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Abstract – In situation analysis (SA), an agent observing a
scene receives information from heterogeneous sources of infor-
mation including for example remote sensing devices, human re-
ports and databases. The aim of this agent is to reach a certain
level of awareness of the situation in order to make decisions. For
the purpose of applications, this state of awareness can be con-
ceived as a state of knowledge in the classical epistemic logic
sense. Considering the logical connection between belief and
knowledge, the challenge for the designer is to transform the raw,
imprecise, conflictual and often paradoxical information received
from the different sources into statements understandable by both
man and machines. Hence, quantitative (i.e. measuring the world)
and qualitative (i.e. reasoning about the structure of the world)
information processing coexist in SA. A great challenge in SA
is the conciliation of both aspects in mathematical and logical
frameworks. As a consequence, SA applications need frameworks
general enough to take into account the different types of uncer-
tainty and information present in the SA context, doubled with a
semantics allowing meaningful reasoning on situations. The aim
of this paper is to evaluate the capacity of neutrosophic logic and
Dezert- Smarandache theory (DSmT) to cope with the ontological
and epistemological problems of SA.

Keywords: Situation analysis, possible worlds, neutrosophic
logic, Dezert-Smarandache theory.

1 Introduction
In Situation Analysis (SA), an agent observing a scene re-
ceives information from heterogeneous sources of informa-
tion including for example remote sensing devices, human
reports and databases. The aim of this agent is to reach a
certain awareness of the situation in order to take decisions.
For the purpose of applications, this state of awareness can
be conceived as a state of knowledge in the classical epis-
temic logic sense. Considering the logical connection be-
tween belief and knowledge, the challenge for the designer
is to transform the raw, imprecise, conflictual and often
paradoxical information received from the different sources
into statements understandable by both man and machines.
Hence, quantitative (i.e. measuring the world) and qualita-
tive (i.e. reasoning about the structure of the world) infor-
mation processing coexist in SA. A great challenge in SA
is the conciliation of both aspects in mathematical and log-
ical frameworks. As a consequence, SA applications need
frameworks general enough to take into account the differ-
ent types of uncertainty and information present in the SA

context, doubled with a semantics allowing meaningful rea-
soning on belief, knowledge and situations.

The aim of this paper is to evaluate the potential of neu-
trosophic logic and Dezert-Smarandache theory (DSmT) to
cope with the ontological and epistemological obstacles in
SA (section 3),i.e. problems due to the nature of things
and to cognitive limitations of the agents, human or arti-
ficial. A particularity of SA is that most of the time it is
impossible to list every possible situation that can occur.
The elements of the corresponding frame of discernment
cannot, thus, be considered as an exhaustive list of situa-
tions. Furthermore, in SA situations are not clearcut ele-
ments of the frame of discernment (section 4). Considering
these particular aspects, especially the richer ontology on
which it is based, DSmT appears as an appropriate model-
ing tool for uncertainty in SA (section 5.2). On the other
hand, we assess the ability of neutrosophic logic to process
symbolic and numerical statements on belief and knowl-
edge using the possible worlds semantics (5.3). Moreover,
we investigate the representation of neutrosophic concepts
of neutrality and opposite in the possible worlds semantics
for situation modelization.

2 Situation analysis

The termsituation appears in the mid-fourteenth century
derived from medieval Latinsituatiomeaningbeing placed
into a certain location. By the middle of the seventeenth
century situation is used to discuss the moral dispositions
of a person, more specifically the set of circumstances a
person lies in, the relations linking this person to itsmilieu
or surroundingenvironment. As will be shown below, the
latter definition is close to what is meant today in the field of
High-Level Data Fusion, where the mental state ofsituation
awarenessis studied in interaction with the surrounding en-
vironment. Common synonyms of situation with a corre-
sponding meaning aresetting, case, circumstances, condi-
tion, plight, scenario, state, picture, state of affairs.

Although the notion of situation is used informally in ev-
eryday language to designate a given state of affairs, a sim-
plified view of the world, and even the position of certain
objects, situation is nowadays a central concept in High-
Level Data Fusion where it has been given more or less
formal definitions. For Pew [1], a situation is “a set of envi-



ronmental conditions and system states with which the par-
ticipant is interacting that can be characterized uniquely by
a set of information, knowledge, and response options”.

