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deficiencies in the Standard Model, is presented. 
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Introduction. “Babylonian” and “Greek” approach to the 
construction of the physical theory 

Historically, there is several aspects of mathematics. Proof-based mathematics is not the only 
form. Davis and Hersh (Davis and Hersh, 1982) affirm: "The mathematics of Egypt, of Babylon, 
and of the ancient Orient was all of the algorithmic type. Dialectical mathematics -- strictly 
logical, deductive mathematics -- originated with the Greeks. But it did not displace the 
algorithmic."  

But the famous physicist Feynman (Feynman, 1964) argued  that, "In physics, we need the 
Babylonian method, and not the Euclidian or Greek method." Here R. Feynman expounds what 
he calls the Babylonian, as opposed to the Euclidean or axiomatic, approach to mathematics and 
physics. In the latter, the plan is to deduce statements from a set of axioms, whereas the 
Babylonian approach exploits alternative representations of physical phenomena and the 
interchangeability which only mathematical reasoning affords. 

Different mathematical representations invite different physical interpretations, and the 
mathematical generalizations implied may lead to theorems whose generality extends beyond 
the confines of a proof within a given system. 

The next step is then the guessing of physical equations, which, Feynman argues, 
facilitates the guessing of new physical laws in a way that common-sense feeling, 
philosophical principles, or models cannot (Feynman, 1964): 

"...there are two kinds of ways of looking at mathematics, which for the purpose of this 
lecture I will call the Babylonian tradition and the Euclidean or Greek tradition.  In 
Babylonian schools in mathematics the student would learn by doing a large number of 
examples until establishing the general rule (i.e., the theorem).  Tables of numerical 
quantities were available so that they could solve elaborate equations.  
Under the Babylonian system, everything was prepared for calculating things out.  But Euclid 
(under the Greek mathematical system) discovered that there was a way in which all of the 
theorems of geometry could be ordered from a set of axioms that were simple.  The 
Babylonian mathematics is that you know all of the various theorems and many of the 
connections in between...".   
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Historically in the estimation of Babylonian mathematics R. Feynman is not entirely precise. 
In the Babylonian documents no formulations were found, which can pretend to the role of “the 
various theorems”. The proof of the Pythagorean theorem, for example, does not depend on the 
specific sizes of the right-angle triangles. Babylonian approach consists in the trivial practical 
detection and writing out of hundreds of different three numbers for the sides of the right-angle 
triangles, which have the same relation between the squares of their sides, which is assigned as the 
Pythagorean theorem.  

Further assertion of R. Feynman cannot also be accepted without criticism: 
"...The method of always starting from axioms is not efficient in obtaining theorems.  In 

working something out in geometry it is not efficient if each time you have to start back at the 
axioms.  In physics we 'need' Babylonian method and not the Euclidean or Greek method.. .  We 
can deduce often from one part of physics, like the Law of Gravitation, a principle which turns out 
to be much more valid than the derivation.  This does not happen in Mathematics and under 
Greek methodology; theorems do not come out in places where they're not supposed to be...".  

In our time the mathematicians also frequently begin from axioms. Nevertheless, since there 
are already thousands of theorems, proven earlier on the basis of initial axioms, most frequently 
these theorems and lemmas are used for further proof of various facts. But as it is understandable, 
this is a simple method to use an axiomatic base. 

Maybe for this reason not all physicists agreed with Feynman. The book of Leonard Mlodinow 
(Mlodinow, 2003) offers into R. Feynman's relationship with Murray Gell-Mann. L. Mlodinow 
note the rivalry between two great physicists, both of whom showed a grudging respect for the 
other, but who followed different lines of enquiry in their chosen field of Theoretical Physics: 
Feynman considered himself a “Babylonian” and Murray Gell-Mann a “Greek”: 

