SMARANDACHE NEAR-RINGS AND THEIR GENERALIZATIONS

W. B. Vasantha Kandasamy

Department of Mathematics Indian Institute of Technology, Madras Chennai - 600 036, India. E- mail: vasantak@md3.vsnl.net.in

Abstract: In this paper we study the Smarandache semi-near-ring and nearring, homomorphism, also the Anti-Smarandache semi-near-ring. We obtain some interesting results about them, give many examples, and pose some problems. We also define Smarandache semi-near-ring homomorphism.

Keywords: Near-ring, Semi-near-ring, Smarandache semi-near-ring, Smarandache near-ring, Anti-Smarandache semi-near-ring, Smarandache semi-near-ring homomorphism,

Definition [1 Pilz]: An algebraic system $(N, +, \bullet)$ is called a *near-ring* (or a *right near-ring*) if it satisfies the following three conditions:

- (i) (N, +) is a group (not necessarily abelian).
- (ii) (N, \bullet) is a semigroup.
- (iii) $(n_1 + n_2) \bullet n_3 = n_1 \bullet n_3 + n_2 \bullet n_3$ (right distributive law) for all $n_1, n_2, n_3 \in N$.

Definition [1 Pilz]: An algebraic system $(S, +, \bullet)$ is called a *semi-near-ring* (or *right semi-near-ring*) if it satisfies the following three conditions:

- (i) (S, +) is a semigroup (not necessarily abelian).
- (ii) (S, \bullet) is a semigroup.
- (iii) $(n_1 + n_2) \bullet n_3 = n_1 \bullet n_3 + n_2 \bullet n_3$ for all $n_1, n_2, n_3 \in S$ (right distributive law).

Clearly, every near-ring is a semi-near-ring and not conversely. For more about semi-near-rings please refer [1], [4], [5], [6], [7], [8] and [9].

Definition 1: A non-empty set N is said to be a *Smarandache semi-near-ring* if $(N, +, \bullet)$ is a semi-near-ring having a proper subset A $(A \subset N)$ such that A under the same binary operations of N is a near-ring, that is $(A, +, \bullet)$ is a near-ring.

Example 1: Let $Z_{18} = \{0, 1, 2, 3, ..., 17\}$ integers modulo 18 under multiplication. Define two binary operations × and • on Z_{18} as follows: × is the usual multiplication so that (Z_{18}, \times) is a semigroup;

 $a \bullet b = a$ for all $a, b \in Z_{18}$.

Clearly (Z_{18}, \bullet) is a semigroup under \bullet . $(Z_{18}, \times, \bullet)$ is a semi-near-ring. $(Z_{18}, \times, \bullet)$ is a Smarandache semi-near-ring, for take A = {1, 5, 7, 11, 13, 17}. (A, \times, \bullet) is a near-ring. Hence the claim.

Theorem 2: Not all semi-near-rings are in general Smarandache semi-near-rings.

Proof: By an example.

Let $Z^+ = \{\text{set of positive integers}\}$. Z^+ under + is a semigroup. Define • a binary operation on Z^+ as a • b = a for all a, b $\in Z^+$. Clearly Z^+ under • is a semigroup. Now $(Z^+, +, \bullet)$ is a semi-near-ring which is not a Smarandache semi-near-ring.

Now we give an example of.

Example 2 (of an infinite Smarandache semi-near-ring):

Let $M_{n \times n} = \{(a_{ij}) | a_{ij} \in Z\}$. Define matrix multiplication as an operation on $M_{n \times n}$. $(M_{n \times n}, \times)$ is a semigroup. Define '•' on $M_{n \times n}$ as $A \bullet B = A$ for all $A, B \in M_{n \times n}$. Clearly $(M_{n \times n}, \times, \bullet)$ is a Smarandache semi-near-ring, for take the set of all $n \times n$ matrices A such that $|A| \neq 0$. Denote the collection by $A_{n \times n}$. $A_{n \times n} \subset M_{n \times n}$ Clearly $(A_{n \times n}, \times, \bullet)$ is a semi-near-ring.