2.1 Situation awareness as a mental state

For Endsley and Garland [2]Situation awareness(SAW) is
“ the perception of the elements in the environment within a
volume of time and space, the comprehension of their mean-
ing and the projection of their status in the near future”
(Fig. 1). SAW is also defined in [3] as “the active mental
representationof the status of current cognitive functions
activated in the cognitive system in the context of achiev-
ing the goals of a specific task”. In particular, SAW involves
three key tasks: (1) Perception, (2) Comprehension and (3)
Projection, in a general multiagent context.

SITUATION AWARENESS

Projection
of future status

Comprehension
of current situation

Perception
of elements in

current

situation

Fig. 1: The three basic processes of situation awareness ac-
cording to Endlsey and Garland (modified from [2]), in a
multi-agent context.

In contemporary cognitive science the concept ofmental
representationis used to study the interface between the ex-
ternal world and mind. Mental states are seen as relations
between agents and mental representations. Formally, and
following Pitt’s formulation [4], for an agent to be in a psy-
chological stateΨ with semantic propertyΓ is for that agent
to be in aΨ-appropriate relation to a mental representation
of an appropriate kind with semantic propertyΓ. As far
as mental states are concerned, purely syntactic approaches
are not adequate for representation since semantic concepts
need to be modeled.

2.2 Situation Analysis as a process

For Roy [5] “Situation Analysis is a process, the examina-
tion of a situation, its elements, and their relations, to pro-
vide and maintain a product, i.e. a state ofSituation Aware-
ness(SAW) for the decision maker”. For a given situation
the SA process creates and maintains a mental representa-
tion of the situation. Situation analysis corresponds to the
levels 2, 3 and 4 of the JDL data fusion model [6, 7], hence
to higher-levels of data fusion. A revisited version of the
well-known model is presented on figure 2, with classical
applications associated to the different levels. A complete
situation model must take into account the following tasks
of: A. Situationperceptioncomposed of Situation Element

Fig. 2: Revisited JDL data fusion model and applications
[8].

Acquisition, Common Referencing, Perception Origin Un-
certainty Management, and Situation Element Perception
Refinement as subtasks. B. Situationcomprehensioncom-
posed of Situation Element Contextual Analysis, Situation
Element Interpretation, Situation Classification, Situation
Recognition, and Situation Assessment as subtasks. C. Sit-
uation projection composed of Situation Element Projec-
tion, Impact Assessment, Situation Monitoring. Situation
Watch, and Process Refinement [5].

The conception of a system for SA must rely on a mathe-
matical and/or logical formalism capable of translating the
mechanisms of the SAW process at the human level. The
formalism should also allow the possibility to encompass
the case of multi-agent systems in which the state of aware-
ness can be distributed over several agents rather than lo-
calized. A logical approach based on a possible worlds se-
mantics for reasoning on belief and knowledge is proposed
in [9]. This work by Halpern can be used as a blueprint con-
sidering that it allows to handle numerical evaluations of
probabilities, thus treating separately but nevertheless link-
ing belief, knowledge and uncertainty.

Furthermore, mathematical and logical frameworks used
to model mental states should be able to represent and pro-
cess autoreference such as beliefs about one’s own beliefs,
beliefs about beliefs about . . . and so on.

3 Obstacles to estimation and prediction in
Situation Analysis

There are two kinds of limits to state estimation and pre-
diction in Situation Analysis.Ontological limitsdue to the
nature of things andepistemic limitsdue to cognitive limi-
tations of the agents, human or artificial.

Typical obstacles [10] areanarchyand instability when
the situation is not governed by an identifiable law or in
the absence of nomic stability.Chanceandchaos, are se-
rious obstacles to state evaluation and prediction as far as
an exact estimation is sought for although regularities and
determinism are observed. Another typical obstacle is the
vaguenessof concepts. Natural language concepts are in-
herently vague, meaning that their definition is approximate



and borderline cases arise. This is true as well for properties
but also for concepts.

Indeterminacyis another unavoidable obstacle. It may
arise from paradoxical conclusions to a given inference
(i.e. Russell’s paradox), from impossible physical measure-
ments (i.e. positionandspeed of an atomic particle) or for
practical reasons (i.e. NP-complete problems). Indetermi-
nacy may also be proposed as a conclusion to specific unan-
swerable questions in order to nevertheless allow reasoning
using the remaining information.

