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Abstract 
          The author discusses the similarity between the expression for the state 
function of the primary gas representing a particle and that of the wave function. 
It is observed that the only difference between these two expressions is that in 
the former time appears as a real function while in the latter it appears as an 
imaginary function. He shows that the primary gas approach which treats time 
as a real and the quantum mechanical approach which treats time as imaginary  
are two ways of representing the same reality and points to a new symmetry 
called the Wick symmetry. He shows that the probability postulate of quantum 
mechanics can be understood in a very simple and natural manner based on the 
primary gas representation of the particle. It is shown that the zero point energy 
of the quantum mechanics is nothing but the energy of the thermal bath formed 
by the vacuum fluctuations in the Higgs field. He shows that the quantum 
mechanics is nothing but the thermodynamics of the primary gas where time has 
not lost its directional symmetry. 
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1  Introduction 
 
          It was earlier shown that a particle could be represented by a standing half wave called 
“staphon” which is formed by the confinement of a single circularly polarized wave called 
“photino”. The standing wave could be identified with the electromagnetic wave in the case of  
electron. It is observed that such a standing wave structure not only acquires rest mass and the 
electric charge but also the half spin of the particle and it takes on the form of a plane wave 
when given a translational velocity [1],[2][3],[4].  We know that the plane wave representing a 
particle with energy E’ is given by                     
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In the case of the free particle, the energy states lie in a narrow region (E-ΔE) < E’ < (E+ΔE) 
where ΔE could be taken as quite small and the action function possesses a sharp minimum. In 
other words, action could be taken as a constant in the narrow region and we may express it 
using the average values of energy and momentum of the particle as 
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The variation in the value of E′ is accounted for by the random translational motion of the 
particle keeping the rest mass as an invariant. In the rest frame of reference (1A) would 
transform into 
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Note that this represents an eigen state, and not a localized particle state. In the rest frame of 
reference, the standing wave will have no preferred direction of orientation and therefore it is 
possible to assume that the standing wave is directed in all possible directions symmetrically. 
Although the amplitude of the plane wave (it will have infinite wave length) in one direction 
would be zero, the square of the amplitude the linear combination of all plane waves occupied 
in all possible directions could be taken as unity.  
 

          We shall now show that the staphon structure of a particle makes it possible to approach 
the issue in a completely different way which would provide us with a deep insight into the 
nature of quantum reality.  Since the staphon is assumed to be formed by the interactions with 
the vacuum fluctuations in the Higgs field, it will be occupying different energy-momentum 
states successively in these interactions [5]. It was observed that these states could be treated as 
a primary gas, which is an ideal gas where the microstates are occupied successively in time. 
This allows us to treat a particle as a primary gas which in turn makes it possible to interpret its 
dynamics in terms of the thermodynamics of the primary gas. In this approach the probability 
for the primary gas to occupy a state with intensive energy E` is given by [5] 
 

                                      x)]þ(1

)( ′−′− −

′=′ tEheEgW                                                           (2)                                 
 
In the rest frame of reference, the above equation would transform into    
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The above equation has the same form as (1B) except for the absence of the factor '2πi' in the 
exponential term. This is quite startling. What does this similarity of the plane wave with the 
expression for the primary gas mean? Let us go back to the basis of deriving the equation for 
the plane wave and compare it with the derivation of the state function for the primary gas in 
order to explain the similarity between the two functions. 
 

          We shall show that when we examine the concept of a particle from two different 
approaches, we obtain the same function but with one difference. In the case of the primary gas 
approach, time appears as real while in the wave function approach, it appears as imaginary. 
Prima facie one may feel that since both functions represent the same system, they should be 
equivalent. However we observe that there are major differences between the two functions. 
The function φ

ᇱ  in (1B) is a periodic function representing a wave and its value oscillates as 
time progresses while   ܹ

ᇱ in (2) is a probability function and the exponential factor on the 
right hand side keeps on decreasing as time progresses. Thus prima facie these two functions 
seem to represent two different realities which are fundamentally irreconcilable. But we shall 
shortly show that these differences could be reconciled.  
 

          We shall now try out various options to explain the appearance of the imaginary nature 
of time in the wave function approach. The idea that comes first to one’s mind is Minkowski’s 
four-dimensional formalism of the relativistic mechanics where time is treated as the fourth 
coordinate [6]. In this formalism, if time is taken as an imaginary quantity represented by         
τ = ict, then the four dimensional interval between two events with coordinates (x1,y1,z1,t1) and 
(x2,y2,z2,t2) will be Euclidian given by 
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But the problem with this approach is that it treats energy as imaginary while momentum is 
taken as real with the result that the action function which has the dimension of the product of 
energy and time remains real. That is to say, the Boltzmann factor, Bf in (2) which appear in 
the rest frame as 
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would continue to remain real since both time and energy are treated as imaginary. Therefore, 
treating time as an imaginary forth coordinate does not help in resolving the problem. 
 
2  More About Real Time and Imaginary Time 
 
          On detailed scrutiny of equations (1) and (2) we observe that the two approaches differ 
in one fundamental aspect. In the case of the plane wave approach, each of the energy 
momentum states is assumed to exist at the same instant. In other words, the wave function 
represents a system where the simultaneous occupation of all energy-momentum states is 
possible. However, the system evolves without collapsing into any one state. On the other 
hand, in the primary gas approach the situation is quite different. Here we had assumed that at 
every instant the system occupies a particular energy-momentum state. This is quite different 
from the approach based on the wave nature of the particle. In the primary gas approach, since 
we took it for granted that the system could occupy only a single energy-momentum state in 
one instant, it is equivalent to assuming that the system crystallizes into reality at every instant 
and therefore the primary gas we have been dealing with is a real gas. The path which has the 
maximum probability is the path along which system would progress for all practical purposes. 
The other paths which the system could occupy remain just as the probable ones.  
 

          Let us examine the issue taking a specific example. Let us take the case of a micro-
system progressing from point A to point B (see figure 1). In the wave picture, the particle 
would evolve along different paths. We know that action along the classical path (shown in 
thick dotted lines) would be the minimum and it would vary only by second order along paths 
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                                                                                 (a)                                                                   (b) 
                   Imaginary time picture                                                   Real  picture                                                                             

 

                     (a) shows the evolution of the system in the imaginary time. Here all the  
                          paths exist simultaneously. (b ) shows  the corresponding picture  in  the 
                         real time. Here  only one  path out of  many possible  ones gets occupied.  
 

                                                                Figure.1  
 

close to it. But, for paths which are slightly more removed from the classical path, the action 
changes substantially even for a slight change in the path. Therefore, except along the paths 
close to the classical paths, the amplitude of all other waves become zero due to the destructive 
interference. But close to the classical path, the waves interfere constructively making the 
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amplitude of the waves maximum. Note that here the system does not collapse into a particular 
energy-momentum eigen state. 
 

