting of all n polynomials in T = T1 ∪ T2 ∪ … ∪ Tn. Let 
B1 ∪ B2 ∪ … ∪ Bn be an element of  

1 1 2 2 n nn n n n n nn nK K K ... K× × ×× = ∪ ∪ ∪  
with entries k k

ij ij k ji kB T A I= δ − , k = 1, 2, …, n. We can show f(T) 
= det B i.e., f1(T1) ∪ f2(T2) ∪ … ∪ fn(Tn) = det B1 ∪ det B2 ∪ 
… ∪ detBn .  
 
Using this hint the interested reader can prove the result.  
 
Now we proceed on to define the notion of a n-subspace W of V 
to be n-invariant under T. 
 
DEFINITION 2.29: Let V = V1 ∪ V2 ∪ … ∪ Vn be a n-vector 
space over F. T = T1 ∪ T2 ∪ … ∪ Tn be a n-linear operator on 
V. If W = W1 ∪ W2 ∪ … ∪ Wn is a n-subspace of V, we say that 
W is n-invariant under T if for each vector α = α1 ∪ α2 ∪ … ∪ 
αn in W the vector T(α) is in W i.e., each Ti(αi) ∈ Wi for i = 1, 2, 
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… , n. i.e., T(W) is contained in W or this is the same as Ti(Wi) 
is contained in Wi for i = 1, 2, …, n.  
 
LEMMA 2.5: Let V be a finite (n1, n2, …, nn) dimensional n-
vector space over the field F. Let T = T1 ∪ T2 ∪ … ∪ Tn be a n-
linear operator on V such that the n-minimal polynomial for T 
is a product of linear n-factors p = p1 ∪ p2 ∪ … ∪ pn where pi 

= ( ) ( )1

1 ... ;− − ∈ki

i

rri i i
k jx C x C C F , 1 ≤ j ≤ ki, for i = 1, 2, …, m. 

Let W = W 
1 ∪ W 

2 ∪ … ∪ W 
n be a proper (W ≠ V) subspace of 

V where each 1 ...= + +
i

i i i
kW W W , i = 1, 2, … , n. which is n-

invariant under T. There exists a vector α = α1 ∪ α2 ∪ … ∪ αn 
in V such that α is not in W; 
 
(T – CI) α = (T1 – C1I1) α1 ∪ (T2 – C2I2)α2 ∪ … ∪ (Tn – CnIn)αn 

 

is in W for some m-characteristic values 
1

1 1 1 1
1 2( , ... )= kC C C C , 1 ≤ 

k1 ≤ n1; 
2

2 2 2 2
1 2( , ,..., )= kC C C C  and so on.  

 
The proof can be derived without much difficulty; infact very 
straight forward, using the working for each Ti: Vi →Vi and 

i

i i i
1 kW W ... W= + + , 1 ≤ ki ≤ ni. When the result holds for every 

component of V and T it is true for the n-vector space and its n-
linear operator T which is defined on V. 
 
The following theorem on the n-diagonalizablily of the n-linear 
operator T on V is given below. 
 
THEOREM 2.27: Let V = V1 ∪ V2 ∪ … ∪ Vn be a finite (n1, n2, 
… , nn) dimensional n-vector space over the field F and let T = 
T1 ∪ T2 ∪ … ∪ Tn be a n-linear operator on V. Then T is n 
diagonalizable if and only if the n-minimal polynomial for T has 
the form,  
 

p = ( ) ( ){ }1

1 1
1 ...− − kx C x C ∪ 
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( )( ) ( ){ }2

2 2 2
1 2 ...− − − kx C x C x C ∪…∪

( )( ) ( ){ }1 2 ...− − −
n

n n n
kx C x C x C  

 
where 

i

i
jC are distinct elements of F (i.e., 

1

1 1 1
1 2, ,..., kC C C , forms a 

distinct set in F, 
2

2 2 2
1 2, ,..., kC C C  forms a distinct set in F, so on 

1 2, ,...,
n

n n n
kC C C  forms a distinct set of F) . 

 
Proof: We know if T = T1 ∪ T2 ∪ … ∪ Tn is n-diagonalizable 
its n-minimal polynomial is a n-product of distinct linear factors 
i.e., each Ti: Vi → Vi (where Vi is a component of the n-vector 
space V = V1 ∪ V2 ∪ … ∪ Vn and Ti is a linear operator of Vi 
and a component of T). 

So we can say if pi = ( )( ) ( )i

i i i
1 2 kx C x C ... x C− − −  the 

minimal polynomial associated with the diagonalizable operator 
Ti then the pi is a product of distinct linear factors. This is true 
for each i; i = 1, 2, …, n, Hence the claim. So to prove the 
converse, let W = W1 ∪ W2 ∪ … ∪ Wn be the n-subspace 
spanned by all the n-characteristic n-vectors of T and suppose 
W ≠ V that is; each Wi ≠ Vi for i = 1, 2, …, n.  

This implies we have a n-vector α = α1 ∪ α2 ∪ … ∪ αn not 
in W (i.e., each αi ∉ Wi for i = 1, 2, …, n.) and a n-
characteristic value C = C1 ∪ C2 ∪ … ∪ Cn of T such that the 
vector β = (T – CI) α lies in W i.e., β = β1 ∪ β2 ∪ … ∪ βn then 
βi = ( )i i

i j iT C I− α  lies in Wi (1 ≤ j ≤ ki) this is true for each i, i = 

1, 2, …, n. Since βi ∈Wi we have 
i

i i i i
1 2 k...β = β +β + +β  (true for 

each i, i = 1, 2, …, n) where i i i
i j j jT Cβ = β ; 1 ≤ j ≤ ki and i = 1, 2, 

…, n and hence the vector in Wi. 

i i

i i i i i i i i
i 1 1 k kh (T ) h (C ) ... h (C )β = β + + β  is in Wi for every 

polynomial hi; this is true for each i, i = 1, 2, …, n.  
Now pi = ( i

jx C− ) qi for some polynomial qi also 
i i i

i i j jq q (C ) x (C )h− = −  (this is true for each i, i = 1, 2, …, n). 
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We have i i i i i i i i
i i i j i i j i iq (T ) q (C ) h (T )(T C I ) h (T )α − α = − α = β , 1 

≤ i ≤ n. But i i
ih (T )β  is in Wi (for each i) and since 0 = pi(Ti) αi 

= ( )i i
i j i i iT C I q (T )− α , the vector i

i iq (T )α is in Wi.  

Therefore i i
i jq (C )α  is in Wi. Since αi is not Wi we have 

i
i jq (C )  = 0 true for every i = 1, 2, …, n. This contradicts the fact 

pi has distinct roots for i = 1, 2, …, n. Hence the claim. 
 
How ever we give an illustration of this theorem so that the 
reader can understand how it is applied in general. 
 
Example 2.19: Let V = V1 ∪ V2 ∪ V3 where V1 = Q × Q, V2 = 
Q × Q × Q × Q and V3 = Q × Q × Q i.e., V a 3-vector space over 
Q of finite dimension and 3-dimension (2, 4, 3) .Define T: V → 
V by T = T1 ∪ T2 ∪ T3 :V1 ∪ V2 ∪ V3 → V1 ∪ V2 ∪ V3 by T1: 
V1→V1 defined by the related matrix  
 

1

1 2
A

0 2
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

. 

 
T2:V2→V2 defined by the related matrix  
 

2

2 1 1 3
0 1 2 1

A
0 0 3 5
0 0 0 4

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 
and T3:V3→V3 defined by the related matrix  
 

3

5 6 6
A 1 4 2

3 6 4

− −⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥− −⎣ ⎦

. 

 
The 3-matrix associated with T is given by 
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1 2
0 2
⎡ ⎤
⎢ ⎥
⎣ ⎦

 ∪ 

2 1 1 3
0 1 2 1
0 0 3 5
0 0 0 4

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 ∪ 
5 6 6
1 4 2

3 6 4

− −⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥− −⎣ ⎦

 

 
that is 3-characterstic polynomial associated with T is given by  
 
C  = (x – 1) (x – 2) ∪ (x – 2) (x – 1) (x – 3) (x – 4) ∪(x – 2)2 
  (x – 1)  

= C1 ∪ C2 ∪ C3.  
 
The 3-minimal polynomial p is given by  
p  =  p1 ∪ p2 ∪ p3 
 = (x – 1) (x – 2) ∪ (x – 2) (x – 1) (x – 3) (x – 4) ∪ (x – 1) 
  (x – 2). 
 
Hence T is a 3-diagonalizable operator and the 3-diagonal 3-
matrix associated with T is given by  
 

D = 
1 0
0 2
⎡ ⎤
⎢ ⎥
⎣ ⎦

 ∪ 

2 0 0 0
0 1 0 0
0 0 3 0
0 0 0 4

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 ∪ 
1 0 0
0 2 0
0 0 2

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. 

 
Now we proceed on to describe the n-linear operator which is n-
diagonalizable in the language of n-invariant direct sum 
decomposition. 
 
DEFINITION 2.30: Let V be a n-vector space over F, a n-
projection of V = V1 ∪ V2 ∪ … ∪ Vn is a n-linear operator E = 
E1 ∪ E2 ∪ … ∪ En on V such that E2 = E i.e., E2 = 

( ) ( ) ( )2 2 21 2 ...∪ ∪ ∪ nE E E . All properties associated with 

linear operators as projection can be analogously derived. 
Clearly if V = V1 ∪ V2 ∪ … ∪ Vn and V = 

1

1 1
1( ... )⊕ ⊕ kW W ∪ 
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2

2 2
1( ... )⊕ ⊕ kW W ∪ … ∪ 1( ... )⊕ ⊕

n

n n
kW W then for each space 

i
jW ; 1 ≤ i ≤ n and 1 ≤ j ≤ kj we can define i

jE  an operator on Vi 

such that if αi ∈ Vi is of the form 1 2 ...= + + +
i

i i i i
kα α α α  with 

∈i i
j jWα  define i

jE (αi) = i
jα , i

jE  is a well defined rule; this is 
true for each i and j so  

1

1 1 1 1
1 2 ...+ + + =kE E E E , 

2

2 2 2 2
1 2 ...+ + + =kE E E E , …, 

1 2 ...+ + + =
n

n n n n
kE E E E ; 

E = E1 ∪ E2 ∪ … ∪ En.  
 
Now as in case of linear vector space we can in case of n-vector 
spaces derive the properties of projections. 
 
Theorem 2.28: Let V = V1 ∪ V2 ∪ … ∪ Vn be a n-vector space 
over the field F. Suppose each Vi = 1 ...⊕ ⊕

i

i i
kW W for i = 1, 2, 

…, n i.e., V = 
1

1 1
1( ... )⊕ ⊕ kW W ∪ 

2

2 2 2
1 2( ... )⊕ ⊕ ⊕ kW W W  ∪ … ∪ 

1 2( ... )⊕ ⊕ ⊕
n

n n n
kW W W  then there exists (k1 + k2 + … + kn) 

linear operators 
1

1 1 1
1 2, ,..., kE E E , 

2

2 2 2
1 2, ,..., kE E E , …, 1 2, ,...,

n

n n n
kE E E  

on the n-vector space V such that  
 

1. Each 
i

i
jE is a projection, i = 1, 2, …, n; 1≤ ji ≤ ki  

2. . 0=
i k

i i
j jE E if ji ≠ jk 

3. I 
i = 1 ...+ +

i

i i
kE E  i = 1, 2,…, n i.e., I = I 

1 ∪ I 2 ∪…∪ I n. 

4. range of =i i
j jE W  for i = 1, 2, …, n, 1≤ j≤ ki

. 
 