Ignoranceof the underlying laws governing the situation
is a major cause of uncertainty. For example not knowing
that a given tactical maneuver is possible precludes the pos-
sibility to predict its occurrence. Especially present in hu-
man affairsinnovationcan be a major obstacle in SA. New
kinds of objects (weapons), processes (courses of action)
or ideas (doctrines) arise and one has no choice but to deal
with it and adapt.

Myopia or data ignorance, is also a typical problem in
SA. Data must be available on time in order to assess a sit-
uation, meaning that even if the information sources exist
circumstances can prevent their delivery. Another case of
myopia occurs when data is not available in sufficient detail,
as in pattern recognition when classes are only coarsely de-
fined or when sensors have limited spatial resolution. Data
is thus accessible through estimations obtained by sampling
as in surveys, by the computation of aggregates as in Data
Fusion or by the modelization of rough estimates. As a
consequence the available data is only imprecise and in-
complete and leads most of the time to conflicting choices
of decision.

Any attempt in the conception of a system is be bounded
by inferential incapacityof human or artificial agents. Lim-
itations in agents can arise because of a lack of awareness.
As far as knowledge is concerned, an agent cannot always
give a value to a proposition, for example if it is not even
aware of the existence of the concept denoted by the propo-
sition at hand. Agents areresource boundedmeaning that
agents have only limited memorization capabilities, in some
cases they have power supply limitations, etc. or have only
limited cognitive and computational capabilities. Agents
may also have limited visual or auditory acuity. Sometimes,
these limitations come from the outside and are situation
driven: electronic countermeasures, only a limited amount
of time or money is available to do the job, etc. Further-
more agents cannot focus on all issues simultaneously. As
Fagin and Halpern puts it in [11] “[. . . ] Even ifA does per-
fect reasoning with respect to the limited number of issues
on which he is focusing in any given frame of mind, he may
not put his conclusions together. Indeed, although in each
frame of mind agentA may be consistent, the conclusions
A draws in different frames of mind may be inconsistent.”
Finally, agents must work with an inconsistent set of be-
liefs. For example, we know that lying is amoral, but in
some case we admit it could be a good alternative to a cri-
sis.

4 Basic principles in Situation Analysis

Given the causes of uncertainty and the constraints linked to
it, we identify three basic principles which should guide SA
problem-solving: (1) allowing statements about uncertainty
to be made, (2) enrichment of the universe of discourse, (3)
allowing autoreference.

4.1 Statements about uncertainty

Uncertainty has two main meanings in most of the classi-
cal dictionaries [12]: Meaning I - Uncertainty as a state of
mind; Meaning II - Uncertainty as a physical property of
information. The first meaning refers to the state of mind
of an agent, which does not possess the needed information
or knowledge to make a decision; the agent is in a state of
uncertainty: “I’m not sure that this object is a table”. The
second meaning refers to a physical property, representing
the limitation of perception systems: “The length of this
table is uncertain”. In theories of uncertain reasoning, un-
certainty is often described as imperfection of information,
as errors on measures for example, and does not depend on
any kind of state of mind. As a sociologist, Gérald Bron-
ner [13] considers uncertainty as a state of mind, this state
depending on our power on the uncertainty, and our capac-
ity to avoid it. He distinguishes two types of uncertainty:
uncertainty in finality(or material uncertainty) anduncer-
tainty of sense. Uncertainty in finality is “the state of an in-
dividual that, wanting to fulfill a desire, is confronted with
the open field of the possibles” (ex.: Will my car start?).
Whereas uncertainty of sense is “the state of an individual
when a part, or the whole of its systems of representation is
deteriorated or can be”. Uncertainty in finality corresponds
to the uncertainty in which lies our understanding of the
world, while uncertainty of sense bears on the representa-
tion of the world. Bronner classifies uncertainty in finality
into three types, according to one’s power on uncertainty,
and the capacity to avoid it: Situation of type I: Uncertainty
does not depend on the agent and can not be avoided; Situ-
ation of type II: Uncertainty does not depend on the agent
but can be avoided; Situation of type III: Uncertainty is gen-
erated by the agent and can be avoided.

In situation analysis, agents are confronted to uncertainty
of sense (data driven) from the bottom-up perspective and
to uncertainty in finality (goal driven) from the top-down
perspective.