          In the primary gas approach, the situation is different. Here we had assumed that at 
every instant the system occupies a particular energy-momentum state. This is quite different 
from the approach based on the wave nature of the particle. In the primary gas approach, since 
we took it for granted that the system could occupy only a single energy-momentum state in 
one instant, it is equivalent to assuming that the system crystallizes into reality at every instant 
and therefore the primary gas we have been dealing with is a real gas. Needless to say, we 
could as well treat the primary gas as representing the potential paths it could occupy and not 
necessarily the path it actually occupies.  Note that the probability along the classical path will 
have a delta function like peak along the bold line (figure.1-b) because the degeneracy g(E′) 
increases with extensive energy of the broglieon gas while the Boltzmann’s factor decreases 
with it and the sharp peak is obtained along the classical path. The probability for the 
occupation of the other paths would be practically zero. This means that when we take the 
linear sum of the primary gas states to arrive at B, we end up with the classical path which is 
represented by the thick line in figure 1 b. Note that here the particle would progress along a 
single path that has maximum probability. Thus the difference between the two approaches 
could be traced to the state of crystallization of reality. This leads us to conclude that the 
imaginary time could be associated with the evolution when we treat the system as occupying 
a large number of states simultaneously while the real time could be associated with the 
situation where we treat the system as occupying only one state at a time. This would mean 
that the wave function is nothing but the state function of the primary gas where real time is 
replaced by the imaginary time. This gives us a completely new insight into the nature of wave 
itself. We shall later see that there is a further twist to this argument. 
 

          In the light of the above discussion, it is clear that the primary gas follows a single path 
in a given time interval compared to the large number of paths taken in the wave 
representation. In figure 1 for the sake of convenience, we have shown only 7 paths out of 
infinite ones which are possible in the evolution of the system from the instant tA to the 
instant tB.  As the system is in equilibrium (uniform motion), it is assumed to occupy states 
with energy close to a well defined average value. Here all paths are occupied in an 
unmanifested manner. But the path with the thick line is assumed to have the maximum 
amplitude. This would mean that the phase difference of this path with any neighboring ones is 
negligibly small resulting in constructive interference. Therefore, if we catch the system at  
point B, we have to assume that the particle has evolved along all possible paths. This is 
similar to the path followed by a wave front. We can only say that the amplitude of all other 
paths except the most probable path becomes zero due to the destructive interference.  
 

          In the wave representation, all states that could be occupied are occupied 
simultaneously. This raises a very serious problem. How can a particle occupy so many paths 
at the same time? Quantum mechanics tries to resolve the issue by assuming that the particle 
gets disembodied into a wave front and occupy all possible paths. But at the point of 
observation, the particle is assumed to discard the disguise of the disembodied wave front and 
appears as a localized entity. There is no explanation how the particle takes up the disguise of a 
wave when not observed off stage and how it takes on the particulate appearance when on 
stage. But this is the best quantum mechanics could offer. But a deeper scrutiny in the light of 
the discussion in the previous paragraphs allows us to interpret the situation differently. Since 
the same particle occupies a large number of paths at the same time, we have to conclude that 
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the states occupied cannot be real. The most logical choice is to treat these states along the 
paths as imaginary. We shall shortly show that this is equivalent to treating time as imaginary.  
 

          Let us now see what happens in the case of the primary gas. Here while the particle has 
the choice to occupy all these paths, as shown in figure 1(b), it occupies only one particular 
path. All the others remain as potential paths. This is what we expect in real time which we 
identify with the macroscopic time experienced in our daily life. In short, the fundamental 
difference between the real time and the imaginary time is this. In the case of the real time, 
when the system could evolve along a large number of paths, it chooses one particular path. 
All other paths remain as potential ones which are not occupied. In the case of the imaginary 
time, the system evolves along all possible paths simultaneously. The more probable a path is, 
more often that path is occupied compared to the others.  
 

          It may seem that the primary gas picture is unworkable as it is impossible to observe 
each microstate at every instant of the evolution of the system so that it remains always 
crystallized in reality. In actual situation, the observation would be done at very long intervals 
only, and in between the system may be free to evolve without the intervention by an external 
observer. In that sense, the imaginary time picture which treats the system of a particle as a 
wave would appear to be better suited for the job. However, the equivalence of the imaginary 
time picture and the real time picture in terms of the equations (1) and (2) appears to be too 
good to be discarded outright. 
 

          Actually there is a simple way we could redeem the primary gas approach and put it on 
the same pedestal as the imaginary time picture (wave picture). The explanation for this has 
been around us thanks to the genius of Feynman. It is based on the picture of a particle jumping 
into future and jumping back in time [7]. Feynman found that a positron could be taken as an 
electron traveling backward in time. Let us take the world lines for the electron-positron 
annihilation that results in the creation of photons as shown in figure.2. Feynman showed that  

                                                             
                                                                  Photon 

 

                           tA                                        A                      
                                                                                                                      Positron            

                                                 Electron                     2     
                     t2                                           
                                                             1                                                      
                        t1                                                                   
                                                         x1                                 xA             x2 

                  
                     The solid line is the world line of the  electron as it goes from (x1,t1) to (xA,tA). 
                          At A(xA,tA)  it  collides  with the positron coming from  (x2,t2)  resulting in the 
                         annihilation of  both, and  emission  of  two  photons. This also can be seen as  
                         the electron from 1 going backward in time after interacting with photons at A 
                

                                                              Figure.2 
 

taking a positron as an electron traveling backward in time simplifies the picture substantially. 

He developed this idea further and came up with his path integral formalism which 
revolutionized the approach to quantum electrodynamics. It is really surprising why he did not 
extent this idea to explain the wave particle duality. Of course, such an explanation calls for a 
thorough reinterpretation of quantum mechanics right from its foundations.   
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          We shall now use this basic concept to explain the numerous paths followed by the 
system of a particle in the primary gas picture in its evolution from tA to tB (figure 1). We 
know that in the plane wave representation, the evolution of the system takes place 
simultaneously along all possible paths. But in the primary gas picture the system is more 
localized and could be thought of as jumping forward from A to B along a particular path. The 
particle could, then, move back from B to A in a reverse time-travel. The particle could take 
another path similarly and then travel back in time again. In this manner, we can imagine that 
the particle could exhaust all possible paths. More probable the path is, more number of times 
it could be traversed compared to others. Note that in this picture we are able to treat evolution 
along each path just as in the case of real time. The system is allowed to occupy only one state 
at a time. It has to jump back to the starting instant (in the reverse real time) to initiate a new 
path of evolution. Therefore, when we deal with each path, we are able to treat it just like we 
treat it in real time. We may actually call the time in which the primary gas is defined as the 
reversible real time or just the “reversible time” because the system is able to travel back in 
time here. We should keep in mind that this is not the real time which we experience in our 
daily life because there we cannot go back in time. We shall examine the difference between 
these different concepts of time later in a separate section. 
 