Conversely if 

1

1 1 1
1 2, ,..., kE E E , 

2

2 2 2
1 2, ,..., kE E E , …, 1 ,...,

n

n n
kE E are k1 

+ k2 + … + kn linear operators on V which satisfy the condition 
1, 2 and 3 and if we let i

jW  be the range of i
jE  then V = 

1

1 1
1( ... )⊕ ⊕ kW W ∪ 

2

2 2
2( ... )⊕ ⊕ kW W ∪ … ∪ 1( ... )⊕ ⊕

n

n n
kW W . 

 



 69

Proof: Now to prove the converse statement we proceed as 
follows; from the basic definition and properties the condition 1 
to 4 are true, which can be easily verified. 

Suppose we have E = E1 ∪ E2 ∪ … ∪ En where each Ei is a 

i

i i i
1 2 kE ,E ,...,E  ki number of linear operators of Vi, Vi a 

component of the n-vector space V = V1 ∪ V2 ∪ … ∪ Vn and 
what we prove for i, is true for i = 1, 2, … , n. 

Given E satisfies all the three conditions given in (1) (2) and 
(3) and if we let i

jW  to be range of i
jE  then certainly V = W1 ∪ 

… ∪ Wn where 
i

i i i
1 kW W ... W= ⊕ ⊕ by condition (3) we have 

for α = α1 ∪ α2 ∪ … ∪ αn,  
 

α = (
1 1

1 1 1 1 1 1
1 1 2 2 k kE E ... Eα + α + + α ) ∪ 

(
2 2

2 2 2 2 2 2
1 1 2 2 k kE E ... Eα + α + + α ) ∪ … ∪ 

(
n n

n n n n n n
1 1 2 2 k kE E ... Eα + α + + α ) 

 
for each α ∈ Vj where each Ii = 

i

i i
1 kE ... E+ + , i = 1, 2, … , n and 

p k

i i
j jE .E 0=  if p ≠ k; 1 ≤ j ≤ ki and 

i

i i i
1 k...α = α + + α  true for i = 

1, 2, …, n. This is true for each αi ∈ Vi and hence for each α ∈ 
V and i i

j jE α  in Wi. This expression for each αi is unique and 

hence each α is unique, because if α = (
1

1 1
1 k...α + + α ) ∪ 

(
2

2 2 2
1 2 k...α + α + + α ) ∪ … ∪ (

n

n n n
1 2 k...α + α + + α ) is unique with 

each αi ∈ Wi , i.e., i
jα  ∈ i

jW . Suppose i
jα  = i i

j jE β  then from (1) 
and (2) we have  

ik
i i i i
j j jk

k 1
E E

=

α = α∑  

= 
ik

i i i
j k jk

k 1
E E

=

β∑ = i 2 i
j j(E ) β  

= i i
j jE β  = i

jα .  
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This is true for every i, i = 1, 2, …, n and every j, j = 1, 2, …, ki. 
This proves each Vi is direct sum of Wi, hence V is a direct sum 

1

1 1
1 kW ,...,W , … , 

n

n n n
1 2 kW ,W ,...,W . Hence the result. 

 
Now we give a sketch of proof of the following theorem. 
However reader is expected to prove the theorem. 
 
THEOREM 2.29: Let T = T1 ∪ T2 ∪ … ∪ Tn be a n-linear 
operator on the n-space V = V1 ∪ V2 ∪ … ∪ Vn and let W 

1, …, 
Wn and E1, E2, …, En be as in the above theorem. Then a 
necessary and sufficient condition that each n-subspace W 

i to 
be n-invariant under T (i.e., each i

jW  invariant under Ti) is that 
T commutes with each of the projections E 

i i.e., TE 
i = E 

iT for i 
= 1, 2, …, m (i.e., each Ti commutes with i

jE  i.e., Ti
i
jE  = i

jE Ti, 
i = 1, 2, …, n and j = 1, 2, …, ki). 
 
Proof: Suppose T commutes with each i

jE  i.e., Ti commutes 

with i
jE  for j = 1, 2, …, ki. This is true for each Ti also. Let α = 

α1 ∪ α2 ∪ … ∪ αn with i i
j jWα ∈ , then i i i

j j jE α = α  and for 
i i i

i j i j jT T (E )α = α  = i i
j i jE Tα  (since Ti commutes with i

jE  for j = 1, 

2, …, ki and i = 1, 2, …, n) .This shows that Ti
i
jα  is in the range 

of i
jE  i.e., i

jW  is invariant under Ti.  

Assume now that each i
jW  is invariant under Ti, 1 < j < ki; i = 1, 

2, …, n; we shall show that i i
i j j iT E E T=  for every i, 1 ≤ i ≤ n and 

j = 1, 2, …, ki. Let  
i

iVα ∈  
αi  = 

i

i i i i
1 kE ... Eα + + α  

i

i i i i i
1 kT TE ... TEα = α + + α . 

Since i i
jE α is in i

jW  which is invariant under Ti we must have 

Ti( i i
jE α ) = i i

j jE β  for some i
jβ . 

Then i i i
j i kE T E α  = i i i

j k kE E β  
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i i
j j

0 if k j
E if k j.

≠⎧⎪= ⎨ β =⎪⎩
 

i i
j iE Tα  = 

i

i i i i i i
j i 1 j i kE T .E ... E T Eα + + α  

= i i
j jE β  

= i i
i jT E α . 
 

This is true for each αi ∈ Vi so i
j iE T  = i

i jT E . This result is true 
for each i, i = 1, 2, … , n. 
 
We now prove the main theorem which describes n-
diagonalization of a n-linear operator. 
 
THEOREM 2.30: Let T = T1 ∪ T2 ∪ … ∪ Tn be a n-linear 
operator on a finite dimensional n-vector space V = V1 ∪ V2 ∪ 
… ∪ Vn. If T is n-diagonalizable and if (

1

1 1 1
1 2, ,..., kC C C ) ∪ 

(
2

2 2 2
1 2, ,..., kC C C ) ∪…∪ ( 1 2, ,...,

n

n n n
kC C C ) are n-characteristic 

values such that for each i, 1 2, ,...,
i

i i i
kC C C  are distinct 

characteristic values of Ti for i = 1, 2, … , n, then their exists n-
linear operators  

(
1

1 1 1
1 2, ,..., kE E E ) , (

2

2 2 2
1 2, ,..., kE E E ) , … , ( 1 2, ,...,

n

n n n
kE E E ) 

on V such that  
 

1. T = (
1 1

1 1 1 1
1 1 ...+ + k kC E C E ) ∪ (

2 2

2 2 2 2
1 1 ...+ + k kC E C E ) ∪ … ∪ 

( 1 1 ...+ +
n n

n n n n
k kC E C E )  

 
2. I = (

1

1 1 1
1 2 ...+ + + kE E E ) ∪ … ∪ ( 1 ...+ +

n

n n
kE E ) = I1 ∪ … 

∪ In 
 

3. i i
k jE E = 0, j ≠ k. 

 
4. i i

j jE E  = i
jE  
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5. The range of each i
jE  is the characteristic space for Ti 

associated with i
jC .  

 
Conversely if there exists (k1, k2, …, kn) set of ki distinct n-
scalars 1 2, ,...,

i

i i i
kC C C , i = 1, 2, …, n and ki distinct linear 

operators 1 2, ,...,
i

i i i
kE E E ; i = 1, 2, …, n which satisfy conditions 

(1), (2) and (3) then Ti is diagonalizable; hence T = T1 ∪ T2 ∪ 
… ∪ Tn is n-diagonalizable. 1 2, ,...,

i

i i i
kC C C  are distinct 

characteristic values of Ti for i = 1, 2, …, n and conditions (4) 
and (5) are satisfied. 
 
Proof: Suppose that T is n-diagonalizable i.e., each Ti of T is 
diagonalizable with distinct characteristic values (

1

1 1 1
1 2 kC ,C ,...,C ) 

∪ (
2

2 2 2
1 2 kC ,C ,...,C ) ∪ … ∪ (

n

n n n
1 2 kC ,C ,...,C ), i.e., each set of 

(
i

i i i
1 2 kC ,C ,...,C ) are distinct. Let i

jW  be the space of 
characteristic vectors associated with the characteristic values 

i
jC . As we have seen. 

V = (
1

1 1
1 kW ... W⊕ ⊕ ) ∪ (

2

2 2
1 kW ... W⊕ ⊕ ) ∪ … ∪ 

(
n

n n
1 kW ... W⊕ ⊕ ) 

where each Vi = 
i

i i
1 kW ... W⊕ ⊕  for i = 1, 2, …, n. 

Let 
i

i i i
1 2 kE ,E ,...,E  be the projections associated with this 

decomposition given in theorem. Then (2), (3), (4) and (5) are 
satisfied. To verify (1) we proceed as follows for each α = α1 ∪ 
α2 ∪ … ∪ αn in V; αi ∈Vi; αi = 

i

i i
1 kE ... Eα + + α  and so  

Tiαi  =  
i

i i i i
1 kTE ... TEα + + α  

 = 
i i

i i i i i i
1 1 k kC E ... C Eα + + α .  

In other words Ti = 
i i

i i i i
1 1 k kC E ... C E+ + . Now suppose that we are 

given a n-linear operator T = T1 ∪ T2 ∪ … ∪ Tn along with 
distinct n scalars C1 ∪ C2 ∪ … ∪ Cn = C with scalar i

jC  and 

non zero operator i
jE  satisfying (1), (2) and (3) . This is true for 
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each i = 1, 2, …, n and j = 1, 2, …, ki. Since i i
j kE .E 0=  when j ≠ 

k, we multiply both sides of  
I  = I1 ∪ I2 ∪ … ∪ In  

=  (
1

1 1 1
1 2 kE E ... E+ + + ) ∪ (

2

2 2 2
1 2 kE E ... E+ + + ) ∪ … ∪  

  (
n

n n n
1 2 kE E ... E+ + + )  

by 1 2 n
t t tE E ... E∪ ∪ ∪  and obtain immediately  

1 2 n
t t tE ,E ,...,E  = ( 1

tE )2 ∪( 2
tE )2 ∪ … ∪( n

tE )2. 
Multiplying  
T  = (

1 1

1 1 1 1
1 1 k kC E ... C E+ + ) ∪ … ∪(

n n

n n n n
1 1 k kC E ... C E+ + )  

 
by 1 2 n

t t tE E ... E∪ ∪ ∪  we have  
1 2 n

1 t 2 t n tT E T E ... T E∪ ∪ ∪  = 1 1 2 2 n n
t t t t t tC E C E ... C E∪ ∪ ∪  

which shows that any n-vector in the n range of 
1 2 n
t t tE E ... E∪ ∪ ∪  is in the n-null space of (T – CI) = 

1 n
1 t 1 n t n(T C I ) ... (T C I )− ∪ ∪ −  where I = I1 ∪ I2 ∪ … ∪ In. Since 

we have assumed 1 2 n
t t tE E ... E∪ ∪ ∪  ≠ 0 ∪ 0 ∪ … ∪ 0, this 

proves that there is a nonzero n-vector in the n-null space of  
(T –CI) = 1 n

1 t 1 n t n(T C I ) ... (T C I )− ∪ ∪ −  
i.e., that i

tC  is a characteristic value of Ti for each i, i = 1, 2, …, 
n; for if Ci is any scalar then (Ti – CiIi) = ( i i

1C C− ) i
1E  + … + 

(
i

i i
kC C− ) 

i

i
kE  true for i = 1, 2, … , n so if (Ti – CiIi)αi = 0, we 

must have ( i
tC  – Ci) i i

jE α  = 0. If αi must be the zero vector then 
i i
jE 0α ≠  for some j so that for this j we have i i

jC C 0− = . 
Certainly Ti is diagonalizable since we have shown that 

every non zero vector in the range of i
jE  is a characteristic value 

of Ti and the fact that Ii = 
i

i i
1 kE ... E+ + , shows that these 

characteristic vectors span Vi. This is true for each i, i = 1, 2, …, 
n. All that is to be shown is that the n-null space of (T – CI) = 
( 1

1 k 1T C I− ) ∪ ( 2
2 k 2T C I− ) ∪ … ∪ ( n

n k nT C I− ) is exactly the n 
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range of 1 n
k kE ... E∪ ∪ , but this is clear because Tα = Cα i.e., 

i i i
i jT Cα = α , for each i, i = 1, 2, …, n. Thus  

ii kk
i i i i
j k j

i 1 j 1
(C C )E 0

= =

− α =∑∪ ; i.e.,  

1 2 nk k k
1 1 1 1 2 2 2 2 n n n n
j k j j k j j k j

j 1 j 1 j 1
(C C )E (C C )E ... (C C )E

= = =

− α ∪ − α ∪ ∪ − α∑ ∑ ∑  

= 0 ∪ 0 ∪ … ∪ 0. 
 