Propositional Calculus (PC) relies on the principle of bi-
valence expressing the fact that a proposition is eitherTRUE

or FALSE. Hence, only two truth values are allowed leav-
ing no way to express uncertainty. There are many ways
go beyond bivalence. The most common is to introduce
supplementary truth values in the PC framework, and then
reject the principle of bivalence. The signification of the
supplementary truth value differs from one author to an-
other, from one logic to another. However, it is common
to denote truth, falsity and indeterminacy by 1, 0 and1

2 re-
spectively. A three-valued logic can be generalized to an
n-valued logic, and by extension to fuzzy logic, with an in-
finite number of truth-values ranging on the real set interval
[0; 1].



In neutrosophic logic, another approach is adopted to
represent uncertainty. An indeterminacy assignment is ex-
plicitly defined, conjointly and independently with truth
and falsity assignments. Instead of manipulating a single
value (as it is the case even in three-valued logics), a triplet
of values is considered simultaneously.

4.2 Enrichment of the universe of discourse

An ontology with a fixed number of objects is often insuffi-
cient to describe the complete situation. That is why ontol-
ogy needs to be enriched, and this task can be achieved in
different manners.

Instead of assigning measures to a given setS, one can
consider its power set (i.e. the set of all subsets ofS). This
leads to an enrichment of the ontology (the set of measur-
able propositions is augmented artificially) allowing igno-
rance to be best represented, as well as a supplementary
types of conflict to be taken into account. If probability the-
ory is based on the classical set notion, the notion of power
set is the basis of Dempster-Shafer theory, possibility the-
ory and rough sets theory.

Hence, yet another extension in this direction is the con-
struction of the hyper-power set constituted of all the com-
binations of the union and intersection operators applied
to the elements ofS. Besides enriching the ontology, this
structure allows one to account for vague concepts as their
intersection is considered. Extending the definition of the
probability measure the hyper-power set is the principle of
Dezert-Smarandache theory.

Fuzzy sets are another means to represent vague (fuzzy)
concepts by allowing elements to belong more or less to a
given set. This is accomplished by associating to each of
its elements a membership degree to this set,i.e. a value
varying between 0 and 1, defining a membership function
for this set.

Rough sets, allowing the representation of indiscernabil-
ity between elements is another way to deal with vague-
ness. This notion presupposes a definition of a frame of
discernment, a set of distinct, exhaustive and exclusive ob-
jects. This frame of discernment is supposed to be the finer
accessible refining. A partition of indiscernible objects rep-
resenting our limited knowledge is built from this frame of
discernment. A vague concept is then represented by its
lower and upper bounds being unions of elements of the
partition. The set is vague since its indiscernible elements
belong and not belong to this set.

4.3 Autoreference

The notion of hyperset has been introduced by Aczel [14]
and Barwise and Etchemendy [15] to overcome Russell’s
paradox. A recursive definition extends the notion of clas-
sical set, leading to infinitely deep sets (for example,x =
1 + 1/x). Hence, the ontology is enriched. With the no-
tion of hyperset comes the graph metaphor which replaces
the “container” metaphor. According to Barwise and Moss
[16], the notion of hypersets “transposes the limitation of
the size of sets doctrine (separation axiom) to the domain

of semantics”. They are for example used in situation the-
ory for autoreferential sentences like “I lie”. Since hyper-
sets theory encompasses classical sets as a special case and
since DSmT is built upon a notion of classical set, it could
be possible to enrich DSmT with hypersets thus allowing
self-referential statements.

5 Neutrosophic frameworks for Situation
Analysis

The possible world semantics provides an intuitive means
for reasoning about situations. It delivers a general ap-
proach to providing semantics to logical approaches with
applicability to neutrosophic logic (section 5.2). However,
possible worlds semantics is often borrowed from logical
approaches to fill the lack of semantics of numerical ap-
proaches, as it will be detailed below.