Example 3:

Let $Z_{24} = \{0, 1, 2, ..., 23\}$ be the set of integers modulo 24. Define usual multiplication \times on Z_{24} . (Z_{24} , \times) is a semigroup. Define '•' on Z_{24} as a • b = a for all a, b $\in Z_{24}$. Clearly Z_{24} is a semi-near-ring. Now Z_{24} is also a Smarandache semi-near-ring. For take A = $\{1, 5, 7, 11, 13, 17, 19, 23\}$. (A,×, •) is a near-ring. So, Z_{24} is a Smarandache semi-near-ring.

Motivated by the examples 3 and 4 we propose the following open problem.

Problem 1: Let $Z_n = \{0, 1, 2, ..., n-1\}$ set of integers. $n = p_1^{\alpha_1} ... p_t^{\alpha_t}$, where p_1 , p_2 , ..., p_t are distinct primes, t > 1. Define two binary operations '×' and '•' on Z_n . × is the usual multiplication. Define '•' on Z_n as a • b = a for all a, b $\in Z$. Let $A = \{1, q_1, ..., q_r\}$ where $q_1, ..., q_r$ are all odd primes different from $p_1, ..., p_t$ and $q_1, ..., q_r \in Z_n$.

Prove A is a group under \times . Solution to this problem will give the following:

Result: $Z_n = \{0, 1, 2, ..., n-1\}$ is a Smarandache semi-near-ring under × and • defined as in Examples 1 and 3. Thus we get a class of Smarandache seminear-rings for every positive composite integer. Now when t = 1 different cases arise. *Example 4:* $Z_4 = \{0, 1, 2, 3\}$ is a Smarandache semi-near-ring as (Z_4, \times, \bullet) is a semi-near-ring and $(A = \{1, 3\}, \times, \bullet)$ is a near-ring.

Example 5: $Z_9 = \{0, 1, 2, 3, 4, ..., 8\}$. Now (Z_9, \times, \bullet) is a semi-near-ring. (A = $\{1, 8\}, \times, \bullet$) is a near-ring so Z_9 is a Smarandache near-ring. Clearly 8 is not a prime number.

Example 6: Let $Z_{25} = \{0, 1, 2, 3, ..., 24\}$. Now $(Z_{25}, \times, \bullet)$ is a semi-near-ring. $\{A = \{1, 24\}, \times, \bullet\}$ is a near-ring. Thus Z_{25} is a Smarandache semi-near-ring.

Theorem 3: Let $(Z_{p^2}, \times, \bullet)$ be a semi-near-ring. Clearly $(Z_{p^2}, \times, \bullet)$ is a Smarandache semi-near-ring.

Proof: Let $(A = \{1, p^2-1\}, \times, \bullet)$ is a near-ring. Hence $\{Z_{p^2}, \times, \bullet\}$ is a Smarandache semi-near-ring.

Hence we assume t >1, for non primes one can contribute to near -ring under (\times, \bullet) .

Corollary: Let $(Z_{p^n}, \times, \bullet)$ be a semi-near-ring. $(Z_{p^n}, \times, \bullet)$ is a Smarandache near-ring.

Proof: Take A = {1, pⁿ-1} is a near-ring. Hence $(Z_{p^n}, \times, \bullet)$ is a Smarandache semi-near-ring.

Thus we have a natural class of finite Smarandache semi-near-rings.

Definition 4 (in the classical way):

N is said to be a *Smarandache near-ring* if $(N, +, \bullet)$ is a near-ring and has a proper subset A such that $(A, +, \bullet)$ is a near-field.

Now many near-rings contain subsets that are semi-near-rings, so we are forced to check:

Definition 5: N is said to be an *Anti-Smarandache semi-near-ring* if N is a near-ring and has a proper subset A of N such that A is a semi-near-ring under the same operations of N.