Hence ( i i i i

j k j(C C )E− α  = 0 for each j; and each i = 1, 2, …, n 

and i i
jE α  = 0, k ≠ j; for each i, i = 1, 2, …, n. Since αi = 

i

i i i i
1 kE ... Eα + + α  for each i and i i

jE α  = 0 for j ≠ k we have αi = 
i i
jE α  which proves that αi is the range of i

jE . This is true for 
each i hence the claim. 
 
We give the statement of the primary decomposition theorem 
for n-vector space V. 
 
THEOREM 2.31: Let T = T1 ∪ T2 ∪ … ∪ Tn be a n-linear 
operator on the finite dimensional n-vector space V = V1 ∪ V2 
∪ … ∪ Vn over the field F. Let p = p1 ∪ p2 ∪ … ∪ pn where pi 
= 1 2

1 1 ...
ii i
ki

i

rr r
kp p p ,  i = 1, 2, …, n. i.e.,  

p = 
1 21 1 2 2

1 2 1 1 2 2 1 2

1 211 12 1 21 22 2 11 12... ... ... ...∪ ∪ ∪
nn n
kk k n

n

rr rr r r r r r
k k nkp p p p p p p p p  

where ikp are distinct irreducible monic polynomials over F and 

the i
jr  are positive integers. Let i

jW  be the null space of ( )
irkT

ikp , 
k = 1, 2, …, ki; i = 1, 2, …, n then  
 

1. V = (
1

1 1
1 ...⊕ ⊕ kW W ) ∪ (

2

2 2
1 ...⊕ ⊕ kW W ) ∪ … ∪ 

( 1 ...⊕ ⊕
n

n n
kW W )  

2. each W i is invariant under Tik, i = 1, 2, …, n, 1 ≤ r ≤ ki. 
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3. if Tij is the operator induced on i
jW  by Ti then the 

minimal polynomial for Tij is 
i
jr

ijp , true for j = 1, 2, …, ki 
and i = 1, 2, …, n. 

 
Several interesting results can be found in this direction 
analogously.  

Now we define the notion of n-diagonalizable part and n-
nilpotent part of a n-linear operator T. 

Given V = V1 ∪ V2 ∪ … ∪ Vn is a n-vector space over the 
field F. T = T1 ∪ T2 ∪ … ∪ Tn a n-linear operator on V. 
Suppose the n-minimal polynomial of T is the product of first 
degree polynomials, i.e., the case in which each i

jp  is of the 

form x – i
jC . Now range of i

jE , for each Ti in T is the null space 
i
jW  of (

i
jri i

i j i(T C I )− . This is true for each i, i = 1, 2, …, n. Put  
 

D  =  D1 ∪ D2 ∪ … ∪ Dn  
= (

1 1

1 1 1 1 1 1
1 1 2 2 k kC E C E ... C E+ + + ) ∪  

 (
2 2

2 2 2 2 2 2
1 1 2 2 k kC E C E ... C E+ + + ) ∪ … ∪  

 (
n n

n n n n n n
1 1 2 2 k kC E C E ... C E+ + + ) .  

 
Clearly D is n-diagonalizable operator which we define or 

call as the n-diagonalizable part of T. Let as consider N = T – D. 
Now  
T  = [

1

1 1
1 1 1 kT E ... T E+ + ] ∪ [

2

2 2
2 1 2 kT E ... T E+ + ] ∪ … ∪  

  [
n

n n
n 1 n kT E ... T E+ + ] 

 
D  = (

1 1

1 1 1 1 1 1
1 1 2 2 k kC E C E ... C E+ + + ) ∪  

  (
2 2

2 2 2 2 2 2
1 1 2 2 k kC E C E ... C E+ + + ) ∪ … ∪  

  (
n n

n n n n n n
1 1 2 2 k kC E C E ... C E+ + + )  

so  
N  =  [

1 1 1

1 1 1 1 1 1 1 1 1
1 1 1 1 1 2 2 2 1 k k k(T C I )E (T C I )E ... (T C I )E ]− + − + + −  ∪ 
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[
2 2 2

2 2 2 2 2 2 2 2 2
2 1 1 1 2 2 2 2 2 k k k(T C I )E (T C I )E ... (T C I )E− + − + + − ] 

 ∪ … ∪ [
n n

n n n n n
n 1 1 1 n k k(T C I )E ... (T C I )− + + − ] . 

Clearly  
 
N2  = [

1 1 1

1 1 2 1 1 1 2 1
1 1 1 1 1 k k k(T C I ) E ... (T C I ) E− + + − ] ∪   

[
2 2 2

2 2 2 2 2 2 2 2
2 1 1 1 2 k k k(T C I ) E ... (T C I ) E− + + − ] ∪ … ∪ 

[
n n n

n n 2 n n n 2 n
n 1 1 1 n k k k(T C I ) E ... (T C I ) E− + + − ]  

 
and in general we have  
 
Nr = [

1 1 1

1 1 r 1 1 1 r 1
1 1 1 1 1 k k k(T C I ) E ... (T C I ) E− + + − ] ∪ … ∪ 

  [
1 n n

n n r n n n r n
n 1 1 1 n k k k(T C I ) E ... (T C I ) E− + + − ] 

 
where r ≥ (r1, r2, …, rn) i.e., r > ri, i = 1, 2, …, n ( by misuse of 
notation) we have Nr = 0 because the n-operator (T – CI)r will 
be (0 ∪ 0 ∪ … ∪ 0) i.e., each (Ti – i

j iC I ) i
jr  = 0 where r > i

jr  for 
j = 1, 2, …, ki and i = 1, 2, …, n.  
 
Now we define a nilpotent n-linear operator T. 
 
DEFINITION 2.31: Let N be a n-linear operator on V = V1 ∪ V2 
∪ … ∪ Vn we say N is n-nilpotent if there exists some positive 
integer r, r >ri; i = 1, 2, … , n such that N r = 0. 
 
Note: If N = N1 ∪ N2 ∪ … ∪ Nn then Ni: Vi → Vi is of 
dimension ni, ni ≠ nj if i ≠ j true for i = 1, 2, …, n so we may 
have 

ir
iN  = 0, i = 1, 2, … , n. We may not have ri = rj, if i ≠ j; 

hence the claim.  
 
Now we give only a sketch of the proof however the reader is 
expected to get the complete the proof using this sketch.  
 
THEOREM 2.32: Let T = T1 ∪ T2 ∪ … ∪ Tn be a n-linear 
operator on a finite dimensional n-vector space V = V1 ∪ V2 ∪ 



 77

… ∪ Vn over the field F. Suppose the n-minimal polynomial for 
T decomposes over F in to product of n-linear polynomials, then 
there is a n-diagonalizable n-operator D on V and a n-nilpotent 
operator N on V such that  

I. T = D + N  
II. DN = ND. 

The n-diagonalizable operator D and the n-nilpotent operator N 
are uniquely determined by (I) and (II) and each of them is a n-
polynomial in T. 
 
Proof: We give only a sketch of the proof. However the 
interested reader can find a complete proof using this sketch.  

Given V = V1 ∪ V2 ∪ … ∪ Vn finite (n1, n2, …, nk) 
dimensional a n-vector space. T = T1 ∪ T2 ∪ … ∪ Tn a n-linear 
operator on T such that Ti: Vi → Vi for each i = 1, 2, …, n. We 
can write each Ti = Di + Ni, a nilpotent part Ni and a 
diagonalizable part Di; i = 1, 2, …, n. 

Thus  
T  =  T1 ∪ T2 ∪ … ∪ Tn  

= (N1 + D1) ∪ (N2 + D2) ∪ … ∪ (Nn + Dn)  
=  (N1 ∪ N2 ∪ … ∪ Nn) + (D1 ∪ D2 ∪ … ∪ Dn) 

 
i.e., T = N + D where N = N1 ∪ N2 ∪ … ∪ Nn and D = D1 ∪ D2 
∪ … ∪ Dn. Since each Di and Ni not only commute but are 
polynomials in Ti we see D and N commute and are n-
polynomials of T, as the result is true for each i, i = 1, 2, … , n. 
Suppose we have T = D1 + N1, i.e.,  
 
T  =  T1 ∪ T2 ∪ … ∪ Tn  

= ( 1 1
1 1D N+ ) ∪ ( 1 1

2 2D N+ ) ∪ … ∪ ( 1 1
n nD N+ )  

= D1 + N1  
 
where D1 is the n-diagonalizable part of T i.e., each 1

iD  is the 
diagonalizable part of Ti for i = 1, 2, …, n and N1 the n-
nilpotent part of T i.e., each Ni is the nilpotent part of Ti for i = 
1, 2, …, n. 
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Since each 1
iD  and 1

iN  commute for i = 1, 2, …, n we have D1 
and N1 also n-commute with any n-polynomial in T. Hence in 
particular they commute with D and N. 

Now we have D + N = D1 + N1 i.e., D – D1 = N1 – N and 
these four n-operator commute with each other. Since D and D1 
are n-diagonalizable they commute and so D – D1 is also n-
diagonalizable.  

Since both N and N1 are n-nilpotent they n-commute and 
the operator N – N1 is also n-nilpotent. Since N – N1 = D – D1 
and N – N1 is n-nilpotent we have D – D1 the n-diagonalizable 
n-operator is also n-nilpotent.  

Such an n-operator can only be a zero operator, for since it 
is n-nilpotent, the n-minimal polynomial for this n-operator is of 
the form 1 2 nr r rx x ... x∪ ∪ ∪  with irx 0=  for appropriate mi ≥ ri, 
i = 1, 2, …, n. But since the n-operator is n-diagonalizable the 
n-minimal polynomial cannot have repeated n-roots hence each 
ri = 1 and the n-minimal polynomial is simple x ∪ x ∪ … ∪ x 
which confirms the operator is zero. Thus we have D = D1 and 
N = N1.  
 
The interested reader is expected to derive analogous results 
when F is the field of complex numbers.  

Now we proceed on to work with n-characteristic values n-
characteristic vectors of a special n-linear n-operator on V. 

Given V is a n-vector space say of finite dimension, V = V1 
∪ V2 ∪ … ∪ Vn of dimension (n1, n1, …, nn) defined over the 
field F. Let T = T1 ∪ T2 ∪ … ∪ Tn be a special n-linear operator 
on V; i.e., Ti: Vi → Vi for each i, i = 1, 2, …, n. 

We say C = (C1 ∪ C2 ∪ … ∪ Cn) is a n-characteristic value 
of T if some n-vector α = α1 ∪ α2 ∪ … ∪ αn we have Tα = Cα, 
i.e., Tα = (T1 ∪ T2 ∪ … ∪ Tn) (α1 ∪ α2 ∪ … ∪ αn) = (C1 ∪ C2 
∪ … ∪ Cn) (α1 ∪ α2 ∪ … ∪ αn) i.e., T o T = T1α1 ∪ T2α2 ∪ … 
∪ Tnαn = C1α1 ∪ C2α2 ∪ … ∪ Cnαn, i.e., each Tiαi = Ciαi for i 
= 1, 2, …, n. 