 “Feynman used to say that there were two kinds of Physicists, the Babylonians and the 
Greeks. He was referring to the opposing philosophies of those ancient civilizations. The 
Babylonians made western civilization’s first great strides in understanding numbers and 
equations, and in geometry. Yet it was the later Greeks – in particular Thales, Pythagoras, 
and Euclid – whom we credit with inventing Mathematics. This is because the Babylonians 
cared only whether or not a method of calculation worked – that is, adequately described a 
real physical situation – and not whether it was exact, or fit (sic) into any greater logical 
system. Thales and his Greek followers, on the other hand, invented the idea of theorem and 
proof – and required that for a statement to be considered through, it had to be an exact 
logical consequence of a system of explicitly stated axioms or assumptions. To put it simply, 
the Babylonians focused on phenomena, the Greeks on the underlying order.”  

Nevertheless, the existence of Babylonian method has actually a deep sense: axiomatic 
approach can be formulated only if satisfactory number of facts, needed for the generalization, is 
accumulated. 

More than 50 years have passed since the above dispute arose between this great physicists. A 
question arises, of whether the contemporary quantum field theory is already on that stage, when 
it can be formulated axiomatically? For example, the preface to the book A.V. Smilga (Smilga, 
2001) is devoted to this question:  

“In his well-known popular lectures R. Feynman reflects on the way physical theories are built 
up and distinguishes two such ways or, rather, two stages in the process of their construction: 1) 
the “Babylonian” stage and 2) the “Greek” stage.…Feynman writes that a modern physicist is a 
Babylonian rather than a Greek in this respect: he does not care too much about Rigor, and his 
God and ultimate Judge is Experiment. Strictly speaking, this is not quite correct. Some branches 
of classical and also of quantum physics have now quite reached the Greek stage”. 

Further we will examine the structure of the contemporary theory of elementary particles - 
Standard Model - and will note its difficulties. Then we will describe briefly the structure of the 
axiomatic theory of elementary particles: the nonlinear quantum field theory (NQFT) (Kyriakos, 
2009). In conclusion, we will compare the structures of both theories. 
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1.0. The structure of the contemporary quantum theory of 
elementary particles. The characteristic properties 
1.1. Wave function as the basis of the description of elementary particles 

Contemporary theory proceeds from the fact that elementary particles and their interactions 
are described by wave functions. In other words wave functions are the basic mathematical object 
of any field theory. From this follows that all properties of particles must be assigned by the 
properties of wave function. Therefore the purpose of contemporary theory is the search for 
differential equations, solution of which is the wave function of the given particle, which 
describes it either in the free state or in state of interaction with other particles. 

1.2. Lagrange structure of the theory 
In the Standard Model the Lagrange approach is used in order to find of the equations of field 

motion. This means that the equations of motion of free particles and their interactions are derived 
in the form of the Euler-Lagrange equation from certain postulated Lagrangian. 

Each Lagrangian consists of the sum of terms. A part of these terms describes free particles, 
and other terms describe interaction between these particles. The appropriate equation of motion 
is obtained by the Lagrangian variation. Since a Lagrangian variation with respect to any function 
does not affect other functions, a Lagrangian can have many terms, which describe different 
particles and their interactions. 

Until the appearance of the quantum field theory the Lagrangians were selected on the basis of 
some experimental facts and hypotheses. At present the Lagrangians are selected on the basis of 
the procedures, in which the symmetries related to different kinds of so-called gauge 
transformations play important role.  These SM Lagrangians give the equations, which describe 
motion and interaction of all fundamental elementary particles with the high accuracy. Therefore 
SM is considered as the very successful theory. 

1.3. Gauge theories, symmetries and transformations 
In physics, gauge theory is a field theory in which the Lagrangian is invariant under a certain 

continuous group of transformations, named gauge invariance. 
The Standard Model is a non-abelian gauge theory. The first example of these theories is the 

Yang–Mills theory (Yang and Mills, 1954). The Standard Model unifies the description of 
electromagnetism, weak interactions and strong interactions in the language of gauge theory. 