         A detailed study would reveal that even the wave picture also has to take into account the 
reverse time travel by the particle. This is represented by Ψ*. But here, the particle traveling in 
the reverse direction (the anti-particle) is assumed to exist as a shadow of the real particle 
everywhere. Therefore, the need to treat the particle traveling in the reverse direction in 
isolation never arises. However when the probability of observing the particle is to be 
calculated, then Ψ* becomes an essential part of the computation. Therefore, we may say that 
the wave picture and the primary gas picture are two ways of looking at the same process. In 
the wave picture, the system of the particle is assumed to evolve simultaneously along all 
probable paths while the corresponding reverse motion in time is accounted in terms of the 
anti-particle that exist as a shadow particle. On the other hand, in the primary gas approach, the 
particle is assumed to evolve along one path at a time and then travel backward to the starting 
point in time and then again travel forward along another path and back and so on. This means 
that the physical content of both approaches would be the same. The difference would be only 
in the interpretation of the process involved. Before we make the equivalence between the two 
approaches to be total there are many other issues which will have to be resolved.  For 
example, the property of the interference cannot be explained without invoking the wave 
nature which is an imaginary time property. We shall explain these aspects as we go on.  
 

          We shall now modify the definition of the extensive time given in the earlier paper [5] 
and relate it to the temperature using the relation  
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Here N stands for the number of microstates states forming a primary gas while ne stands for 
the number of broglieon states. Note that N is fixed. From (5) it is clear that when we take N to 
be imaginary, it means that we are treating te to be imaginary. We are justified in taking N to 
be imaginary as the microstate has not crystallized into reality. In the primary gas approach, 
the microstate is assumed to be real which means that N can be taken as a real. This makes 

time real. Thus treating time imaginary is another way of conveying the idea that the system is 
evolving by occupying a number of micro-states simultaneously in an uncrystallized state of 
reality. The better way to qualify this state may be to call it the unmanifested state. This is the 
basis behind the quantum superposition. Note that since the system occupies a large number of 
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micro-states simultaneously, the only way this could be accounted would be by assuming that 
these states exist in imaginary time. This means that the quantum superposition which emerges 
from the wave nature is a direct consequence of the imaginary nature of time. This explains the 
similarity between equations (1) and (2). 
 

          In the light of this interpretation of imaginary time, we may have a better understanding 
of the staphon structure of the particle. We saw in the earlier paper [2] that a moving particle is 
represented by a staphon oriented in the direction of motion of the particle. When the particle 
becomes stationary, it should gain its directional symmetry and the staphon could be taken to 
be aligned along all possible directions simultaneously. As we already know, this could be 
attributed to the quantum superposition. We now understand that the quantum superposition is 
essential part of the existence in imaginary time. When the particle gains velocity, only the 
waves representing the staphons in the direction of motion acquire non-zero amplitude. In this 
manner, with the concept of imaginary time we are able to retrieve the spatial symmetry in the 
rest frame of reference of the particle.   
 

          We now notice that along with time, spatial coordinate also has to be treated as 
imaginary. This is because the spatial coordinate is defined by the relation [5] 
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Therefore, when N is taken as imaginary, xe also has to be taken as imaginary. Compare this 
treatment with the four-dimensional (Euclidian) formalism of the special theory of relativity 
where only the time coordinate is taken as imaginary while the space coordinate is treated as 
real. In the present approach since N is imaginary all extensive quantities become imaginary. 
Needless to say, action and Langrangean also would have to be treated as imaginary.              
 
3  The Wick Symmetry  
 
        The concept of Wick rotation where real time is converted into imaginary time was 
introduced as an adhoc procedure to facilitate easy manipulation of certain functions in 
quantum field theory [8]. No body knows why such an adhoc procedure works, but all the 
same it became an established procedure. We shall now show that this is actually a new 
symmetry and points to the equivalence of the wave and the primary gas representations of a 
particle. Let us now examine the issue of the action-entropy equivalence proposed in the 
earlier paper [5]. Actually, when we study the issue in depth, we observe that there is one 
major difference between action and entropy which is not discussed in that paper. The 
difference is while action is defined in the imaginary time, entropy is defined in the real time. 
This means that the equivalence between action and entropy is restricted to that extent. But this 
problem can be reconciled. Let us now introduce an operator called Wick’s operator denoted 
by ܴ  which operates on a function of N such that 
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.                                                     (6) 

 

This means that operator ܴ is defined in such a way that wherever iN appears, it is replaced by 
N. Since te = NTe, we have  
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Let us now take the wave packet given in (1) which is formed by a group of plane waves that 
represent the individual states of the system. On operating with ܴ on (1B) we obtain 
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Here ܤᇱ  is taken to be independent of N. This is because if ܤᇱ  were to be dependent on N, then 
the amplitude of the plane wave would become time dependent and this would have gone 
against its basic property. Note that Eoto/h = S/K  = ݊ܰ̌ܭ/ݏ where ̆ݏ is the intrinsic entropy.  
 

          The function on the right hand side of (7) has the basic form of the state function of the 
primary gas as given by (2A) provided we take   ܤᇱ  = ݃ᇱ   However, when we try to identify (7) 
with the state function of a primary gas given by (2A), we are faced with two problems. The 
first one is that ћ in the exponential term in (7) has to be replaced by h. The second problem is 
that that  ܤᇱ  which is the amplitude of the wave packet, is independent of n while ݃ᇱ  which 
represents the degeneracy, increases exponentially with nN. Therefore, there is no logical way 
by which ܤᇱ  could be equated to ݃ᇱ  and this comes in the way in identifying the right hand 
side of (7) as the state function of the primary gas. Note that for the state function to have a 
well defined average value, the degeneracy should increase exponentially with nN while the 
Boltzmann factor decreases with nN so that we obtain a sharp maximum at the average values 
as discussed in the earlier paper [5].             
 

          At first glance this requirement may appear irreconcilable. Surprisingly, the solution to 
the problems including that that of ћ appearing in the place of h on the right hand side of (7) 
could be found in a simple modification of the Wick’s operator ܴ. We have to just modify the 
definition of the operator given in (6) slightly as given below. 
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In terms of the time and space coordinates, we may express this relation as 
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Note that in the quantum field theory, the Wick rotation operates only on t and converts the 
function “exp(-iħ-1Eoto)” to “exp(-ħ-1Eoto)” and leaves the space coordinates unchanged. On the 
other hand, the Wick’s operator defined here operates on N, the number of microstates with the 
result that it rotates time and spatial coordinates at the same time. This difference does not 
affect the computational aspects as one can always transform the system to the proper frame of 
reference where the action function is free of the spatial coordinates. Possibly, that may 
provide the theoretical justification why Wick rotation works. 
 