Here α = α1 ∪ α2 ∪ … ∪ αn is defined to be the n-
characteristic vector of T. The collection of all α such that Tα = 
Cα is called the n-characteristic space associated with C. 



 79

We shall illustrate the working of the n characteristic 
values, n-characteristic vectors associated with aT. 
 
Example2.20: Let V = V1 ∪ V2 ∪ V3 be 3 vector space over Q 
where V1 = Q × Q × Q, V2 = Q × Q and V3 = Q × Q × Q × Q are 
vector spaces over Q of dimensions 3, 2 and 4 respectively i.e., 
V is of (3, 2, 4) dimension. Define T: V → V where the 3-
matrix associated with T is given by  

A = A1 ∪ A2 ∪ A3 

= 

1 0 2 1
3 0 2

1 2 0 2 5 0
0 1 5

0 3 0 0 3 7
0 0 7

0 0 0 4

⎡ ⎤
⎡ ⎤ ⎢ ⎥⎡ ⎤⎢ ⎥ ⎢ ⎥∪ ∪⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦

⎣ ⎦

. 

 
Now we will determine the 3-characterstic values associated 
with T. The n-characteristic polynomial  

 

p = 
x 3 0 2

x 1 2
0 x 1 5

0 x 3
0 0 x 7

− −⎡ ⎤
− −⎡ ⎤⎢ ⎥− − ∪ ∪⎢ ⎥⎢ ⎥ −⎣ ⎦⎢ ⎥−⎣ ⎦

 

x 1 0 2 1
0 x 2 5 0
0 0 x 3 0
0 0 0 x 4

− − −⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥−
⎢ ⎥−⎣ ⎦

 

 
=  (x – 3) (x – 1) (x –7) ∪ (x – 1) (x – 3) ∪ (x – 1) (x – 2) 

(x – 3) (x – 4). 
 
Thus the 3- characteristic values of A = A1 ∪ A2 ∪ A3 are {3, 1, 
7} ∪ {1, 3} ∪ {1, 2, 3, 4}. One can find the 3-characteristic 
values as in case of usual vector spaces and their set theoretic 
union will give 3-row mixed vector, which will be 48 in number 
as we have 48 choices for the 3-characterstic values as {3} ∪ 
{1} ∪ {1}, {3} ∪ {1} ∪ {2}, {3} ∪ {1} ∪ {3}, {3} ∪ {1} ∪ 
{4} so on and {7} ∪ {3} ∪ {4}. 
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Now having seen the working of 3-characteristic values we 
just recall in case of matrices A we say A is orthogonal if AAt = 
I. Further A is anti orthogonal if AAt = – I. 
 
Now we for the first time define the notion of n-orthogonal 
matrices and n-anti orthogonal matrices. 
 
DEFINITION 2.32: Let A = (A1 ∪ A2 ∪ … ∪ An) be a n-matrix.  

At = (A1 ∪ … ∪ An) t = 1 2 ...∪ ∪ ∪t t t
nA A A . 

AAt = 1 1 2 2 ...∪ ∪ ∪t t t
n nA A A A A A . 

We say A is n-orthogonal if and only if AAt = I1 ∪ I2 ∪ … ∪ 
In where Ij is the identity matrix, i.e., if A = A1 ∪ A2 ∪ … ∪ An is 
mi × ni matrix i = 1, 2, …, n; then AAt = I1 ∪ I2 ∪ … ∪ In is such 
that Ij is a mj × mj identity matrix, j = 1, 2, …, n. We say A is 
anti orthogonal if and only if AAt = (– I1) ∪ (–I2) ∪ … ∪ (– In) 
where Ij is mj × mj identity matrix i.e., if  
 

I = 

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 

then  

–I = 

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−
⎢ ⎥−⎣ ⎦

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

. 

 
Now we say AAt is n-semi orthogonal if AAt = B1 ∪ B2 ∪ … ∪ 
Bn ; some of the Bi’s are identity matrices and some are not 
identity matrices on similar lines we define n-semi anti 
orthogonal if in AAt = C1 ∪ C2 ∪ … ∪ Cn some Ci’s are –Ii and 
some are not – Ij.  
 
It is not a very difficult task for the reader can easily get 
examples of these 4 types of n-matrices. 
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Chapter Three  
 
 
 
 
 

APPLICATIONS OF  
n-LINEAR ALGEBRA OF TYPE I 
 
 
 
 
 
In this chapter we just introduce the applications of the n-linear 
algebras of type I. We just recall the notion of Markov bichains 
and indicate the applications of vector bispaces and linear 
bialgebras in Markov bioprocess. For this we have to first 
define the notion of Markov biprocess and its implications to 
linear bialgebra / bivector spaces. We may call it as Markov 
biprocess or Markov bichains. 

Suppose a physical or mathematical system is such that at 
any moment it occupies two of the finite number of states 
(Incase of one of the finite number of states we apply Markov 
chains or the Markov process). For example say about a 
individuals emotional states like happy, sad etc., suppose a 
system move with time from two states or a pair of states to 
another pair of states; let us construct a schedule of observation 
times and a record of states of the system at these times. If we 
find the transition from one pair of state to another pair of state 
is not predetermined but rather can only be specified in terms of 
certain probabilities depending on the previous history of the 
system then the biprocess is called a stochastic biprocess. If in 
addition these transition probabilities depend only on the 
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immediate history of the system; that is if the state of the system 
at any observation is dependent only on its state at the 
immediately proceeding observations then the process is called 
Markov biprocess or Markov bichain. 

The bitransition probability pij = 
1 1 2 2

1 2
i j i jp p∪  (i, j = 1, 2,…, 

k) is the probabilities that if the system is in state j = (j1, j2) at 
any observation, it will be in state i = (i1, i2) at the next 
observation. A transition matrix  

 
P = [pij] = 

1 1 2 2

1 2
i j i jp p⎡ ⎤ ⎡ ⎤∪⎣ ⎦ ⎣ ⎦  

 
is any square bimatrix with non negative entries for which the 
bicolumn sum is 1 ∪ 1. A probability bivector is a column 
bivector with non negative entries whose sum is 1 ∪ 1. 

The probability bivectors are said to be the state bivectors of 
the Markov biprocess. If P = P1 ∪ P2 is the transition bimatrix 
of the Markov biprocess and xn = n n

1 2x x∪  is the state bivector at 
the nth observation then x(n+1) = P x(n) and thus (n 1) (n 1)

1 2x x+ +∪  = 
(n) (n)

1 1 2 2P x P x∪ . Thus Markov bichains find all its applications 
in bivector spaces and linear bialgebras. 
 
Now we proceed onto define the new notion of Markov n-chain 
n ≥ 2. Suppose a physical or a mathematical system is such that 
at any time it can occupy a finite number of states; when we 
view them as stochastic biprocess or Markov bichains when we 
make an assumption that the system moves with time from one 
state to another so that a schedule of observation times keeps the 
states of the system at these times. But when we tackle real 
world problems, say even for simplicity; emotions of a person 
may be very unpredictable depending largely on the situation 
and the mood of the person and its relation with another so such 
study cannot come under Markov chains. Even more is the 
complicated situation when the mood of a boss with 
subordinates; where mood of a person with a n number of 
persons and with varying emotions at a time and in such cases 
more than one emotion is experienced by a person and such 
states cannot be included and given as a next set of observation. 
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These changes and several feelings say at least n at a time (n > 
2) will largely affect the transition n-matrix 
 

P = P1 ∪ … ∪ Pn 1 1 n n

1 n
i j i jp p⎡ ⎤ ⎡ ⎤= ∪ ∪⎣ ⎦ ⎣ ⎦…  

 
with non negative entries which we will explain shortly. We 
indicate how n-vector spaces and n-linear algebras are used in 
Markov n-process (n ≥ 2), when n = 2 the study is termed as 
Markov bioprocess. We first define Markov n-process and its 
implications to linear n-algebra and n-vector spaces; which we 
may call as Markov n-process and Markov n-chains. 
 Suppose a physical or a mathematical system is such that at 
any moment it occupies two or more finite number of states (in 
case of one of the finite number of states we apply Markov 
chains or the Markov process; in case of two of the finite 
number of state we apply Markov bichains or Markov 
biprocess). For example individual emotional states; happy, sad, 
cold, angry etc. suppose a system move with time from n states 
or a n tuple of states to another n-tuple of states; let us construct 
a schedule of observation times and a record of states of the 
system at these times. If we find the transition from n-tuple of 
states to another n-tuple of states not predetermined but rather 
can only be specified in terms of certain probabilities depending 
on the previous history of the system then the n-process is 
called a stochastic n-process. If in addition these transition 
probabilities depend only on the immediate history of the 
system that is if the state of the system at any observation is 
dependent only on its state at immediately proceeding 
observations then the process is called Markov n-process or 
Markov n-chain. 
  The n-transition probability  

1 1 2 2 n n

1 2 n
ij i j i j i jp p p p= ∪ ∪ ∪…  

i, j = 1, 2, …, K is the probabilities that if the system is in state j 
= (j1, j2, …, jn) at any observation it will be in state i = (i1, i2, …, 
in) at the next observation. 
 
 A transition matrix associated with it is 

1 1 n n

1 n
ij i j i jP [p ] [p ] ... [p ]= = ∪ ∪  
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is a square n-matrix with non negative entries for all of which n-
column sum is (1 ∪ … ∪ 1). A probability n-vector is a column 
n-vector with non negative entries whose sum is 1 ∪ … ∪ 1. 
 The probability n-vectors are said to be the state n-vectors 
of the Markov n-process. If P = P1 ∪ … ∪ Pn is the transition n-
matrix of the Markov n-process and m m m

1 nx x x= ∪ ∪…  is the 
state n-vector at the mth observation then x(m+1) = Px(m) and thus 

m 1 m 1 (m) (m)
1 n 1 1 n nx x P (x ) P x+ +∪ ∪ = ∪ ∪… … . Thus Markov n-

chains find all its applications in n-vector spaces and linear n-
algebras. (n-linear algebras).  
 
Example 3.1: (Random Walk): A random walk by n persons on 
the real lines i.e. lines parallel to x axis is a Markov n-chain 
such that 

1 1 n n

1 n
j k j kp p∪ ∪… = 0 ∪ … ∪ 0 if kt = jt – 1 or jt + 1, t 

= 1, 2, …, n. Transition is possible only to neighbouring states 
from j to j – 1 and j + 1. Here state n-space is S = S1 ∪ … ∪ Sn 
where Si = { … –3 –2 –1 0 1 2 3 …}; i = 1, 2, …, n.  
 
The following theorem is direct. 
 
THEOREM 3.1: The Markov n-chain 

1 1{ ; 0}mX m ≥  ∪ … ∪ 

{ ; 0}
nm nX m ≥  is completely determined by the transition n-

matrix P = P1 ∪ … ∪ Pn and the initial n-distribution 

1

1{ } { }
n

n
K KP P∪ ∪…  defined as  

1
1 0 1 0[ ] [ ]n

n nP X K P X K= ∪ ∪ =…  

1 nK Kp p= ∪ ∪ ≥… 0 ∪ … ∪ 0  
and 

1

1 1∈ ∈

∪ ∪∑ ∑…
n

n n

k k
K S K S

p p = 1 ∪ … ∪ 1.  

 
The proof is similar to Markov chain. 
 