Gauge invariance is a form of symmetry.  Local phase transformations, which depend on any 
form of charge (not necessarily electric) are for historical reasons called gauge transformations, 
and the invariance of field physics under them is called gauge symmetry or gauge invariance. 
Particles generally have "internal" symmetries (a form of spin), the "rotations" of which form a 
gauge group of transformations. Associated with this gauge group is a gauge field or fields. 
Associated with the gauge field, or fields, is a covariant derivative, , equal to the ordinary 
derivative, , plus a multiple of the field, or of a "summary" of the fields, respectively. 

µD
µ∂

This is basically a consequence of Noether's theorem, which states that every symmetry has an 
associated conserved current. 

 The local (non-global) nature of gauge invariance is of fundamental importance. It was the 
essential step in the creation of the electroweak theory. The electroweak theory is complicated by 
the fact that it treats left-hand and right-handed helicities differently, by recognising an additional 
charge, the hypercharge. (Yang and Mills, 1954): “… In the present paper we wish to explore the 
possibility of requiring all interactions to be invariant under independent rotations of the isotopic 
spin at all space-time points …” (for details see, for example, the book L.H. Ryder (Ryder, 1985)) 
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2.0. A specific example of the construction of Lagrangian of 
interaction on the basis of the gauge (phase) transformations 

Based on the following example, taken from the book of Ian J. R. Aitchison (Aitchison, 2007) 
we will examine all advantages and disadvantages of this method of theory construction in the 
particular case of the construction of the theory of interaction of photon with the electron (for 
details see (Aitchison, 2007)): 

“3. Gauge fields and gauge principle 
In this chapter we will show how the requirement of invariance of the matter Lagrangian 

under local phase transformations leads to the introduction of vector fields (gauge fields) 
interacting with the matter fields in a definite way. 

In the non-Abelian case, the self interactions of the vector fields are also prescribed. 

The inclusion of electromagnetism: gauge-invariance 
The conventional way of introducing the electromagnetic interaction in quantum field theory is 

via the so-called “minimal prescription”, whereby the momentum operator  is replaced by 

, for a particle of charge , where 

µp̂r

µµ Aqp
rr

−ˆ q µA
r

 is the 4-vector potential. The corresponding 
classical Hamiltonian then reproduces, via Hamilron’s equations, the correct Lorentz force; in 
quantum mechanics, since  is replaced by , the prescription is  µp̂r µ∂i

 µµµ Aiq
r

+∂→∂ ,  (2.3.1) 

The  combination µµ Aiq
r

+∂  is of fundamental importance, and is called the “covariant 
derivative”, denoted by  µD :
 µµµ AiqD

r
+∂≡ ,  (2.3.2) 

The significance of  will emerge as we proceed. µD
The rule  may be taken over to quantum field theory. For example, the Lagrangian 

for a free Dirac particle of mass  is 
µµ D→∂

m
 ,  (2.3.3) ( )ψψ miL −∂= +

0

which becomes 
 ,  (2.3.4) ( ) µµψαψψψ AqmiLLL ˆint01

++ −−∂=+=

after the replacement (2.3.1), if the field ψ  corresponds to particles of charge . q
To obtain the complete Lagrangian, we must of course add to (2.3.4) a part which yields the 

Maxwell equations for the potentials µA
r

; we will  defer more detailed consideration of this until 
the following chapter, since our main concern in this chapter is with symmetries, merely noting 
here that the standard classical Lagrangian for the electromagnetic field would be 

 µν
µν FFLem 2

1
−= ,  (2.3.5) 

Global and local phase invariance: the gauge principle 
We now turn the preceding discussion upside down and introduce the idea, which is crucial to 

the development of gauge theories. 
As we have seen in the previous chapter, global phase invariances are common in particle 

physics, being associated with various symmetries, and hence with conservation laws via 
Noether’s theorem. The possibility of changing the phase of the SU(2) transformations concerned 
in Section 2.3, a geometrical interpretation of them is often made – indeed, we used it ourselves in 
talking about “rotations” in the space of the fields. To be definite, let us now call this the SU(2) of 
isospin. Invariance under global SU(2) transformations of the type of putting the physical 
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consequence of such invariance is that we may choose the “axes in isospace“ as we please. In 
other words, the definition of the fields to be associated with the proton, say, (I3=1/2) and with the 
neutron (I3=-1/2) is, in the limit of exact SU(2)-invariance, entirely conventional up to a unitary 
transformation.  