          Let us write the amplitude of the plane wave in a more general form without altering its 
basic properties as 
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Note that the exponential factor in this equation will always be unity as N and n can take only 
integral values. Therefore, replacing Bo with Bo e2πinN does not alter the wave function in any 
way. In the light of these modifications, let us re-express (7) to obtain 
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Here while the first exponential function increases with nN, the second one decreases with nN 
with the result that we obtain a sharp maximum for the probability function. Thus, for large 
values of nN, all possible primary gas states crowd around the average value of the internal 
energy. Since we know that to = nNh/Kθo, taking  B’o enN  = g’o , the right hand side of (11) 
may be expressed as 
 

                                                           ooEnN
oo egW θK'' −=                                              (12) 

         
This shows that the plane wave state on undergoing Wick operation becomes the state function 
of the primary gas. When viewed from a moving frame of reference, (12) would become  
 
                                                       θK).( vþ−−′=′ EnNegW                                           (12A) 

 
          Here one doubt may be raised regarding the meaning of the function obtained by the 
action of the Wick’s operator ܴ  on φ*. We saw that when ܴ  operates on φ, we obtain the 
probability function for the forward evolution. On the same logic, when ܴ operates on φ*, we 
should obtain the probability function for the reverse evolution (reverse jump) in time. 
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Here Bo exp(-nN) = ݃ , is the degeneracy of the state and  ܹ

  represents the probability 
density function when nN takes negative values. Note that we have assumed Bo is a real 
function so that  B୭כ  = Bo. On first scrutiny, the function on the right hand side of (13) appears 
unsuitable to represent a probability function as exp[nNEo/Kθo] is a divergent function and 
would keep on increasing as nN increases. Note that this function represents the reverse time 
evolution of the system. Therefore, although the Boltzmann’s factor keeps on increasing, the 
exponential factor constituting the degeneracy denoted by “Bo eି୬N” keeps on decreasing. 
Now the net result is similar to what we obtained when time evolved in the positive direction. 
There the Boltzmann’s function given by “ eି୬Nୱු  ” was decreasing with nN while the 
degeneracy factor “ e୬N ” was increasing correspondingly. In the case of the reverse time 
evolution, only the roles of the Boltzmann’s factor and the degeneracy factor are interchanged. 
The net result remains unchanged. In fact, the situation described here is similar to a system 
having negative temperature. 
 

         The concept of the negative temperature is quite well understood in thermodynamics [9]. 
The best example of the negative temperature is obtained when the external field acting on a 
paramagnetic material is reversed. In this situation, the system exists in a state of maximum 
energy. Suppose initially all the molecules in the paramagnetic material were aligned in the 
direction of the external magnetic field. Now on reversal of the magnetic field, the state of the 
maximum energy of the material possesses only one way of arranging the molecules among 
themselves, treating them as indistinguishable. But for slightly lower energy, the number of 
ways the molecules could be arranged increases. In other words, the degeneracy increases as 
energy decreases. In the case of an ideal gas, we know that 
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But in the case of a system under negative temperature 
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We know that the entropy S depends on the level of randomness of the system. In the case of 
the system under negative temperature, the degree of randomness decreases as temperature 
increases. When we take n to be negative as is the case in (13), we end up getting a system 
having negative temperature. Therefore, the function on the right hand side of (13) is a well 
defined function and is well suited as a probability density function.        
 

          Now we can afford a guess that the quantum mechanical systems could be understood in 
terms of the thermodynamics of the primary gas. This would mean that when we replace 2πit 
in the quantum theory by t, then for each law in quantum mechanics we may have an 
equivalent law in thermodynamics so that the physical reality remains unchanged. In other 
words, for every law, which determines the dynamics of a particle in the imaginary time, there 
should be an equivalent law in the real time. We shall first of all take the case of action in the 
imaginary time. Action is the most important function because we can derive the entire 
dynamical equations of classical and relativistic mechanics using the least action principle. We 
are already familiar with the equivalence of action to entropy from the earlier paper [5] . We 
see that the least action principle can be directly related to the second law of thermodynamics 
which is based on the maximization of entropy. In other words, Fermat’s principle of least 
action is nothing but a restatement of the second law of thermodynamics. We shall establish 
this equivalence of quantum mechanics to thermodynamics of the primary gas in more detail in 
the following sections. Before that, we should have a clear concept of the various aspects of 
time as we know it.  
 

           Here it has to be stated that the localization of a particle which is easily understood in 
the wave picture in terms of the superposition of a group of waves is not easily explained in the 
primary gas approach. This is because, in the primary gas approach, the system will be spread 
in space over N broglino states occupied successively which will have a spread of Nλ, where λ 
is the wave length of the broglino or the plane wave. We shall resolve this issue once the 
probability postulate is explained in terms of the primary gas.  
                              
4  The Imaginary Time, Reversible time and the Progressive Time 
 
          Before we proceed further with our investigation it is necessary to have a clear 
understanding of what is meant by the imaginary time, reversible time and the progressive time 
which we experience by our senses. We already saw that when a particle occupies microstates 
simultaneously, then, these states have to be treated as imaginary. This results in time and 
space acquiring imaginary nature. In this approach, a particle would be represented by a plane 
wave. When we transformed the wave function of a particle by the Wick’s operator, ܴ  we 
obtained a probability function. In this picture, various paths of progression of a particle (each 
path is represented by the primary gas states) are occupied successively. Note that in the 
imaginary time, various paths may appear to be occupied simultaneously, but in the primary 
gas approach this picture gets altered and each path is occupied one at a time. But, since the 
system is able to jump back in time, ultimately all paths get occupied. In fact, by the process of 
the reverse jump in time, ultimately, all the paths get occupied simultaneously. In other words, 
the end result of using the wave picture and the primary gas picture is the same. But in the 
primary gas approach only one path is assumed to be occupied in one channel of progression 
and therefore it can be treated as a real time process. The probability function gives only the 
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density of occupation of the paths. The picture that emerges may be called reversible time 
picture. 
  

          In our everyday experience, a reverse jump in time is not possible. For example, when 
we throw dice, we obtain only one outcome at a time. Other outcomes will occur when the 
experiment is repeated. In other words, the other outcomes cannot occur simultaneously. They 
could occur successively. Therefore, the reversible time obtained by the operation of ܴ on the 
imaginary time is not the time with which we are familiar in our experiences with our senses. It 
pertains to a different category altogether. Actually reversible time is so named because the 
system can occupy all possible paths successively only if it can jump back in time and again 
start the forward jump again. This is the only way the system could occupy all possible paths. 
Such a picture is quite familiar to us thanks to Feynman who created a whole new formalism 
based on it. This is a very important property which will help us to differentiate the reversible 
time from the progressive time. 
   