 The n vector 

1 n

1 1 n n
1 n 1 nu (u u ) (u u )= ∪ ∪… … …  is called a 

probability n-vector if the components are non negative and 
their sum is one. 
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The square n-matrix P = P1 ∪ …∪ Pn = 1 1 n n

1 n
i j i j(p ) (p )∪ ∪…  

is called a stochastic n-matrix if each of the n-row probability n-
vector i.e. each element of Pi is non negative and the sum of the 
elements in each row of Pi is one for i = 1, 2, …, n.  

 
We illustrate this by a simple example. 

 
Example 3.2: Let  
 

1 10 02 21 0 0
1 0 1 0 0 0

1 1 1P 3 1 1 143 6 2 04 4 27 731 0 3 2 1 14 4
7 7 7 7

⎡ ⎤
⎡ ⎤ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎡ ⎤⎢ ⎥ ⎢ ⎥= ∪ ∪⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

 

be a stochastic 3-matrix.  
 

The transition n-matrix P of a Markov n-chain (m-n-C) is a 
stochastic n-matrix. A stochastic n-matrix A = A1 ∪ … ∪ An is 
said to be n-regular if all the entries of some power of each Ai 
i.e. im

iA  is positive, mi’s positive integer for every i, i = 1, 2  …, 
n; i.e. (m1, …, mn) > (1, 1, …, 1). 1 nm mm

1 1A A A= ∪ ∪… ; m = 
(m1, …, mn) with im

iA 0>  for each i so that we state Am > (0 ∪ 
… ∪ 0). It is easily verified that if P = P1 ∪ … ∪ Pn is a 
stochastic n-matrix then Pm is also a stochastic n-matrix for all 
m > (1, 1, …, 1). Is P a stochastic n-matrix if Pn is a stochastic 
n-matrix? 

Prove (1, …, 1) is a n-eigen value of a stochastic n-matrix 
i.e. if A = A1 ∪ … ∪ An; |λI – A| = 0 ∪ … ∪ 0 ⇒ λ = (1, …, 1) 
if |λ1I1 – A1| ∪ … ∪ |λnIn – An| = 0 ∪ 0 ∪ … ∪ 0 ∪ 0, implies λ 
= (λ1, …, λn) = (1, …, 1). We define n-independent trials 
analogous to independent trials if 

P = P1 ∪ … ∪ Pn 
and 

m m m
1 nP P P P= = ∪ ∪…  

 = P1 ∪ … ∪ Pn  
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for all m ≥ (1, …, 1) where 

t t t

t t
i j jp p=  for t = 1, 2, …, n i.e. all 

the rows of each Pt is the same then we say P is an n-
independent trial. 
 We can also define the notion of Bernoulli n trials. We just 
depict n-random walk with absorbing barriers. Let the possible 
n-states be 

1 n

1 1 1 n n n
0 K 0 1 K(E , E , ,E ) (E ,E , ,E )∪ ∪… … … . 

 Consider the n-matrix of transition n-possibilities  
 

1 1 n n

1 n
i j i jP P P= ∪ ∪…  

 

=

1 1 n n

1 1 n n

1 1 n n

1 n

K K K K

1 0 0 0 1 0 0 0
q 0 p 0 q 0 p 0
0 q 0 p 0 0 q 0 p
0 q 0 0 q
0 0 1 0 0 1

× ×

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥∪ ∪
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

… …
… …

… #
… …

… …

 

 
 From each of the interior n states  

1 1 n 1

1 1 n n
1 K 1 K{E , ,E } {E , , E },

− −
∪ ∪… … …  

 n-transmission are possible to the right and left neighbour with 
t tt i ,i 1 t(p ) p ,+ =  

t tt i ,i 1 t(p ) q− = ; t = 1, 2, …, n.  
However no n-transition is possible from either 

1 n
0 0 0E (E E )= ∪ ∪…  and 1 n

K K KE [E E ]= ∪ ∪…  to any other n-
state. 
 This n-system may move from one n-state to another but 
once E0 or EK is reached the n-system stays there permanently. 
 
Now we describe random walk with reflecting barriers. 
 
 Let 

1 1 n n

1 n
i j i jP P P= ∪ ∪… be a n-matrix with  
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1 1

1 1

1
1

1 1

1 1

q p 0 0 0 0
q 0 p 0 0 0

P 0 q 0 p 0 0 0
0 0 0 q 0 p
0 0 0 0 q p

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

…
…

…
…

 

 

∪ … ∪ 

n n

n n

n n

n n

n n

q p 0 0 0 0
q 0 p 0 0 0
0 q 0 p 0 0 0
0 0 0 q 0 p
0 0 0 0 q p

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

…
…

…
…

 

 
pt and qt for t = 1, 2, …, n is defined by  

t t

t
t t

t t t t t
ij n t n 1 t t

p if j i 1
P P (X j |X i ) q if j 0

0 otherwise
−

⎧ = +
⎪= = = = =⎨
⎪
⎩

 

true for t = 1, 2, …, n.  
It may be possible that 

( 2)

t t t t

t t
i j i jp 0, p 0= = but 

(3)

t t

t
i jp 0> . We 

say the state jt is accessible from state it if 
( n )

t t

t
i jP 0>  for some n > 

0. 
 In notation it → jt i.e. it leads to jt. If it → jt and jt → it then it 
and jt communicate and we denote it by it ↔ jt, if this happens 
we say they n-communicate. If only some of them communicate 
and others do not communicate we say the n-system semi 
communicates. 
 
Here  

j

( n )
t

t t

t t t
t t t

jt t
i j t t t

q p for j 0,1,2, ,i n 1
P j p for j j n

0 otherwise.

⎧ = + −
⎪

= = +⎨
⎪
⎩

…
 

The state it is essential if it → jt
 implies it ← jt i.e. if any state jt 

is accessible from it then it is accessible from that state, true for t 
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= 1, 2, …, n. Let ℑ = ℑ1 ∪ … ∪ ℑn denote the set of all 
essential n state i.e. each ℑt denotes the set of all essential states, 
t = 1, 2, …, n. States that not n-essential are called n-inessential. 
We have semi essential if a few of the ℑt’s are essential. We 
have semi essential state as m-essential state where m < n and 
only m out of the n states are essential rest inessential or n – m 
inessential state. 
 A Markov n-chain is called n-irreducible (or n-ergodic) if 
there is only one n communicating class i.e. all states n-
communicate with each other or every n-state can be reached 
from every other n-state.  

A n-subset c = c1 ∪ … ∪ cn of S = S1 ∪ … ∪ Sn is said to 
be closed (or n-transient) if it is impossible to leave c in one step 
i.e. pij = 0 ∪ … ∪ 0, i.e. 

1 1 n n

1 n
i j i jp p∪ ∪… = 0 ∪ … ∪ 0 for all i 

∈ c i.e. (i1, …, in) ∈ c1 ∪ … ∪ cn and all (j1, …, jn) ∉ c for all it 

∈ ct and all jt ∉ ct; t = 1, 2, …, n.  
We say a n-subset c = c1 ∪ … ∪ cn of S = S1 ∪ … ∪ Sn is 

semi n-closed (or semi n-transient) if it is impossible to leave 
(only m of the) ct’s, 1 ≤  t ≤ n, m < n in one state; i.e. 

t t

t
i jp 0=  

for all it ∈ ct, and for all jt ∈ ct. We call this also m-closed (m < 
n) or m-transient, m = 1, 2, …, n –1. If m = n – 1 we call c to be 
hyper n-closed (or hyper n-transient). 
 A Markov n-chain is n-irreducible if the only n-closed set in 
S is S itself i.e., there is no n-closed set other than the set all of 
n states. 
 We say a Markov n-chain is semi irreducible or m-
irreducible (m < n) if the closed sets in S = S1 ∪ … ∪ Sn are m 
in number from the n-states {S1, …, Sn}, m < n. If m = n – 1 
then we say the Markov n-chain is hyper n irreducible. 
 A single n-state {K1, …, Kn} forming a closed n-set is 
called n-absorbing (n-trapping) i.e., a n-state such that the n-
system remains in that state once it enters there. Thus a n-state 
{K1, …, Kn} is n absorbing if the th th

1 n{K , , K }…  rows of the 
transition n-matrix P = P1 ∪ … ∪ Pn has 1 on the main n-
diagonal and 0 else where. 
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Example 3.3: Let P = P1 ∪ … ∪ P4 be a transition 4 matrix 
given by  
 

P = 

1 10 0 0 0 02 2
1 0 0 0 0 0 0

1 20 0 0 0 03 3
0 0 0 1 0 0 0

51 10 0 0 07 7 7
5 30 0 0 0 08 8

3 1 10 0 0 05 5 5

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥ ∪
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

  

 
1 10 0 02 2

1 1 10 0 3 3 3
0 0 1 0 0
1 4 0 0 05 5
7 20 0 09 9

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥ ∪
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

1 0 0 0
810 09 9

71 0 08 8
1 1 104 2 4

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥ ∪
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

  

 
0 0 0 1 0 0
1 10 0 0 02 2

31 0 0 0 04 4
7 10 0 0 0 8 8

0 1 0 0 0 0
0 0 0 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 . 

 
Clearly the n-absorbing state is (4, 3, 1, 6). 
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Several interesting results true in case of M C can be proved for 
M – n – C with appropriate changes and suitable modifications. 
 
 Now we briefly describe the method for spectral m-
decomposition (m ≥ 2). Let P = P1 ∪ … ∪ Pm be a N × N m-
matrix with m set of latent roots 

1 2 m

1 1 2 2 m m
1 N 1 N 1 N, , ,λ λ λ λ λ λ… … … … all distinct and simple i.e. 

each set of latent roots 
t

t t
1 N{ }λ λ… are all distinct and simple for 

t = 1, 2, …, m; then 

1 1 m m

1 1 m m
1 i 1 i m i m i(P I ) U (P I ) U−λ ∪ ∪ −λ… = 0 ∪ … ∪ 0 

for the n-column latent n-vector 
1 m

1 m
i iU U∪ ∪…  and  

1 1 m m

1 1 m m
i 1 i i m iV (P I) V (P I)′ ′−λ ∪ ∪ −λ… = 0 ∪ … ∪ 0  

for the row latent n-vector 
1 m

1 m
i iV V∪ ∪… .  

1 m 1 1 m m

1 m 1 1 m m
i i i i i iA A U V U V′ ′∪ ∪ = ∪ ∪… …  

 are called m latent or m-spectral m-matrix associated with 

1 m

1 m
i i( , , );λ λ…  it = 1, 2, …, Nt, t = 1, 2, …, m.  

The following properties of 
1 m

1 m
i iA A∪ ∪…  are well known  

 
(i)  

1 m

1 m
i iA A∪ ∪… ’s are m-idempotent i.e.  

(
1 m

1 m
i iA A∪ ∪… )2 = 

1 m

1 m
i iA A∪ ∪…  

 i.e. each ( )t

2t
iA  = 

t

t
iA , t = 1, 2, …, m.  

(ii) They are n-orthogonal i.e.  

1 t

1 t
i j t tA .A 0, i j= ≠ ; t = 1, 2, …, m. 

(iii) They give a spectral n-decomposition 

P1 ∪ … ∪ Pn  = 
1 m

1 1 m m

1 m

N N
1 1 m m
i i i i

i 1 i 1

A A
= =

λ ∪ ∪ λ∑ ∑… . 

 
It follows from (i) to (iii), that  
 

1 mK KK
1 mP P P= ∪ ∪ =…  
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1 m
1 m

1 1 m m

1 m

K KN N
1 1 m m
i i i i

i 1 i 1
A A

= =

⎛ ⎞ ⎛ ⎞
λ ∪ ∪ λ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑…   

1 m
1 m

1 1 m m

1 m

N N
K K1 m
i i i i

i 1 i 1
A A

= =

= λ ∪ ∪ λ∑ ∑…  

1 m
1 m

1 1 1 m m m

1 m

N N
K K1 1 m m
i i i i i i

i 1 i 1
U V U V′ ′

= =

= λ ∪ ∪ λ∑ ∑… .  