However, a global symmetry of this type implies that once we have decided what the 
convention ought to be at one space-time points, because the transformation is not allowed to 
vary from point to point. Yang and Mills (Yang and Mills, 1954) were the first to question 
whether this was entirely reasonable. “It seems”, they wrote, “that this is nor consistent with the 
localized field concept that underlies the usual physical theories. In the present paper we wish to 
explore the possibility of requiring all interactions to be invariant under independent rotations of 
the isotopic spin at all space-time points.” Thus was the study of the remarkable non-Abelian 
gauge field theories (see Section 3.3) initiated. 

The proposal of Yang and Mills amounts to the requirement that the theory be invariant under 
local phase transformations. Let us see how this would operate in the very simple case of a U(1) 
transformation involving a single phase parameter. We start with the Lagrangian 
 ,  (2.3.20) ( )ψψ miL −∂= +

0

say, which is certainly invariant under the global phase transformation 
 )()exp()(')( xixx ψαψψ −=→ ,  (2.3.21) 

Let us “explore the possibility” of invariance under the local phase transformation 
 )())(exp()(')( xxixx ψαψψ −=→ ,  (2.3.22) 

Further we are going to demand that a full Lagrangian exists which is actually invariant 
under (2.3.22). Clearly,  changes by 

1L

0L

 ,  (2.3.23) )(ˆ0 xL αψαψδ µµ ∂= +

If we now require that 01 =Lδ , then  must contain a term in addition to , whose change 
under (2.3.22) exactly cancels 

1L 0L
00 =Lδ . ch an  is, of course, 1L

 ,  (2.3.24) µµψαψ AqLL ˆ01
+−=

provided that, when ψ  undergoes (2.3.22),  changes by µA

 )(1)()(')( x
q

xAxAxA αµµµµ ∂+=→ , (2.3.25) 

Writing )(xα  as )(xqχ  we recover precisely (2.3.10) and (2.3.11), and the original “minimal 
prescription” Lagrangian. The introduction of a vector field, transforming according to (2.3.25), 
would seem to be necessary if we are to have local freedom as to phase convention. Furthermore, 
the vector field has to be one such that transformations of the form (2.3.25) can be performed on 
it without altering the physical results (since (2.3.25) is part of the local invariance of ); such 
vector fields are called gauge fields. We may say that, at least in this simple case, the requirement 
of local phase invariance has “generated” the interaction term  between the matter 
field 

1L

µµψαψ Aq ˆ+−

ψ  and the gauge field . This is the essence of the gauge principle for generation 
dynamical theories: suitable gauge fields are introduced, with interactions such that the required 
local invariance holds.  

µA

We must note at once, however, that if the (gauge) transformation (2.3.25) on  is indeed to 
be an invariance of the Lagrangian – when combined with (2.3.22) – we can not, apparently, 

allow the vector field  to have a mass. This would enter  in the form 

µA

µA L 22

2
1 Am  (see Chapter 
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5), which is quite clearly not going to be invariant under (2.3.25). Hence, it would appear that 
this remarkable idea for generating interactions is restricted to massless vector fields only. 

The original paper of Yang and Mills (1954) generalized invariance under the local one-
parameter type of phase transformation (2.3.22) to invariance under local isospin-type 
transformations – that is, under transformations of the type  
 )())(exp()(')( xtxigxx ψθψψ α

α−=→ ,  (2.3.26) 

where the matrices  (αt̂ 3,2,1=α ) represent the algebra of SU(2) in the representation 
appropriate to the multiplet ψ  . Such invariance will now demand the introduction of three gauge 
fields , which will transform in some way analogous to (2.3.25), when )(xAα

µ ψ  undergoes the 
local phase transformation (2.3.26). The actual form is somewhat more complicated that (2.3.25), 
and will be given in Section 3.3, where we shall also discuss how the local invariance determines 
the interactions in this case. 