5.1 Possible worlds semantics

A Kripke model [17] is a mathematical structure that can
be viewed as adirected labeled graph. The graph’s nodes
are the possible worldss belonging to a setS of possible
worlds, labeled by truth assignmentsπ. A world s is con-
sideredpossiblewith respect to another worlds′ whenever
there is an edge linkings ands′. This link is defined by an
arbitrary binary relation, technically called theaccessibility
relation. More formally,

Assume a setΦ of propositional atoms. AKripke
model is a triple structureMK of the form
〈S, π, R〉 where

• S is a non-empty set (the set of possible
worlds);

• π : S −→ (Φ −→ {0; 1}) is a truth assign-
ment to the atoms per possible world;

• R ⊆ S × S is the accessibility relation.

where{0; 1} states for{TRUE; FALSE}.

Hence, for eachs ∈ S, there is an associated truth assign-
mentπ(s) defined fromΦ to {0; 1} such that:

π(s)(φ) =

{
1 if s ² φ

0 if s 2 φ
(1)

whereφ is a propositional atom ofΦ. s ² φ means that the
world s entails the propositionφ, or in other words, thatφ
is TRUE in s.

Truth set - To eachφ of Φ, there is an associated truth
setAφ of all the elements ofS for whichπ(s)(φ) is TRUE:

Aφ = {s ∈ S|π(s)(φ) = 1} (2)

Aφ is then the set of possible worlds in whichφ is TRUE,
and can also be notedAφ = {s ∈ S|s ² φ}.



5.2 Probability assignations and structures
Let S be the frame of discernment,s a singleton ofS andA
any subset ofS. In probability theory, measurable objects
are singletonss of S. The measures assigned to any subsets
A of S are guided by the additivity axiom. Hence, measur-
able elements belong to aσ-algebraχ of 2S . In Dempster-
Shafer theory [18, 19], any element of the power set ofS,
2S are measurable. Finally, Dezert-Smarandache theory al-
lows any element of the hyper-power set ofS, DS , to be
measured. Apart these extensions to probability theory that
rely on the definition set of the probability measure, there
exists a clear interest for giving a better semantics to these
numerical approaches. For its probabilistic logic, Nilsson
uses the possible worlds semantics to build a “semantical
generalization of logic”, combining logic with probability
theory [20]. Later on, Fagin and Halpern [21] and also
Bundy [22] extend Nilsson’s structure for probabilities al-
lowing all elements of the power set to be measurable, lead-
ing to a general structure just as Dempster-Shafer theory
generalizes probability theory.

5.2.1 Nilsson structure

A Nilsson structureis a tupleSN = 〈S, χ, p, Φ, π〉 where

• S = {s1, s2, s3, . . .}, the set of all possible worlds;

• χ, aσ-algebra of subsets ofS;

• p, a probability measure onS;

• Φ, the set of propositions;

• π, a mappingπ : Φ → 2S , characterizing for each
φ ∈ Φ the set of possible worldsAφ = {s ∈
S in whichφ is TRUE}.

In a Nilsson structure,p is defined onχ (the set of measur-
able subsets) but not on2S . In other words,χπ (the image
of χ by π) is assumed to be a sub-algebra ofχ to ensure
that p(φ) = p(Aφ). Giving up this condition is a means
to extendp to 2S (hence Nilsson structure) and leads to
Dempster-Shafer (DS) structure as formalized in [21]1.

5.2.2 Dempster-Shafer structure

A Dempster-Shafer structure[21] is a tuple SDS =
〈S, χ, p, Φ, π〉 in which χ and π are not required to be
related in any sense. Hence, instead of a single prob-
ability measurep from χ to [0, 1], a Dempster-Shafer
structure gives a pair of probability measuresp∗ and p∗,
known respectively asinnerandouter extensions(p∗(A) =
sup{p(B)|B ⊆ A, B ∈ χ} andp∗(A) = inf{p(B)|B ⊇
A,B ∈ χ}), and the valuep(Aφ) is replaced by the inter-
val:

p∗(Aφ) ≤ p(Aφ) ≤ p∗(Aφ) (3)

A Nilsson structure is then a special case of Dempster-
Shafer structures, in which

p∗(Aφ) = p∗(Aφ) = p(Aφ) (4)

for anyφ ∈ Φ.

1Another way is to consider a partial mappingπ, leading to
Bundy’s structure of incidence calculus [22].

5.2.3 Dezert-Smarandache structure

In an equivalent manner to the extension of Nilsson’s struc-
ture to DS structure, the definition ofp can be extended to
DS , allowing all elements of the hyper-power set to have
non-null probability. We obtain then what we can call a
Dezert-Smarandache structure(DSm structure), an exten-
sion of the DS structure in an equivalent way as DSmT is
an extension of Dempster-Shafer theory.