 
Also we know that  

1 mK KK K 1 1 1 1 m m 1
1 mP UD U U D (U ) U D (U )− − −= = ∪ ∪…  

where 
1 m

1 1 m m
1 N 1 NU {U , ,U } {U , , U }= ∪ ∪… … …  and  

D  =  D1 ∪ D2 ∪ … ∪ Dm  

= 

1 m

1 m
1 1

1 m
2 2

1 m
N N

0 0 0 0
0 0 0 0

0 0 0 0

⎡ ⎤ ⎡ ⎤λ λ
⎢ ⎥ ⎢ ⎥λ λ⎢ ⎥ ⎢ ⎥∪ ∪⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

λ λ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

… …
… …

…
# # # # # #

" "

.   

 
Since the n-latent n-vectors are determined uniquely only upto a 
multiplicative constant, we have chosen them such that  

1 1 m m

1 m
i i i iU V U V′ ′∪ ∪… = (1 ∪ … ∪ 1). 

One can work for any m-power of P to know 
t

t
iλ ’s and 

t

t
iA ’s; t 

= 1, 2, …, m. Now even if we say 1 mK KK
1 mP P P= ∪ ∪…  we 

work for K = (K1, …, Km) and when the working with any Pt is 
over that tth component remains as it is and calculations are 
performed for the rest of the components of P. With the advent 
of the appropriate programming using computers simultaneous 
working is easy; also one needs to know in the present 
technologically advanced age one cannot think of computing 
one by one and also things do not occur like that in many 
situations. So under these circumstances only the adaptation of 
n-matrices plays a vital role by saving both time and economy. 
Also stage by stage comparison of the simultaneous occurrence 
of n-events is possible.  
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Matrix theory has been very successful in describing the 
interrelations between prices, outputs and demands in an 
economic model. Here we just discuss some simple models 
based on the ideals of the Nobel-laureate Wassily Leontief. Two 
types of models discussed are the closed or input-output model 
and the open or production model each of which assumes some 
economic parameter which describe the inter relations between 
the industries in the economy under considerations. Using 
matrix theory we evaluate certain parameters. 

The basic equations of the input-output model are the 
following: 
 

11 12 1n

21 22 2n

n1 n2 nn

a a a
a a a

a a a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

"
"

# # #
"

 

1

2

n

p
p

p

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

#
= 

1

2

n

p
p

p

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

#
 

 
each column sum of the coefficient matrix is one  
 

i. pi ≥ 0, i = 1, 2, …, n.  
ii. aij ≥ 0, i , j = 1, 2, …, n. 

iii. aij + a2j +…+ anj = 1  
 
for j = 1, 2 , …, n. 

p = 

1

2

n

p
p

p

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

#
 

 
are the price vector. A = (aij) is called the input-output matrix  
 

Ap = p that is, (I – A) p = 0. 
 
Thus A is an exchange matrix, then Ap = p always has a 
nontrivial solution p whose entries are nonnegative. Let A be an 
exchange matrix such that for some positive integer m, all of the 
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entries of Am are positive. Then there is exactly only one 
linearly independent solution of (I – A) p = 0 and it may be 
chosen such that all of its entries are positive in Leontief open 
production model.  

In contrast with the closed model in which the outputs of k 
industries are distributed only among themselves, the open 
model attempts to satisfy an outside demand for the outputs. 
Portions of these outputs may still be distributed among the 
industries themselves to keep them operating, but there is to be 
some excess some net production with which to satisfy the 
outside demand. In some closed model, the outputs of the 
industries were fixed and our objective was to determine the 
prices for these outputs so that the equilibrium condition that 
expenditures equal incomes was satisfied. 
 
xi = monetary value of the total output of the ith industry. 
 
di = monetary value of the output of the ith industry needed to 
satisfy the outside demand. 
 
σij = monetary value of the output of the ith industry needed by 
the jth industry to produce one unit of monetary value of its own 
output.  
 
With these qualities we define the production vector. 
 

x = 

1

2

k

x
x

x

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

#
 

 
the demand vector 

 

d = 

1

2

k

d
d

d

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

#
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and the consumption matrix, 
 

C = 

11 12 1k

21 22 2k

k1 k2 kk

σ σ σ⎡ ⎤
⎢ ⎥σ σ σ⎢ ⎥
⎢ ⎥
⎢ ⎥
σ σ σ⎣ ⎦

"
"

# # #
"

. 

 
By their nature we have  
 

x ≥ 0, d ≥ 0 and C ≥ 0. 
 

From the definition of σij and xj it can be seen that the quantity  
σi1 x1 + σi2 x2 +…+ σik xk 

 
is the value of the output of the ith industry needed by all k 
industries to produce a total output specified by the production 
vector x.  
Since this quantity is simply the ith entry of the column vector 
Cx, we can further say that the ith entry of the column vector x – 
Cx is the value of the excess output of the ith industry available 
to satisfy the outside demand. The value of the outside demand 
for the output of the ith industry is the ith entry of the demand 
vector d; consequently; we are led to the following equation: 
 

x – Cx = d or 
(I – C) x = d 

 
for the demand to be exactly met without any surpluses or 
shortages. Thus, given C and d, our objective is to find a 
production vector x ≥ 0 which satisfies the equation (I – C)x = 
d. 

A consumption matrix C is said to be productive if (1 – C)–1 
exists and (1 – C)–1 ≥ 0.  

A consumption matrix C is productive if and only if there is 
some production vector x ≥ 0 such that x > Cx. 

A consumption matrix is productive if each of its row sums 
is less than one. A consumption matrix is productive if each of 
its column sums is less than one.  
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Now we will formulate the Smarandache analogue for this, 
at the outset we will justify why we need an analogue for those 
two models.  

Clearly, in the Leontief closed Input – Output model,  
pi = price charged by the ith industry for its total output in reality 
need not be always a positive quantity for due to competition to 
capture the market the price may be fixed at a loss or the 
demand for that product might have fallen down so badly so 
that the industry may try to charge very less than its real value 
just to market it. 

 
Similarly aij ≥ 0 may not be always be true. Thus in the 
Smarandache Leontief closed (Input – Output) model (S-
Leontief closed (Input-Output) model) we do not demand pi ≥ 0, 
pi can be negative; also in the matrix A = (aij),  

 
a1j + a2j +…+akj ≠ 1 

 
so that we permit aij's to be both positive and negative, the only 
adjustment will be we may not have (I – A) p = 0, to have only 
one linearly independent solution, we may have more than one 
and we will have to choose only the best solution.  

As in this complicated real world problems we may not 
have in practicality such nice situation. So we work only for the 
best solution.  

On similar lines we formulate the Smarandache Leontief 
open model (S-Leontief open model) by permitting that x ≥ 0 , d 
≥ 0 and C ≥ 0 will be allowed to take x ≤ 0 or d ≤ 0 and or C ≤ 0 
. For in the opinion of the author we may not in reality have the 
monetary total output to be always a positive quality for all 
industries and similar arguments for di's and Cij's. 
 
When we permit negative values the corresponding production 
vector will be redefined as Smarandache production vector (S-
production vector) the demand vector as Smarandache demand 
vector (S-demand vector) and the consumption matrix as the 
Smarandache consumption matrix (S-consumption matrix). So 
when we work out under these assumptions we may have 
different sets of conditions 
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We say productive if (1 – C)–1 ≥ 0, and non-productive or 
not up to satisfaction if (1 – C)–1 < 0.  

The reader is expected to construct real models by taking 
data's from several industries. Thus one can develop several 
other properties in case of different models. 
 Matrix theory has been very successful in describing the 
interrelations between prices outputs and demands. 
 Now when we use n-matrices in the input – output model 
we can under the same set up study the price vectors of all the 
goods manufactured by that industry simultaneously. For in the 
present modernized world no industry thrives only in the 
production one goods. For instance take the Godrej industries it 
manufacturers several goods from simple locks to bureau. So if 
they want to study input output model to each and every goods 
it has to work several times with the exchange matrix; but with 
the introduction of n-mixed matrices we can use the n-matrix as 
the input output n-model to study interrelations between the 
prices outputs and demands of each and every goods 
manufactured by that industry. Suppose the industry 
manufactures n-goods, n ≥ 2. 
 Thus A = A1 ∪ … ∪ An is an exchange n-matrix where 
each Ai is a ni × ni matrix i = 1, 2, …, n. The basic n-equations 
of the input – output model is the following 
 

1

1

1

1 1 1 1

1 1 1
11 12 1n 1

11 2 1
21 22 2n

1
n1 1 1

n 1 n 2 n n

a a a
p

a a a

p
a a a

⎡ ⎤
⎡ ⎤⎢ ⎥
⎢ ⎥⎢ ⎥ ∪⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ ⎣ ⎦⎢ ⎥⎣ ⎦

…
…

#
# # #

…

  

 

2

2

2 2 2 2

2 2 2
11 12 1n

2 2 2
21 22 2n

2 2 2
n 1 n 2 n n

a a a

a a a

a a a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

…
…

# # #
… 2

2
1

2
n

p

p

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

#  ∪ ∪…   
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n

n

1

n n n n

n n n
11 12 1n n

1n n n
21 22 2n

n
nn n n

n 1 n 2 n n

a a a
p

a a a

p
a a a

⎡ ⎤
⎡ ⎤⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ ⎣ ⎦⎢ ⎥⎣ ⎦

…
…

#
# # #

…

 = 

 

1 2 n

1 2 n
1 1 1

1 1 n
n n n

p p p

p p p

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥∪ ∪ ∪⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

# # … #  

 
each n column sum of the coefficient n-matrix is (1 ∪ … ∪ 1)  

 
(i) t

ip 0;≥  t = 1, 2, …, n. 
(ii) 

t t

t
i ja 0;≥  it, jt = 1, 2, …, nt and t = 1, 2, …, n.  

(iii) 
1 t t t

t t t
ij 2 j n ja a a 1+ + + =…  for jt = 1, 2, …, nt and t = 1, 2, …, n. 

 

p = p1 ∪ … ∪ pn  

1 2 n

1 2 n
1 1 1
1 2 n
2 2 2

1 2 n
n n n

p p p
p p p

p p p

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= ∪ ∪ ∪⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

…
# # #

  

 
are the price n-vector of the n-goods.  

A = A1 ∪ … ∪ An = 
1 1 n n

1 n
i j i j(a ) (a )∪ ∪…  

is called the input-output n-matrix. 
Ap = p that is (I – A) p = 0 ∪ … ∪ 0 

i.e. 1 1 1 n n n(I A ) p (I A )p− ∪ ∪ − =… 0 ∪ …  ∪ 0.  
 
 Thus A is an exchange n-matrix then Ap = p always has a 
nontrivial n-solution p = p1 ∪ … ∪ pn, whose entries are 
nonnegative. Let A be the exchange n-matrix such that for some 
n-positive integers (m1, …, mn) all the entries of 

1 nm mm
1 nA A A= ∪ ∪…  are positive. Then there is exactly only 

one linearly n-independent solution of (I – A)p = 0 ∪ … ∪ 0 
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and that it may be chosen such that all of its entries are positive 
in Leontief open production n-model. 
 Thus the model provides at a time i.e. simultaneously the 
price n-vector i.e. the price vector of each of the n-goods. When 
n = 1 we see the structure corresponds to the Leontief open 
model. When n = 2 we get the Leontief economic bi models. 
This n-model is useful when the industry manufactures more 
than one goods and it not only saves time and economy but it 
renders itself stage by stage comparison of the price n-vector 
which is given by p = p1 ∪ … ∪ pn.  

Now we proceed onto describe the S-Leontief open n-model 
using n-matrices. 

