
Can the external directed edges of a complete

graph form a radially symmetric field at long

distance?

S. Halayka∗

April 2, 2010

Abstract

Using a numerical method, the external directed edges of a complete
graph are tested for their level of fitness in terms of how well they form
a radially symmetric field at long distance (e.g., a test for the inverse
square law in 3D space). It is found that the external directed edges of
a complete graph can very nearly form a radially symmetric field at long
distance if the number of graph vertices is great enough.

1 Introduction

Complete graphs have been used to construct a model of quantum gravity [1].
It is considered here that a complete graph G1 consists of:

1. n(G1) vertices V (G1) that are uniformly distributed along a shell S(G1)
of radius r(G1).

2. (n(G1)
2−n(G1))/2 internal non-directed edges I(G1) (e.g., line segments)

that join the vertices together.

3. n(G1)
2 −n(G1) external directed edges E(G1) (e.g., rays) that are exten-

sions of I(G1).

See Figure 1 for a diagram of a complete graph where n(G1) = 5.
It seems fundamentally important to question whether or not the external

directed edges E(G1) can form a radially symmetric field at long distance.

2 Method

If the field is to be considered radially symmetric, then the following two fitness
criteria must be met:
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1. With regard to a second shell S(G2) of larger radius r(G2) > r(G1),
the n(G2) = n(G1)

2 − n(G1) vertices V (G2) corresponding to where the
external directed edges E(G1) intersect with S(G2) should be uniformly
distributed along S(G2).

2. The external directed edges E(G1) should be normal to S(G2) at their
respective intersection vertices.

With regard to the first criterion (e.g., uniform distribution fitness), the
vertices V (G2) will be compared to an equal number n(G3) = n(G2) of vertices
V (G3) that are known to be uniformly distributed along a third and final shell
S(G3) of radius r(G3) = r(G2).

The generation of n(G3) uniformly distributed vertices along a 1D shell (e.g.,
a circle) is algorithmically simple: divide the circle’s 2π radians into n(G3) equal
portions and then use the polar coordinate equations to generate the n(G3)
corresponding vertex positions. The generation of n(G3) uniformly distributed
vertices along a 2D shell (e.g., a thin spherical shell) is not algorithmically
simple: an iterative vertex repulsion code [3] was used here to generate n(G3)
roughly uniformly distributed vertices.

The uniform distribution fitness test used here compares the n(G2) pairs of
vertices V (G2)i, V (G3)i by analyzing the lengths of their corresponding internal
non-directed edges I(V (G2)i)j , I(V (G3)i)j (e.g., where i = {1, 2, . . . , n(G2)},
j = {1, 2, . . . , n(G2)−1}). Some kind of order must be established so that a rea-
sonable correlation exists between I(V (G2)i)j , I(V (G3)i)j , and so the lengths of
the internal non-directed edges corresponding to each pair of vertices are placed
into a pair of sorted bins before the comparison begins

L(I(V (G2)i)) = sort[length[I(V (G2)i)1], . . . , length[I(V (G2)i)(n(G2)−1)]], (1)

L(I(V (G3)i)) = sort[length[I(V (G3)i)1], . . . , length[I(V (G3)i)(n(G3)−1)]]. (2)

Ideally, since V (G3) are known to be uniformly distributed along S(G3),
the n(G3) sorted bins L(I(V (G3))) should all contain identical length distribu-
tions (e.g., thus defining a reference distribution L(I(V (G3)))ref). Likewise, if
V (G2) are also uniformly distributed along S(G2), then the n(G2) sorted bins
L(I(V (G2))) should also all contain length distributions that are identical to
L(I(V (G3)))ref.