One benefit of the resulting structure for situation analy-
sis, is that it provides an interesting framework for dealing
with both vagueness and conflict, combining the logical, se-
mantical and reasoning aspect through the possible worlds
semantics, and the measuring, combination aspect through
the DSmT.

5.2.4 Example: Ron suits

This example is proposed in [21] asExample 2.4:

“Ron has two blue suits and two gray suits. He
has a very simple method for deciding what color
suit to wear on any particular day: he simply
tosses a (fair) coin. If it lands heads, he wears
a blue suit and if it lands tails, he wears a gray
suit. Once he’s decided what color suit to wear,
he just chooses the rightmost suit of that color
on the rack. Both of Ron’s blue suits are single-
breasted, while one of Ron’s gray suit is single-
breasted and the other is double-breasted. Ron’s
wife, Susan, is (fortunately for Ron) a little more
fashion-conscious than he is. She also knows how
Ron makes his sartorial choices. So, from time to
time, she makes sure that the gray suit she consid-
ers preferable is to the right (which depends on
current fashions and perhaps on other whims of
Susan). Suppose we don’t know about the current
fashion (or about Susan’s current whims). What
can we say about the probability of Ron’s wear-
ing a single-breasted suit on Monday?[21]”

Let P be a set of primitive propositions,P = {p1, p2}.
Let p1=“The suit is gray” and letp2=“The suit is double-
breasted”. S is the set of possible states of the world,
i.e. the set of possible worlds, where a state corresponds
in this example to a selection of a particular suit by Ron.
To fix the ideas, let number the suits from 1 to 4. Hence,
S = {s1, s2, s3, s4}, si being the world in which Ron
chooses the suiti. Table 1 give some sets of worlds of in-
terest and their associated formula. To describe the state of
a world (i.e. the truth values of each propositions inP ) we
useπ, the truth assignment. For eachs in S, we have a
truth assignmentπ(s) defined fromP to {0; 1}, such that
π(s)(p) = 0 if p is false ins, andπ(s)(p) = 1 if p is true
in s.

Here, we have only 4 measurable events:µ(s1, s2) =
µ(s3, s4) = 1

2 , µ(∅) = 0 andµ(S) = 1. The question
of interest here (What is the probability of Ron’s wearing
a single-breasted suit?) concerns another non-measurable
event, i.e. (s1, s2, s3). In [21], the authors gave this ex-
ample to illustrate the utility of attributing values to non-
measurable events, and then introduce Demspter-Shafer



Table 1: Some subsets of possible worlds of interest and
their associated formula.

World(s) Meaning Formula
(s1, s2) A blue suit ¬p1

(s3, s4) A gray suit p1

(s1, s2, s3) A single-breasted suit ¬p2

structures. Their conclusion for this example is then that
the best we can say is that1

2 ≤ µ(s1, s2, s3) ≤ 1, based on
the inner and outer measures.

Modeling the problem with 4 states means that given our
prior knowledge, these states correspond to the only pos-
sible situations after Ron’s selection: He will select one
and only one suit among the 4 available. However, sup-
pose that the two parts of the suits may have been mixed
so we have two pieces (trousers and jacket) on the same
coat-hanger. The 4 possible worlds correspond then to the
4 coat-hangers, and no longer to the 4 distinct suits. Imag-
ining that the trousers is inside the jacket, Ron will select
his suit only on the basis of the color of the jacket. Suppose
for example, that the coat-hanger he selects supports a blue
jacket and gray trousers. Then, waht is the corresponding
state of the world? Clearly, this situation has not been con-
sidered in the modelisation of the problem, based on a DS
structure. However, using a DSm structure allow the ele-
ments of the hyperpower set ofS to be measurable. Hence,
the state resulting of a selection of a mixed suit corresponds
to si∧sj , with i 6= j. This means that we are in both worlds
si andsj , and that with a single selection, Ron selected in
fact two suits. So, we allow other events than those forecast
to overcome.