In reality we may not always have the exchange n-matrix A 
= A1 ∪ … ∪ An = 

1 1 n n t t

1 n t
i j i j i j(a ) (a ), a 0.∪ ∪ ≥…  For it can also be 

both positive or negative. Thus in S-Leontief closed (input - 
output) n-model we do not demand 

t t

t t
i ip 0, p≥  can be negative 

also in the n-matrix A = A1 ∪ … ∪ An  = 
1 1 n n

1 n
i j i j(a ) (a )∪ ∪…  

where 
t t t

t t
ij K ja a 1+ + ≠…  for every t = 1, 2, …, n. i.e. we permit 

t t

t
i ja  to be both positive and negative, the only adjustment will 

be, we may not have (I – A)p = 0 ∪ … ∪ 0 to have only one n-
linearly independent solution, we may have more than one and 
we will have to choose only the best solution which will be 
helpful to the economy of the nation. The best by no means 
should favour in the interrelation high prices but a medium price 
with most satisfactory outputs and best catering to the demands 
as it is an economic n-model. 
 So n-matrices will be highly helpful and out of one set of 
solution which will have n-components associated with the 
exchange n-matrix A = A1 ∪ … ∪ An, we have to pick up from 
the nontrivial solution p1 = p1 ∪ … ∪ pn the best suited pi’s and 
once again find a 1 np p p′ ′ ′= ∪ ∪… with the estimated pi’s from 
the earlier p remain as zero and choose the best jp′ for the 
solution p′ and so on. The final p = p1 ∪ … ∪ pn will be filled 
with the best pi’s and pj’s and so on. 
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 Thus the solution would be the best suited solution of the 
economic model. 
 The difference between Leontief closed or input output n-
model and the S-Leontief closed or input output economic n-
model is that in the Leontief model there is only one 
independent solution where as in the S-Leontief closed input 
output economic n model we can choose the best solution from 
the set of solutions so that best solution also may vary from 
person to person for what is best for one may not be best for the 
other that too when it describes the interrelations between 
prices, outputs and demands in an economic n-model. 
 Now we briefly describe the Leontief open production n-
model. In contrast with Leontief closed n-model here the n-set 
of or n-tuple of industries say (K1, …, Kn) where output of Ki 
industries are distributed only among themselves the open n 
model attempts to satisfy an outside demand for the n-outputs, 
true for i = 1, 2, …, n. Portions of these n-outputs may still be 
distributed among the (K1, …, Kn) set of industries themselves 
to keep them operating, but there is to be some excess some net 
production with which to satisfy the outside demand. 
 In the closed n-model the n-outputs of the industries were 
fixed and the objective was to determine the n-prices for these 
n-outputs so that the equilibrium condition that expenditures 
equal income was satisfied. 

t

t
ix = monetary value of the it

th industry from the tth unit i.e. 
we have  

K1 = industries in the first unit denoted by c1 
K2 = industries in the second unit denoted by c2 
#  
Kt = industries in the tth unit denoted by ct 

and so on  
Kn – industries in the nth unit denoted by cn. 

 
 

t

t
id − monetary value of the output of the it

th industry need 
to satisfy the outside demand. 
 

t t

t
i jσ −  monetary value of the output of the it

th industry 
needed by the jt

th industry to produce one unit of monetary value 
of its own profit. 
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 This is true for every t; t = 1, 2, …, n. With these qualities 
we define the n-production vector which is a n-vector. 
 

x = x1 ∪ … ∪ xn = 

1 2 n

1 2 n
1 1 1

1 2 n
K K K

x x x
,

x x x

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥∪ ∪ ∪⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

# # … #  

 
the n-demand vector which is a n-vector,  
 

d = d1 ∪ … ∪ dn 

1 n

1 n
1 1

1 n
K K

d d

d d

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥∪ ∪⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

# … #  

 
and the n-consumption matrix which is a n matrix  
 

c = c1 ∪ … ∪ cn 
 

=

1

1

1 1 1 1

1 1 1
11 12 1K

1 1 1
21 22 2K

1 1 1
K K 2 K K

⎡ ⎤σ σ σ
⎢ ⎥
σ σ σ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥σ σ σ⎣ ⎦

…
…

# # #
…

∪ … ∪ 

n

n n n n

n n n
11 12 1K

n n n
21 22 2Kn

n n n
K 1 K 2 K K

⎡ ⎤σ σ σ
⎢ ⎥
σ σ σ⎢ ⎥

⎢ ⎥
⎢ ⎥
σ σ σ⎢ ⎥⎣ ⎦

…
…

# # #
…

.  

 
We have x ≥ 0 ∪ … ∪ 0 i.e. x = x1 ∪ … ∪ xn ≥ 0 ∪ 0 ∪ … ∪ 0, 
d ≥ 0 ∪ … ∪ 0 i.e. d = d1 ∪ … ∪ dn ≥ 0 ∪ … ∪ 0 and c ≥ 0 ∪ 
… ∪ 0 i.e. c = c1 ∪ c2 ∪ … ∪ cn ≥ 0 ∪ … ∪ 0.  
 
From the definition of 

t t t

t t
i j jand xσ  it can be seen that the 

quantity 
t t t t

t t t t t
i 1 1 i 2 2 i Kx xσ + σ + +σ…  is the value of the th

ti  
industry of the tth unit needed for all Kt industries to produce a 
total output specified by the production component vector 

t

t t t
1 Kx x x= ∪…  of the n-vector. x = x1 ∪ x2 ∪ … ∪ xn. This is 

true for each t; t = 1, 2, …, n. Since the quantity is simply the 
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th
ti  entry of the tth unit column n vector ctxt we can further say 

that the th
ti  entry of the column vector xt – ctxt is the value of the 

excess output of the th
ti  industry available to satisfy the outside 

demand for t = 1, 2, …, n. Thus the excess n-output of the (i1, 
…, in) industry is given by the n-column vector 

1 1 n n
1 nx cx x c x x c x− = − ∪ ∪ −… . The value of the outside 

demand for the n output 1 n(i , ,i )…  is the th
1 n(c , ,c )…  entry of 

the demand vector 1 nd d d= ∪ ∪… . Consequently, we are led 
to the following equation. 
 

1 1 n n
1 n 1 nx cx x c x x c x d d− = − ∪ ∪ − = ∪ ∪… …  

(I – c) x = d 
(I1 – c1) x1 ∪ … ∪  (In – cn)xn = d1 ∪ … ∪ dn, 

 
for the demand to be exactly met without any surplus or 
shortages. Thus given c and d our objective is to find a 
production n-vector x = x1 ∪ … ∪ xn ≥ 0 ∪ … ∪ 0 which 
satisfies the n-equation (I – c) x = d (I1 – c1) x1 ∪ … ∪ (In – cn) 
xn = d1 ∪ … ∪ dn.  

The consumption n-matrix c = c1 ∪ … ∪ cn is said to be n-
productive if (1 – c)-1 = (1 – c1)-1 ∪ … ∪ (1 – cn)–1  exists and (1 
– c)–1 ≥ 0 ∪ … ∪ 0. A consumption n-matrix c = c1 ∪ … ∪ cn is 
productive if and only if there is some production n-vector x = 
x1 ∪ … ∪ xn ≥ 0 ∪ … ∪ 0 such that x > cx; x1 ∪ … ∪ xn > c1x1 
∪ … ∪ cnxn. 
 
 A consumption n-matrix is productive if each of the n-row 
sums is less than one. A consumption n-matrix is n-productive 
if each of its column sum is less than one. 
 Now we will formulate the Smarandache analogue for this, 
at the outset we will justify why we need an analogue for the 
open or production n-model. 
 In the Leontief open n-model we may assume also x ≤ 0, or 
d ≤ 0 and or c ≤ 0. For in the opinion of the author we may not 
in reality have the monetary total output to be always a positive 
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quantity for all industries and similar arguments for t
id ’s and 

t
ijc ‘s. 

 When we permit negative values the corresponding 
production n-vector will be redefined as S-production n-vector 
the demand n-vector as S-demand n-vector and the consumption 
n-matrix as S-consumption n-matrix. Under these assumptions 
we may have different sets of conditions. 
 We say n-productive if (1 – c)-1 > 0 and non n-productive or 
not upto satisfaction if (1 – c)-1 < 0. 
 Now we have given some application of these n-matrices to 
industrial problems.  

Finally it has become pertinent here to mention that in the 
consumption n matrices a particular industry or many industries 
can be used in several or more than one consumption matrix. So 
in this situation only the open Leontief n-model will serve it 
purpose. Also we can study the performance such industries 
which is in several groups i.e. in several ci’s. One can also 
simultaneously study the group in which an industry has the 
best performance also the group in which it has the worst 
performance. In such situation only this model is handy. 
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Chapter Four  
 
 
 
 
 

SUGGESTED PROBLEMS  
 
 
 
 
 
In this chapter we suggest some problems for the readers. 
Solving these problems will be a great help to understand the 
notions given in this book. 
 
1. Find all p-subspaces of the n-vector space V = V1 ∪ V2 

∪ V3 ∪ V4 where n = 4 and p ≤ 4 over Q.  

V1 = 
a b e

a,b,c,d,e,f Q
c d f

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

, 

 V2 = (Q × Q × Q × Q) over Q,  
 V3 = {Q[x] contains only polynomials of degree less than or 

equal to 6 with coefficients from Q} and  

V4 = 
a b c d

a,b,...,g,h Q
e f g h

⎧ ⎫⎛ ⎞⎪ ⎪∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

. 

 
 What is the 4-dimension of V? Find a 4 basis of V. 
 
2. Let V = V1 ∪ V2 ∪ V3 and W = W1 ∪ W2 ∪ W3 ∪ W4 be 3 

vector space and 4 vector space over the field Q of 3 
dimension (3, 2, 4) and 4 dimension (5, 3, 4, 2) respectively. 
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Find a 3 linear transformation from V to W. Also find a 
shrinking 3 linear transformation from V into W. 

 
3.  Let V = V1 ∪ V2 ∪ V3 and W = W1 ∪ W2 ∪ W3 be 3-vector 

spaces of dimensions (4, 2, 3) and (3, 5, 4) respectively 
defined over Q. Find the 3 linear transformation from V to 
W. What is the 3 dimension of the 3-vector space of all 3 
linear transformation from V into W?  

 
4.  Let V = V1 ∪ V2 ∪ V3 ∪ V4 be a 4-vector space defined 

over Q of dimension (3, 4, 2, 1). Give a 4 linear operator T 
on V. 

 Verify: 4 rank T + 4 nullity T = n dim V = (3, 4, 2, 1). 
 
5.  Define T: V → W be a 4 linear operator where V = V1 ∪ V2 

∪ V3 ∪ V4 and W = W1 ∪ W2 ∪ W3 ∪ W4 with 4-
dimension (3, 2, 4, 5) and (4, 3, 5, 2) respectively, such that 
4 kerT is a 4-dimensional subspace of V. Verify 4 rank T + 
4 nullily T = 4 dim V = (3, 2, 4, 5). 

 
6. Explicitly describe the n-vector space of n-linear 

transformations Ln (V,W) of V = V1 ∪ V2 ∪ V3 into W = 
W1 ∪ W2 ∪ W3 ∪ W4 over Q of 3-dimension (3, 2, 4) and 
4-dimension (4, 3, 2, 5) respectively. 

 
7.  What is n-dimension of Ln (V,W) given in the problem 6? 
 
8. For T = T1 ∪ T2 ∪ T3 defined for V and W given in 

problem 6; T1 : V1 → W3, T1 (x y z) = (x + y, y + z) for all 
x, y, z ∈ V1, T2 : V2 → W2 defined by T2 (x1, y1) = (x1 + y1, 
2y1, y1) for all x1, y1, ∈ V2 and T3 : V3 → W4 defined by T3 
(a, b, c, d) = (a + b, b + c, c + d, d + a, a + b + d) for all a, b, 
c, d ∈ V3. Prove 3 rank T + 3 nullity T = dim V = (3, 2, 4). 