Example 7: Let Z be the set of integers under usual + and multiplication '•' by $a \bullet b = a$ for all $a, b \in Z$. $(Z, +, \bullet)$ is a near-ring. Take $A = Z^+ \text{ now } (Z^+, +, \bullet)$ is a semi-near-ring. So Z is an Anti-Smarandache semi-near-ring.

Example 8: Let $M_{n \times n} = \{(a_{ij}) / a_{ij} \in Z\}$. Define + on $M_{n \times n}$ as the usual addition

of matrices and define \bullet on $M_{n\times n}$ by $A \bullet B = A$ for all $A, B \in M_{n\times n}$. $(M_{n\times n}, +, \bullet)$ is a near-ring. Take $A_{n\times n} = \{(a_{ij}) / a_{ij} \in Z^+\}$. Now $(A, +, \bullet)$ is a semi-near-ring. Thus $M_{n\times n}$ is an Anti-Smarandache semi-near-ring.

We propose the following:

Problem 2: Does there exist an infinite near-ring constructed using reals or integers, which is not an Anti-Smarandache semi-near-ring?

Example 9: Z[x] is the polynomial ring over the ring of integers. Define + on Z[x] as the usual addition of polynomials. Define an operation \bullet on Z[x] as $p(x) \bullet q(x) = p(x)$ for all p(x), $q(x) \in Z[x]$. Clearly $(Z[x], +, \bullet)$ is an Anti-Smarandache semi-near-ring, for $(Z^+[x], +, \bullet)$ is a semi-near-ring.

Now it is still more interesting to find a solution to the following question (or Problem 2 worded in a negative way):

Problem 3: Find a finite Anti-Smarandache semi-near-ring.

Definition 6: Let N and N₁ be two Smarandache semi-near-rings. A mapping h: $N \rightarrow N_1$ is a *Smarandache semi-near-ring homomorphism* if h is a homomorphism.

Similarly one defines the Anti-Smarandache semi-near-ring homomorphism:

Definition 7: Let N and N₁ be two Anti-Smarandache semi-near-rings. Then h: N \rightarrow N₁ is an *Anti-Smarandache semi-near-ring homomorphism* if h is a homomorphism.

References:

- [1] G. Pilz, Near-rings, North Holland Publ. and Co. (1977).
- [2] J. Castillo, *The Smarandache Semigroup*, International Conference on Combinatorial Methods in Mathematics, II Meeting of the project 'Algebra, Geometria e Combinatoria', Faculdade de Ciencias da Universidade do Porto, Portugal, 9-11 July 1998.
- [3] R. Padilla, *Smarandache Algebraic Structures*, Bulletin of Pure and Applied Sciences, Delhi, Vol. 17 E., No. 1, 119-121, (1998) http://www.gallup.unm.edu/~smarandache/ALG-S-TXT.TXT
- [4] W. B. Vasantha Kandasamy, Idempotents in group semi-near-ring, IPB Bulletin Sci., 13-17, (1991).
- [5] W. B. Vasantha Kandasamy, Zero divisors in group semi-near-rings, Riazi J. Karachi Math. Assoc., Vol. 14, 25-28, (1992).
- [6] W. B. Vasantha Kandasamy, Zero divisors in semi-loop near-rings, Zeszyty Nauk. Poli Rzesz., (79-84, 1994).

- [7] W. B. Vasantha Kandasamy, The units of semigroup semi-near-rings, Opscula Math., Vol. 15, 113 -114, (1995).
- [8] W. B. Vasantha Kandasamy, Complex Polynomial near-rings, Analele Stiin. Ale Univ., Vol. IV, 29 31, (1995).
- [9] W. B. Vasantha Kandasamy, Idempotents and semi-idempotensts in near-rings, J. of Sichuan Univ. Vol. 33, 330 332, (1996).