          Time as we experience in our daily life is the progressive time. Time progression and the 
increase in entropy are two sides of the same coin. For example, if we play backwards a very 
short video recording of the collision of the billiard balls on a billiards table, then their motion 
will appear as natural. To put it differently, the laws of mechanics are invariant to time 
reversal. Actually, this invariance is an idealization. In actual experiments, the progressive 
nature of time will leave its imprint to some extent, even if the time duration involved is small. 
For example, in the experiment with the billiard balls, if we play back the video recordings for 
slightly longer duration, we would observe that balls which were standing stationary start 
moving by themselves and gain momentum. Balls may even pop up from the pockets and 
come into play on the board. This may appear quite absurd and against the laws of mechanics. 
This is the reason why we have to segregate time into two categories. The time in which the 
mechanical laws operate and the time which we perceive in our day to day experience. The 
time which we experience in our day today experience may be called the progressive time. In 
this time, entropy keeps on increasing. In fact, we may use the increase in entropy as a marker 
to measure the progression of time.  
 

          We should keep in mind that all those states which remain as probable for occupation in 
the progressive time actually get occupied in the reversible time and the imaginary time. The 
probability function only gives the frequency of occupation, or to be more specific, the density 
of occupation of a certain states. Here we may compare the picture that emerges from the 
imaginary time with that of the reversible time. We saw that in the imaginary time, the particle 
has to be described in terms of a group of waves progressing in time along all paths. Or in 
other words, we have to use the wave picture to describe the particle. On the other hand, when 
we use the reversible time, we describe the particle in terms of the primary gas which occupy 
states successively by traveling forward and backward in time along all possible pathways. In 
the wave picture, there is no need to imagine the forward and backward jumps. The square of 
the amplitude of the wave represents its energy density and therefore it is identified with the 
particle density or the probability density for observing the particle. In the case of the 
reversible time and the progressive time which are both defined in the real time, the common 
feature is that the primary gas states are occupied successively. This means that only one state 
is occupied at one instant. It is a different issue that in the case of the reversible time, by the 
process of reverse jump in time the system is able to occupy all possible states at the same 
instant.  
 

          In the progressive time, time gains the directional property and because of that it is no 
more possible to jump back in time. In that sense, the progressive time picture is identical with 



~ 12 ~ 
 

the primary gas picture provided the reverse jumps in time are disallowed. Note that in the 
imaginary time picture, the particle disembodies into a large number of waves and they get 
back the particulate nature only at the instant of observation. This sudden change has been one 
of the most discussed topics in quantum mechanics and known as the collapse of  wave 
function. It is also one of the least understood. One advantage of the reversible time picture 
over the imaginary time picture is that we do not have to disembody the particle and therefore, 
there is no sudden change to the structure of the particle at the time of observation. But then 
we have to pay a price by way of allowing the reversible jumps in time. Actually, the concept 
of the reverse jump exists in the wave picture also. In fact, when we take the complex 
conjugate of the wave function, Ψ*, we are dealing with a wave which is travelling backwards 
in time. But in the wave picture, Ψ* represent the anti-particle which is assumed to exist as a 
shadow of the real particle everywhere. This shows that the Wick’s operation has not created 
anything new. It only changed the method of accounting the states. In the wave picture, the 
forward and the reverse waves are taken together, the reverse wave being treated as a shadow 
of the forward wave. Therefore, when the system evolves, it evolves along all possible paths 
simultaneously. In the primary gas approach, the forward jumps and the reverse jumps are 
segregated and accounted taking each path separately.  
 

          The problem we face in taking the increase in the entropy as a marker for the progressive 
time is that we do not have a process which can be taken as a norm for this purpose. If we take 
the case of a billiard ball rolling over the surface and coming to a standstill, then we know that 
the kinetic energy of the ball is converted into heat energy due to friction. If we denote the 
increase in the heat energy by dq and the temperature of the board as θ, then the increase in 
entropy in the slow down of the billiards ball will be dq/θ. But this creation of heat depends on 
so many factors that it becomes virtually impossible to use it as a norm to measure the 
progression of time. But we know that the rest mass can be taken as a measure of the internal 
heat of the particle [5]. Therefore, the progressive time should be in some way related to the 
most basic process which results in the creation of the rest mass of a particle. 
 

          In the previous section we have taken W(E) as the probability density function for the 
occupation of the energy states by the system. But actually W(E) cannot be taken to represent 
the probability to observe the system in that state. We know that the probability to observe the 
system in a state with energy E is given by P = Ψ*Ψ and not by W(E) = ܴΨ. We shall shortly 
discuss the basis for the probability postulate of quantum mechanics using the path integral 
formalism introduced by Feynman. 
 

          The Wick symmetry shows that it is possible to study the evolution of a micro-system 
either in the imaginary time in which case quantum mechanical laws would apply or in 
reversible time in which case the laws of thermodynamics would apply. This means that apart 
from the canonical approach and the path integral approach we have a third option in the 
primary gas approach to study the quantum behavior. It is well known that the path integral 
formalism is eminently suited to solve the problems of quantum electrodynamics while the 
canonical approach has its own high points. In a similar manner, the primary gas approach may 
be ideally suited to resolve some of the conceptual problems of quantum mechanics and 
quantum field theory. We shall examine these aspects as we go on.  
 

          Here it is interesting to note that Feynman had used the basic idea of replacing t by         
-iħ/Kθ to interpret the path integral formalism on the basis of statistical mechanics [10].  He 
obtained the value of the density matrix ρ which is the sum of all contributions from each 
motion, considering all possible paths, or motions, by which the system can travel between the 
initial configuration in time “ħ/Kθ” as 
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Here u is a parameter having the dimension of time and Dx(u) relates to the individual path 
taken. He comments about the above result in following words. “ This is very amusing result, 
because it gives the complete statistical behavior of a quantum-mechanical system as a path 
integral without the appearance of the ubiquitous i so characteristic of quantum mechanics. 
This path integral (in reversible time) is much easier to work with and visualize than the 
complex integrals which we have studied previously. Here it is easy to see why some paths 
contribute very little to the integral; for there are paths for which the exponential is very large 
and thus the integrand is negligibly small. Further more, it is not necessary to think about 
whether or not nearby paths cancel each other’s contributions, since in the present case all 
contributions add together with some being large and others small.”   
 

          We can understand the mathematics behind the equation given in (14) as follows. The 
number of paths that can be taken by a system Dx(u) to move from a point A to another point 
B in a certain time interval will increase as the energy of the system increases. Note that the 
particle could take all circuitous paths and still make it to point B from A in the given time if it 
travels faster in the intervening period. But these paths would belong to states of higher energy 
and momentum. But for the higher energy states, the exponential term within the bracket on 
the right hand side in (14) will have a lower value. Thus we observe that while Dx(u) increases 
with energy, the exponential term would decrease with the increase in energy.  In fact, the 
integral will have a maximum along the classical path. We know this is exactly what happens 
in the primary gas approach provided we take Dx(u) as representing the degeneracy g. 
 