The uniform distribution fitness test used here is

FD(G1) = [0, 1], (3)

FD(G1) =

n(G2)∑
i=1

(n(G2)−1)∑
j=1

min[L(I(V (G2)i))j , L(I(V (G3)i))j ]

max[L(I(V (G2)i))j , L(I(V (G3)i))j ]

n(G2)2 − n(G2)
. (4)

It is useful to note that each of a graph’s unique internal non-directed edges are
analyzed exactly twice throughout the entire test, which is why equation (4) is
normalized using n(G2)

2 − n(G2), not (n(G2)
2 − n(G2))/2.
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With regard to the second criterion (e.g., normal fitness), each external
directed edge E(V (G1)i)j corresponds to one intersection vertex V (G2)k (e.g.,
where i = {1, 2, . . . , n(G1)}, j = {1, 2, . . . , n(G1) − 1}, k = {1, 2, . . . , n(G2)}.
Where both S(G1) and S(G2) are centred at the coordinate system origin, the
normal fitness test used here is

FN (G1) = [0, 1], (5)

FN (G1) =

n(G1)∑
i=1

(n(G1)−1)∑
j=1

Ê(V (G1)i)j · V̂ (G2)k + 1

2

n(G2)
. (6)

3 Results

The 1D and 2D shell fitness test results for various n(G1), r(G1), and r(G2) are
listed in the following tables

Uniform distribution fitness FD(G1) for a 1D shell of radius r(G1) = n(G1)XXXXXXXXXXr(G2)
n(G1) 2 4 8 16 32 64 128

103 1 0.829572 0.893257 0.946621 0.993124 0.997482 0.998891
1010 1 0.827916 0.886982 0.93004 0.95885 0.976516 0.986852
1017 1 0.827916 0.886982 0.93004 0.95885 0.976516 0.986852

Normal fitness FN (G1) for a 1D shell of radius r(G1) = n(G1)XXXXXXXXXXr(G2)
n(G1) 2 4 8 16 32 64 128

103 1 0.999999 0.999993 0.99997 0.999876 0.999496 0.997962
1010 1 1 1 1 1 1 1
1017 1 1 1 1 1 1 1

Uniform distribution fitness FD(G1) for a 2D shell of radius r(G1) = n(G1)XXXXXXXXXXr(G2)
n(G1) 2 4 8 16 32 64 128

103 1 0.937087 0.931829 0.974859 0.97905 0.995469 0.998372
1010 1 0.937088 0.930686 0.973607 0.974738 0.994824 0.997366
1017 1 0.937088 0.930686 0.973607 0.974738 0.994824 0.997366

Normal fitness FN (G1) for a 2D shell of radius r(G1) = n(G1)XXXXXXXXXXr(G2)
n(G1) 2 4 8 16 32 64 128

103 1 0.999999 0.999993 0.99997 0.999876 0.999496 0.997963
1010 1 1 1 1 1 1 1
1017 1 1 1 1 1 1 1
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4 Discussion

As the fitness test results show, the external directed edges of a complete graph
can very nearly form a radially symmetric field at long distance if the number
of vertices is great enough. For instance, a 2D shell in 3D space can very nearly
reproduce the inverse square law (e.g., field strength proportional to 1/r).

See [2] for the full code and expanded table data. In the full code, the
iterative vertex repulsion code [3] has been modified to use the Mersenne Twister
pseudorandom number generator [4] in conjunction with the sphere point picking
algorithm discussed in [5]. The full code also uses a modified version of the ray-
shell intersection code given in [6].
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Figure 1: A complete graph G1, where n(G1) = 5 vertices V (G1) (e.g., black
disks) are uniformly distributed along a 1D shell S(G1) (e.g., a gray circle).
There are (n(G1)

2 − n(G1))/2 = 10 internal non-directed edges I(G1) (e.g.,
black line segments), and (n(G1)

2 − n(G1)) = 20 external directed edges
E(G1) (e.g., outward pointing black rays). Where i = {1, 2, . . . , n(G1)},
j = {1, 2, . . . , n(G1) − 1}, each vertex V (G1)i corresponds to n(G1) − 1 = 4
internal non-directed edges I(V (G1)i)j and n(G1) − 1 = 4 external directed
edges E(V (G1)i)j .
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