5.3 Possible worlds semantics for neutrosophic
logic

Neutrosophic logic is presented as a general framework for
logical approaches [23], as it is extended in three distinct
directions:

1. With φ, are considered Non-φ (what is notφ), Anti-φ
(the opposite ofφ), Neut-φ (what is neitherφ nor
Anti-φ) andφ′ (a version ofφ);

2. The semantics is based onthree assignments, not a
single one as it is commonly used in the other logics;

3. These three “truth” assignments take their values as
subsetsof thehyperreal interval ]−0, 1+[, instead in
[0, 1].

While in a Kripke model, φ can only be TRUE, i.e.
π(s)(φ) = 1 or FALSE i.e. π(s)(φ) = 0, φ is allowed
to beT% TRUE andF% FALSE, andI% INDETERMINATE

in neutrosophic logic.φ is thus characterized by a triplet of
truth-values, called theneutrosophical value:

NL(φ) = (T (φ), I(φ), F (φ)) (5)

where(T (φ), I(φ), F (φ)) ⊂]−0, 1+[3, ]−0, 1+[ being an
interval of hyperreals.

The “truth” assignment π becomes thenπ =
(πT , πF , πI), a three-dimensional assignment, whereπT is

the truth assignment,πF is the falsity assignment andπI

is the indeterminacy assignment. Hence, in each possible
world s of S, a propositionφ can be evaluated asπT (s)(φ)
TRUE, πF (s)(φ) FALSE andπI(s)(φ) INDETERMINATE. It
follows that toφ is associated a truth-setAT

φ , a falsity-set
AF

φ and an indetermincay-setAI
φ:

AT
φ = {s ∈ S|πT (s)(φ) 6= 0}

AF
φ = {s ∈ S|πF (s)(φ) 6= 0}

AI
φ = {s ∈ S|πI(s)(φ) 6= 0}

Note thatAT
φ , AT

φ andAT
φ are fuzzy sets and may overlap.

Knowledge and belief - Halpern in [24] gives the fol-
lowing definitions for knowledge and belief in PWS:

• φ is known if it is TRUE in all the possible worldss
of S

• φ is believed if it is TRUE in at least onepossible
world s of S

On the other hand, Smarandache [25] uses the notion of
world and states thatT (φ) = 1+ if φ is TRUE in all the
possible worldss of S (absolute truth) andT (φ) = 1 if φ is
TRUE in at least onepossible worlds of S (relative truth)
(see Tab. 5.3). Hence, in the neutrosophical framework, we
can state the following definitions for knowledge and belief:
φ is known if T (φ) = 1+ ≡ F (φ) =− 0 andφ is believed
if T (φ) = 1 ≡ F (φ) = 0. Table 5.3 shows several special
cases.

Table 2: Neutrosophical values for special cases (adapted
from [25]).

φ is . . . in . . . poss. world(s) Neutrosophical value
true
false
indet.

all
T (φ) = 1+ ≡ F (φ) =− 0
F (φ) = 1+ ≡ T (φ) =− 0
I(φ) = 1+

true
false
indet.

at least one
T (φ) = 1 ≡ F (φ) = 0
F (φ) = 1 ≡ T (φ) = 1
I(φ) = 1

indet. no I(φ) =− 0

not indet. at least one I(φ) = 0

Furthermore, one can consider the unary operators of
neutrosophic logic (Non-φ, Anti-φ, Neut-φ, φ′) to model
new epistemic concepts but also as a means to represent
situational objects, such as neutral situation, environment.

6 Conclusion

In this paper, we proposed a discussion on neutrosophy
and its capacities to encompass the situation analysis chal-
lenges. In particular, we underlined three basic principles
that should guide the modelization in Situation Analysis:
(1) allowing statements about uncertainty to be made, (2)
enrichment of the universe of discourse, (3) allowing au-
toreference. It is in this frame, that the advantages of
DSmT and neutrosophic logic were studied. In particular,
we showed that it is feasible to build a DSm structure upon



the possible worlds semantics, and we illustrated it by an
example. Extending the classical set structure of DSmT
to an hyperset one, doubled with the possible worlds se-
mantics could allow auto-referential statements on mental
states. Considering neutrosophic logic, we showed that is
could be possible to extend Kripke structures in order to
take into account triplets of truth assignments. We also
show how to represent the concepts of belief and knowl-
edge with hyperreal truth (resp. falsity, indeterminacy) as-
signments on possible worlds. This allows one to clearly
distinguish certain belief from knowledge.

An extended version of this paper will be published in
[26].
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