              It is interesting to note that this concept of the Wick symmetry cannot be taken to the 
internal coordinates of the particle where the spin of the system is defined. At the level of the 
internal coordinates if we transform the imaginary time to the real time, the amplitude wave φA 
which defines the spin of the particle would no more be in a position to represent spin [5]. This 
means that the Wick symmetry operates only at the level of the broglino. It cannot be applied 
to the level of its internal structure. The reason for this is quite simple. The most basic state in 
the reversible real time is a single microstate or the broglino state when N = 1. Therefore, it is 
not possible to apply the concept of the Wick symmetry to the internal structure of a broglino. 
To put differently, we cannot destroy the spin of the system by the action of the Wick’s 
operator ܴ. 
 
5  Feynman’s Pathintegral Formalism 
 
              Before attempting to understand the basis of the probability postulate, it is necessary 
to go through Feynman’s path integral formalism briefly. The path integral formalism is a 
completely new way of looking at the quantum phenomena. In Feynman’s approach, a particle 
evolves from one point in space-time to another along various paths and each path may be 
associated with certain probability amplitude [11]. According to Feynman if φ[x(t)] is the 
probability amplitude for a particle to reach a point (xb,tb) from point (xa,ta) along a particular 
path defined by x(t), then   
 
                                                  )]([),( txabK φ∑=                                         (15) 
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where K(b,a) is the probability amplitude for the particle to move from (xa,ta) to (xb,tb). The 
summation means that all paths from (xa,ta) to (xb,tb) contributes to the probability amplitude. 
On the other hand the probability for the same movement is given by 
 

                                                 2).(),( abKabP =                                             (16)  
 
The interesting aspect of these paths is that the adjacent ones vary substantially in phase 
because a change as low as h can alter the phase by 2π. So ultimately all amplitudes cancel 
each other out except those, which lie very close to the path having least action. Here, a small 
change in the path creates changes in the phase only in the second order. So the classical 
path gets maximum amplitude and becomes the observable path. Therefore, in the classical 
limit 
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Based on this simple line of reasoning, Feynman shows that 
 

                                           ∫= cdxacKcbKabK ),(),().(                                     (18) 
 

where (xc,tc) is a point lying between (xa,ta) and (xb.tb). Equation (18) represents a basic 
property of the probability amplitude.  
  

             A wave function by definition represents the total amplitude arriving at the point (x,t). 
It does not specify the previous state from which it is coming. In other words, a wave function 
does not give any information about the past history of the particle or system. If a system is in 
the initial state with coordinates (xa,ta) which is not fixed the wave function for the state (xb,tb) 
will be given by 
 

                             ∫= aaaaabbbb dxtxtxtxKtx ),(),;,().( ψψ                            (19)                                                                           

                                                                               
In other words, the wave function ψ(xb,tb) which is the total amplitude to arrive at (xb,tb) is the 
sum of or integral over all amplitudes from all possible points (xa,ta) which are prior to (xb,tb). 
Note that ta < tb. If ta > tb, then it would be tantamount to assuming that future events are 
affecting the present which is not acceptable.  
 

              Now we shall try to express the amplitude K(xb,tb; xata) in terms of the state functions 
at b and a. We know from equation (19) that ψ*(xb,tb) can be  expressed as  
 

                 ∫ ′′′= aaaaabbbb xdtxtxtxKtx ),(*),;,(*).(* ψψ                            (20)                                                                           

                                                                                                                      
It is implicit here that the integral sign represents integration over the region from -∝ to + ∝. 
Now post multiplying both sides of (20) by ψ(xb,tb) dxb  and integrating, we have 
 

    ∫∫∫∫ ′′′= baaaaaaaabbaabbbbbbb dxxddxtxtxtxtxKtxtxKdxtxtx ),(),(*),;,(),;,(*).().(* ψψψψ                                                                                                   

 

                                                aaaaa dxtxtx ),(),(* ψψ ′= ∫                                                  (21)                                                    

 
This represents the conservation of the probability. For this relation to hold good for arbitrary 
Ψ, we must have 
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               ∫ ∫ −′=′′ )(),;,(),;,(* aabaaabbaabb xxdxxdtxtxKtxtxK δ      (22) 
 

That is, in order to interpret ψ as probability amplitude, the kernel must satisfy equation (22). 
To know what K*(xb,tb; xa',ta) stands for let us multiply (22) by K(xa,ta; xc,tc) and integrate over 
xa, to obtain 
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This holds good only if  tb >  ta  > tc. Compare this to the relation to the following equation 
based on the property given by (22) 
 

                ∫ = ),;,(),;,(),;,( ccaabccbbbbaa txtxKdxtxtxKtxtxK                      (24) 

 
where ta > tb > tc. The process behind the second relation could be explained as follows. 
Starting from at tc , K(xb,tb; xc,tc) gives us the amplitude at a later time tb. If we still want to go 
to a later time ta, we could do so using the kernel K(xa,ta; xb,tb). On the other hand, if having 
the amplitude at tb, we want to work back to find it at an earlier time ta< tb, we can do this 
using the function K*(xb,tb; xa,ta). In other words, K*(xb,tb;xa,ta) is undoing the work of    
K(xa,ta; xb,tb). Another way of looking at this is that while K(xa,ta; xb,tb)  stands for movement 
of amplitude in the direction of the time evolution which is from tb to ta where ta > tb,   
K*(xb,tb; xa,ta) represents movement of  amplitude going back in time from tb to ta where tb > ta. 
This means that ψ*(xb,tb) given by 
 

                          ∫= aaaaabbbb dxtxtxtxKtx ),(*),;,(*),(* ψψ              (25) 
        
represents the total amplitude going back from the states (xb,tb) to (xa,ta). To put things in 
proper perspective, while ψ(xb,tb) represents the probability to arrive at the state (xb,tb) from all 
past states, ψ*(xb,tb) represents the probability to go back from (xb,tb) to all past states. Thus 
we may state that while Ψ(xb,tb) represents the probability amplitude for evolving from the 
past states to the state (xb,tb), Ψ*(xb,tb) represents the probability amplitude to go back in 
time to the past states from the state (xb,tb). We shall see that this interpretation is ideally 
suited for the proposed idea of the Wick symmetry. 
 

              If φn represents a set of eigen functions which are orthogonal to each other, and En the 
set of eigen values of energy, then we know tha the state function can be expanded as 
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If we now take two points in space time (y,t1) and (x,t2) where  t2 > t1, then it can be easily 
shown that  

                         ( )12
1

)()(),;,( *

1
12

ttEi
nn

neyxtytxK −−
∝

=

−

∑= hφφ
α

                       (27)  

 

φn(y) represents the nth energy-momentum eigen states of the wave function at the point (y,t1). 
It is possible to express the eigen functions as 
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With this expression for φn(x), we may write (27) as             
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for t2 > t1.  Let us suppose that the states denoted by En and þn are lying very close so that we 
may take the distribution as a continuous one. Let us now denote by x and y the four vector 
space-time coordinates and by þ the four vector energy momentum coordinates. Now for 
notational convenience we may switch over to the natural units where ħ = 1 and c = 1. In that 
case (29) becomes                                       

 

                               þ)()(),( 4.24
2
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n∫= y)-(xþφπ                               (30) 
         

The constant (1/2π)4 has been introduced for normalizing purpose. It is quite obvious that in a 
field free situation K(x,y) should be equal to δ(x-y) because that is the only way that ψ(x) will 
retain the same  form as ψ(y) as the system moves from y to x. This is possible only if |φ(y)| 
does not dependent on þ.  
 