 
9. Let V = V1 ∪ V2 ∪ V3 ∪ V4 be a 4 vector space over Q, 

where V1 = Q × Q × Q, V2 = Q × Q × Q × Q, V3 = Q × Q, 
V4 = Q × Q × Q × Q × Q, j j j j j

1 2 3 4T T T T T= ∪ ∪ ∪ : V → V 
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 j
iT : Vi → Vi; i = 1, 2, 3, 4. 

 Define two distinct 4 transformations T1 and T2 and find T1 
o T2 and T2 o T1.  

 
10. Give an example of a special linear 6-transformation T = T1 

∪ T2 ∪ ... ∪ T6 of V into W where V and W are 6 vector 
space of same 6 dimension. 

 
11. Let T : V → W where 3-dim V = (3, 7, 8) and 3-dim W = 

(8, 3, 7). Give an example of T and find T-1. Define T only 
as a 3 linear transformation for which T-1 cannot be found.  

 
12. Derive for a n-vector space the Gram-Schmidt n-

orthogonalization process. 
 
13. Prove every finite n-dimensional inner product n-space has 

an n-orthonormal basis.  
 
14.  Give an example of a 4-orthogonal matrix. 
 
15. Give an example of a 5-anitorthogonal matrix. 
 
16. Give an example of a 7-semi orthogonal matrix. 
 
17.  Give an example of a 5-semi antiorthogonal matrix. 
 

18. Is A = 

3 1 8
3 1 0 2 1 1 1 1 0 0 1 1
1 1 6 1 2 0 0 2 1 1 0 1
0 2 0 1 0 1 2 3 4 0 1 4
1 0 5 0 5 6 7 0 12 1 0 1

1 1 0

⎡ ⎤
⎢ ⎥⎡ ⎤ ⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥∪ ∪ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎢ ⎥
⎢ ⎥⎣ ⎦

 a 

3-semi orthogonal 3 matrix? 
 
19.  Find the 4-eigen values, 4-eigen vectors of A = A1 ∪ Α2 

∪ Α3 ∪ Α4 =  
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= 

0 1 2 3 6
3 0 1 0

3 0 1 0 2 1 0 2
0 4 1 3 5 1

0 1 4 0 0 2 1 1
0 5 0 1 0 1

0 0 5 0 0 1 0 0
1 2 1 0

0 0 0 0 5

⎡ ⎤
⎡ ⎤ ⎢ ⎥⎡ ⎤⎢ ⎥ ⎢ ⎥⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥∪ ∪ ∪⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥⎢ ⎥ ⎣ ⎦ ⎢ ⎥
⎣ ⎦ ⎢ ⎥⎣ ⎦

. 

 
 Find the 4-minimal polynomial and the 4-characteristic 

polynomial associated with A. Is A a diagonalizable 
transformation? Justify your claim. 

 
20. Give an example of 5-linear transformation on V = V1 ∪ V2 

∪ ... ∪ V5 which is not a 5-linear operator on V. 
 
21. Let V = V1 ∪ V2 ∪ V3 be a 3-vector space over the field Q 

of finite (5, 3, 2) dimension over Q. Give a special 3 linear 
operator on V. Give a 3 linear transformation on V which is 
not a special linear operator on V. 

 
22. Define a 3-innerproduct on V given in the above problem 

and construct a normal 3 linear operator T on V such that 
T*T = TT*.  

 
23.  Let V = V1 ∪ V2 ∪ V3 ∪ V4 be a 4-vector space of (3, 5, 2, 

4) dimension over Q. Find a 4-linear operator T on V so that 
the 4-minimal polynomial of T is the same as 4-
characteristic polynomial of T. Give a 4-linear operator U 
on V so that the 4-minimal polynomial is different from the 
4-characteristic polynomial. 

 
24. Let V = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 be a 5-vector space over 

Q of (2, 3, 4, 5, 6) dimension over Q. Construct a linear 
operator T on V so that T is 5-diagonalizable. 

 
25. Let V = V1 ∪ V2 ∪ V3 ∪ V4 be a 4-vector space over Q. 

Define a suitable T and find the n-monic generator of the 4-
ideals of the polynomials over Q which 4-annihilate T. 
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Prove or disprove every 4-linear operator T on V need not 
4-annihulate T.  

 
26. State and prove the Cayley Hamilton theorem for n-linear 

operator on a n-vector space V. 
 
27. Let V = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 be a 5-vector space over 

Q of (2, 4, 6, 3, 5) dimension over Q. Give a 5-basis of V so 
that Cayley Hamilton Theorem is true. Is Cayley Hamilton 
Theorem true for every set of 5-basis of V? Justify your 
claim. 

 
28. Given V = V1 ∪ V2 ∪ V3 ∪ V4 is a 4-vector space over Q of 

dimension (3, 7, 4, 2). Construct a T, a 4 linear operator on 
V so that V has a 4-subspace 4-invariat under T. Does V 
have any 4-linear operator T and a non-trivial 4-subspace W 
so that W is 4-invariant under T? Justify your answer. 

 
29.  Let V = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 be a 5-vector space of (2, 

4, 5, 3, 7) dimension over Q. Construct a 5-linear operator 
V on T so that the 5-minimal polynomial associated with T 
is linearly factorizable. Find a T on V so that the 5-minimal 
polynomial does not factor linearly over Q. 

 
30. Let V = V1 ∪ V2 ∪ V3 be a 3-vector space of (2, 4, 3) 

dimension over Q. Find L3 (V, V) the set of all 3-linear 
transformations on V. Suppose 3

SL (V,V) is the set of all 
special 3-linear transformations on V. 

 
a. Prove 3

SL  (V, V) ⊆ L3(V, V). 
b. What is the 3-dimension of L3 (V, V)? 
c. What is the 3-dimension of 3

SL  (V, V)? 
d. Find a set of 3-orthogonal 3 basis for 3

SL  (V, V). 
e. Find a set of 3-orthonormal 3-basis for L3 (V, V) 
f. Find a T : V → V, T only a 3-linear transformation 

which has a nontrivial 3-null space. 
g. Find the 3-rank T of that is given in (6) 
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h. Can any T ∈ 3
SL  (V, V) have nontrivial 3-null space? 

Justify your answer. 
i. Define a 3-unitary operator on V. 
j. Define a 3-normal operator on V which not 3-unitary. 

 
31. Let V and W be two 6-inner product spaces of same 

dimension (W ≠ V) defined over the same field F. Define a 
T linear operator from V into W which preserves inner 
products by taking (3, 4, 6, 2, 1, 5) to be the dimension of V 
and (6, 5, 4, 2, 3, 1) is the dimension of W. 

 Does every T ∈ L6 (V, W) preserve inner product? Justify 
your claim. 

 
32. Given V = V1 ∪ V2 ∪ V3 is a (4, 5, 3) dimensional 3-vector 

space over Q. Give an example of a 3-linear operator T on 
V which is 3-diagonalizable. Does their exist a 3-linear 
operator T′ on V such that T′ is not 3 diagonalizable? 
Justify your answer.  

 
33. Let V = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 be a (3, 4, 5, 2, 6) 

dimension 5-vector space over Q. Define a 5 linear operator 
T on V and decompose it into the 5-nilpotent operator and 
5-diagonal operator. 

 
a.  Does there exist a 5-linear operator T on V such that 

the 5-diagonal part is zero, i.e., the operator T is 
nilpotent? 

b.  Does there exist a 5-linear operator P on V such that it 
is completely 5-diagonal and the 5-nilpotent part of it 
is zero. 

c.  Give examples of the above mentioned 5-operator in 
(1) and (2) 

d.  What is the form of the 5-minimal polynomial in case 
of (1) and (2)? 

  
34. Define for a n-vector space V over a field F the notion of n-

independent n-subspaces of V. Give an example when n = 
4. 
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35. Let V = V1 ∪ V2 ∪ ...  ∪ V6 be a 6-vector space over Q. 
Define a 6-linear operator E on V such that E2 = E. 

 
36. Let V = V1 ∪ V2 ∪ V3 ∪ V4 be a 4-vector space over Q of 

(3, 4, 5, 2) dimension. Suppose V = ( )1 1
1 2W W⊕  

( ) ( ) ( )2 2 2 3 3 3 4 4
1 2 3 1 2 3 1 2W W W W W W W W⊕ ⊕ ∪ ⊕ ⊕ ∪ ⊕ , 

 Define 4-linear operators, 1 2 3 4
i j k mE E E E∪ ∪ ∪ ; i = 1, 2; j = 1, 

2, 3; k = 1, 2, 3 and m = 1, 2 such that each i
pE is a 

projection, i = 1, 2, 3, 4 and  

i i
p jE E  i

p

= 0 if p j
=E if p j.

≠⎧⎪
⎨ =⎪⎩

. 

 
37. Prove if T is any 4-linear operator on V then i

jTE  = i
jE T  

for i = 1,2, 3,4. j = 1, 2 or 1, 2, 3 or 1, 2, for the V given in 
the problem 36. 

 
38. Given V = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 to be a 5-vector space 

over Q of (2, 3, 4, 5, 6) dimension. Define T a linear 
operator on V and find the 5 minimal polynomial for T. Is 
every 5-subspace of V related with the 5-minimal 
polynomials i.e. the 5-null space of the minimal 
polynomials invariant under T? 

 Obtain the 5-nilpotent and 5-diagonalizable operator N and 
D respectively so that T = N+D. 

 Verify ND = DN for the same N and D of T.  
 
39. If T is a 7-linear operator on V = V1 ∪ V2 ∪ ... ∪ V7 of (3, 

2, 5, 1, 6, 4, 7) dimension over Q. Is the generalized Cayley 
Hamilton Theorem true for T? 

 
40. Prove for a 3-vector spaces V = V1 ∪ V2 ∪ V3 of (3, 4, 2) 

dimension over Q and W = W1 ∪ W2 ∪ W3 of dimension 
(4, 5, 3) over Q if T is any 3 linear transformation find the 3 
matrix associated with T. Find the 3-adjoint of T.  
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41. For any n-linear transformation T of a n vector space V = 
V1 ∪ V2 ∪ ... ∪ Vn of dimension (n1, n2, ..., nn) into a m-
vector space W (m>n) of dimension (m1, m2, …, mm) over 
Q. Prove there exists a n-matrix A = (A1 ∪ A2 ∪ ... ∪ An) 
which is related to T. Prove Ln (V, W) ≅  {set of all n-
matrices A1 ∪ A2 ∪ ... ∪ An where each Ai is a ni × mj 
matrix with entries from Q}. 

 
42. If V = V1 ∪ V2 ∪ ... ∪ Vn is a n-vector space over the field 

F of (n1, n2,…, nn) dimension. If T : V → V is such that Ti : 
Vi → Vi; i = 1, 2, …, n. Show S

nL  (V, V) ≅  {All n-mixed 
square matrices A = (A1 ∪ A2 ∪ ... ∪ An) where Ai is a ni × 
ni matrix with entries from F}. 

 
43. Define n-norm on V an inner product space and is it 

possible to prove the Cauchy Schwarz inequality? 
 
44. Derive Gram-Schmidt orthogonalization process for a n-

vector space V with an inner product for a n-set of n-
independent vectors in V. 

 
45. Let V be a n-inner product space over F. W a finite 

dimensional n-subspace of V. Suppose E is a n orthogonal 
projection of V on W, with E an n-idempotent n-linear 
transformation of V onto W. W⊥ the n-null space of E. 

 Prove V = W ⊕ W⊥. 
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