              In quantum field theory K(x,y) is called the propagator and is denoted by G (y-y′ ). It is 
worthwhile to note that the propagator depends only on the interval in the coordinates, which is 
(y-y′) and the notation brings this out explicitly. In the general case, equation (30) may be 
written as 
 

                            þþ)()()( 4.4
2
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Note that G(þ) will change according to the field acting on the system. The wave function is 
nothing but the sum total of all such eigen states weighted with their amplitudes. We see from 
(31) that the weightage factor G(þ) remains unity if the field acting is zero. But when a field 
acts on the system, in the journey from y to y′, the weightage factor for each eigen state of þ 
undergoes a change due to the action of G(þ) and thus the wave function gets altered. 
            

             In Feynman’s approach Ψ(xb,tb) represents the sum of the probability amplitude 
reaching the state (xb,tb) from the past, while ψ*(xb,tb) represents the sum of all amplitudes 
starting from the state (xb,tb) and going back to the past. This sort of an interpretation is in-built 
in the Feynman’s picture. But such an interpretation would mean that evolution of a system 
backward in time is equally possible. In other words, such an interpretation would treat 
forward and backward evolution of time symmetrically. But in real world, time progresses 
only in one direction. This may be the reason why Feynman never attempted to seek an 
alternate interpretation for the probability postulate based on his path integral formalism.  
 
6  The Probability Postulate and the Wick Symmetry 
 
              In the light of the above discussion, we may interpret the probability postulate in 

terms of the forward and reverse evolution in time. To understand the meaning of the 
probability postulate we shall take up the special case of the evolution of a system from the 
initially observed eigen state (xa,ta) to the state (xb,tb) where tb > ta. Note that the eigen state 
represented by a plane wave in the wave picture would become the broglieon state in the 
primary gas approach. Since the wave function Ψ(xb,tb) by definition represents the total 
amplitude arriving at the point (xb,tb), in the case on hand it would represent only the amplitude 
arriving at (xb,tb) from just (xa,ta). In other words, 
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Similarly, taking the complex conjugate, we obtain   
 
                                       ),;,(*),(* aabbbb txtxKtx =ψ                                 (33) 
 
Here Ψ* represents the probability amplitude for the system to devolve from the state (xb,tb) to 
the earlier state (xa,ta). Thus the function Ψ*Ψ represents the probability amplitude for 
evolving from the state (xa,ta) to the state (xb,tb) and then back to the state (xa,ta). Note that we 
have taken only (xa,ta) as fixed while (xb,tb) stands for a large number of states as shown in 
figure.3.  Therefore, when the system evolves from (xa,ta) to the states denoted by (xb,tb), then 
this takes place along a number of paths. We may say that in any observation at the instant tB, 
the system may be caught in any one of the (say) five paths as shown in figure 3. Since the 
system would be in any one of the five paths at the instant tb, we may take the probability for 
the system to be in the first path to be 
 

                                  ),(),(*),( bbbbbb txtxtxP ψψ=                                   (34) 
 

provided we take Ψ as normalized such that ∑ Ψ*(xb,tb) Ψ(xb,tb) = 1. Here we have taken the 
initial state (xa,ta) to be the eigen state which is given. Actually, the entire chain of reasoning  
 

                                                                         (x1,tb)                                             

                                                                         (x2,tb) 

                                    (xa,ta)                          (x3,tb) 

                                                                        (x4,tb)  

                                                                         (x5,tb) 
 

                            The figure shows the evolution of the system from a single initial state at 
                            instant tA  to a large number of states at a subsequent instant tB and back.  
 

                                                                 Figure.3 
 

would hold good even if the initial state (xa,ta) is not a single eigen state but a large number of 
eigen states. This means that the system is not observed in any particular eigen state at the 
instant tA but retains its potential to occupy a large number of eigen states.  
 

             The evolution of the quantum mechanical system into future and back may appear 
quite absurd, but then we should keep in mind that in the microcosm, time has not lost its 
directional symmetry unlike in the case the macroscopic world. As a result, the system may 
evolve into future and back to the present and again into future and so on. In other words, in 
the imaginary time or reversible time, a particle could be in many places simultaneously. 
However, when the system comes into contact by way of an observation with the macroscopic 
time which may be called the progressive time, it will be caught in one of the possible 
locations. This is because in the progressive time, a particle could be only in one place at an 
instant. One may say that the observation is a process by which a micro-system shifts from the 
imaginary time to the progressive time. Note that if the micro-system were to evolve in 
progressive time, then it has to be under continuous observation. Therefore, the probability to 
occupy the state (x2,tb) will be given by the probability to jump from (xa,ta) to (x2,tb) only. 
There is no possibility of a reverse jump here. On the other hand, in the imaginary time, we 
have to take both forward and the reverse jumps to arrive at the probability to occupy the state 
(x2,tb). Thus the basis of the probability postulate could be traced to the fact that a micro-
system exists in a time with its reversibility or directional symmetry intact. 
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          We shall now try to find out what is the quantity which is conserved in the Wick 
symmetry. We know that if the Wick symmetry is a universal symmetry, then there should be 
an invariant property of the system associated with this symmetry. It appears that the 
probability density is the quantity which remains invariant in the Wick’s rotation. Let us apply 
the Wick’s operator on the wave function to yield 
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Note that Wi denote the probability of the primary gas which progresses in time while ܹ
 

denote the probability for regression in time. From the above analysis it is obvious that the 
probability density Pi is conserved in the Wick rotation provided Bi is taken as real. In other 
words, we could take the conserved quantity connected with the Wick symmetry to be the 
probability density. 
 
7   Localizing the broglieon  
 
            Now that we have understood the true meaning of the probability postulate, we may 
now proceed to solve the problem of the localization of the broglieon. Since the broglieon is a 
primary gas, its micro-states will be stretched in time over a duration of  NTe and in space over 
a length Nλ where N is a large number. This means that in the primary gas formalism, the 
system cannot be localized within a reasonably small region. In the case of the wave 
representation of the particle, we do not face such a problem. Here when we take a group of 
waves, they will interfere with each other destructively everywhere except in the small region 
where the amplitude will have a sharp maximum and the particle could be assumed to be 
located there.  
  

             We should remember that when we localize a particle, we are not carrying out an 
observation. Here we have to keep in mind that in any interaction with the particle at an 
instant, the microstates involved need not belong to the same primary gas. In fact, since we are 
confining to the interactions at one spatial point, the micro states involved would belong to 
various primary gas states. In other words, the N microstates belonging to separate primary gas 
states could represent the particle which is localized in a small region. Such a group of 
microstates would form a real gas stat as they all exist at the same instant. In fact, as the 
primary gas states close to the classical path are occupied maximum, the N states involved in 
the localization could belong to these primary gas states along the classical path. Note that the 
uncertainty principle would still hold good if viewed in terms of what is stated in section 8 of 
the last paper [5].  In the wave picture, the sharpness of the localization is brought about at the 
cost of the spread in the energy momentum states. So we should have a similar situation here 
also. In other words, if the localization is sharp, the momentum states cannot be restricted to a 
narrow band. Here we should keep in mind that the wave picture is the space-time picture 
while the primary gas picture is the energy momentum picture.  
 
8   Zero Point energy as the thermal energy of vacuum fluctuations 
 
              We shall now investigate the concept of the zero point energy of quantum mechanics 
and look out for the equivalent law in the reversible time. According to Quantum Mechanics, 
vacuum is taken as zero energy state or the ground state. This does not disallow the existence 
of fluctuations in the energy and momentum of the vacuum state. We know that the staphon 
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(standing half wave) is created by its interactions with the vacuum fluctuations in the Higgs 
field [4]. Note that the photino, which represents a single composite wave (electromagnetic 
wave in the simplest case) is in thermal equilibrium with the fluctuations in the Higgs field. In 
other words, the fluctuations in the Higgs field act like a thermal bath and the energy of the 
particle is equal to the energy of the vacuum fluctuations confining it. Here we should keep in 
mind that a staphon has two degrees of freedom just as the photino constituting it has got two 
directions of polarizations. Therefore, for one polarization we have 
 
                                                            νhE 2

1=                                                  (36) 
 

And if we take the both polarizations we obtain      
  

                                                          νhE =                                                     (36A)                                           
 

This is the energy of the fluctuations in the Higgs field which confines the photino forming the 
particle.  
 

          Actually, in the above calculations we have not taken into account the confinement of 
the photino in the transverse direction. Here we should presume that the electromagnetic wave 
is not confined in the transverse direction. The fact that the electromagnetic field oscillations 
are transmitted along the transverse direction means that there is no confinement of the 
electromagnetic energy in the transverse direction. We already know that the ratio of the 
electromagnetic field energy of the electron to its total energy is a universal constant called the 
fine structure constant [3].  
 

             We should keep in mind that if the vacuum fluctuations interacting with the photino 
did not have this much energy, then the photino would have lost out its energy to the vacuum 
and faded away. But since the confined photino is in equilibrium with the fluctuations in the 
energy of the Higgs field, we should assume that the rest energy of the particle and the energy 
of the Higgs field fluctuations are perfectly matched. But we have ν = 1/T, where T is the 
period of oscillation of the confined photino. Therefore, we have 
 
                                                          

eThE =                                                     (37)                                        
   

But Te, which is the intrinsic time of the particle is related to the temperature of the primary 
gas by Te = h/Kθ [5]. Therefore, we have 
 
                                                          θKE =                                                       (38) 
   

But we know that Kθ represents the thermal energy for unit degree of freedom. But since 
vacuum fluctuations have two degrees of freedom in two possible directions of polarizations, 
we have Kθ instead of Kθ in (38) In other words the zero point energy is nothing but the 
energy of the vacuum fluctuations acting as a thermal bath. 
 

          In the light of equation (37) let us examine the action function of a free particle given by 
 
 

                                           
oo tExEt −=−− )þ(                                                (39)         

  
We know that we can always replace the external coordinates of space and time with the 
intrinsic coordinates of the primary gas [5]. Accordingly, replacing the external coordinates in 
the above equation with the intrinsic coordinates, we obtain 
 



~ 20 ~ 
 

                                         
eooee TEXET −=−− )þ(                                              (40) 

 

But we know that  Teo  =  h/Kθo. At the same time, from (38) we have Eo =  Kθo. Therefore 
(40) can be written as 
 

                                     hTEXET eooee ==− )þ(                          (40A) 
   
Note that h is the intrinsic action of the particle. This shows that whatever be the nature of 
particle, the intrinsic action is a universal constant denoted by h. Therefore  
 
               hTnNEhEthA eooo −=−=        
 
                                                   nNhTnNh eoo −=−= ν                                        (41)       
 

But since    KShA #−= ,   we have  nNKS =# .                 (41B) 
 

Here we should keep in mind that entropy S#  appearing in the above equations is not the actual 
entropy of the system, but the adjusted entropy.  The actual entropy = S# - φ/θ, where φ is the 
thermodynamic potential given by [5]. 
 
                                              }ln{ )( KGK

k eg kk ρθξθφ −−∑=−                     
 
9  Conclusion 
 
          In view of what is discussed above it is quite obvious that quantum mechanics is nothing 
but the thermodynamics of the primary gas that exists in the reversible time. In the next paper, 
we shall examine each of the postulates of quantum mechanics and show how it conforms to 
the primary gas approach. We shall also show how the results of Young’s double slit 
experiment could be explained in the primary gas approach. We already saw here how the 
probability postulate has its origin in the reversibility of time. The idea that an elementary 
particle is in thermodynamic equilibrium with the fluctuations in the Higgs field provides us 
with a simple picture of the inner structure of the elementary particle and in a sense takes us to 
the concept that all elementary particles can be interpreted in the layman’s language as some 
sort of vortices created by electromagnetic and other composite waves. But we are still far 
from understanding why only certain rest energies are allowed for the particles. Could it be 
understood in terms of the relative strengths of the basic fields? 
 

          When we examine Feynman’s path integral formalism, it is quite surprising to note that 
how close he came to the real time approach.  He even arrived at the similarity between the 
imaginary time approach and the real time approach as discussed in section 4. He had already 
introduced the concept of the forward jump in time and the reverse jump in time. The only 
reason why he couldn’t arrive at the Wick symmetry could be traced to the fact that he 
couldn’t think up the concept of the primary gas. His mind was busy solving the problems of 
quantum electrodynamics using the newly discovered path integral formalism.  
 

          It is interesting to examine the emergence of the space-time from the interactions of the 
particles with the fluctuations in the Higgs field. Remember that these interactions are 
undergone by all particles and the universal nature of these interactions is the basis behind the 
perception of a universal background of time and space. By the same reasoning, we may 
attribute space-time for other short range interactions. But the only problem is that such a 
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space-time would not form a continuum. Besides, since these interactions are of different 
nature, this space-time would not form a part of the universal space-time which is created by 
the Higgs field interactions. In other words, we have to introduce new dimensions to 
accommodate these localized space-times. Note that in the language of the string theory, they 
would represent warped higher dimensional spaces. Needless to say these warped spaces 
would apply to only quarks and the composite particles created out of them. In a way we come 
to the conclusion that the space and time are essentially outer manifestation of the various 
types of interactions undergone by particles having mass. 
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