Here too, however, it would seem that the vector fields  have to be massless… )(xAα
µ

The weak interactions of leptons continued to appear to be fundamental, but hopes of 
describing them in terms of gauge field theory seemed, until 1964, doomed to disappointment for 
the same reason as in hadron physics: the mediating vector quanta had to be massive, as we saw 
in Section1.1. The breakthrough came with the realization that the gauge principle could still be 
at wok, but the associated symmetry could be “hidden” (or “spontaneously broken”) – i.e. not 
unitarily implemented”.  

  3.0. Deficiencies in the structure of the Standard Model theory 
1) It is not difficult to see that at present the theory of Standard Model has namely algorithmic 

(“Babylonian”) structure. It is a collection of rules and procedures, intended for obtaining the 
correct answer. These procedures are not axiomatics, which by united means could describe all 
elementary particles. Could it be for this reason that  (Gell-Mann, 1981): “Quantum mechanics … 
is mysterious, confusing discipline, which none of us really understand”.  

2) It is not difficult to understand that in the construction of theory the Lagrange approach is 
not primary. Moreover, at present the physical sense of Lagrangian is unknown. The differential 
equations serve as primary expressions for obtaining practical solutions. But with respect to 
Lagrangian, as the base of the theory, the equations are secondary stage. Thus, obviously, the use 
of equations of motion as the basis of theory makes the theory simpler. 

3) The wave function of photon is introduced in SM in the form of EM potential. At the same 
time, in EM theory the primary physical characteristic of field is the strength of EM field, and 
potential is introduced as a mathematical value, determined ambiguously. Obviously, it would be 
more consecutive to introduce the wave function of the photon directly in the form of the strength 
of EM field, as this was done in the initial period of development of quantum electrodynamics 
(QED) (Akhiezer and Berestetskiy, 1969) (let us note that QED can be built on this base without 
any difficulties).  

4) In SM free fundamental fermions (leptons and quarks) are considered as the primary 
particles. Photon in SM does not appear as independent fundamental field, but as a certain gauge 
(compensating) field.  Moreover this field is postulated here on the basis of the knowledge, 
borrowed from classical EM theory. At the same time the SM is the Yang–Mills theory, which is 
the nonlinear generalization of electromagnetic theory. Thus the simplest and consequently 
fundamental particle in SM is the photon. Obviously, there are no obstacles in considering the 
photon as fundamental particle within the framework of another theory. 

5)  The use of potential as the wave function of the photon (and, in fact, of all other particles; 
see (Aitchison, 2007)) leads to a serious difficulty. The value  is not a gauge invariant, 
and thus it is impossible to consider that this term contains mass. This leads to the need to add the 

µµ AAm2
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mechanism of symmetry braking (which requires the presence of additional particles, which in 
nature, at least up to today, were not observed) for the generation of the mass of particles. 

If the strength of EM field is selected as the wave function of photon, a similar term will 
appear in the form . In this form it is invariant in relation to all necessary transformations, 
and it means, that value  can be interpreted there as mass.  

ψψ +m
m

6) The interaction is introduced in SM by means of the gauge transformations of wave 
functions. In this case the fit procedures, described in the above fragment, are required. Since 
these transformations are rotations, it is more logical to introduce the rotation transformation of 
wave functions by postulate. In this case the term of interaction would appear in the equations 
without the additional assumptions and procedures as a covariant derivative, . µD

--------------- 
It is possible to assume that to these deficiencies are connected difficulties, which fundamental 

physics at present is going through and which notes in his last book “The trouble with physics” the 
well-known physicist Lee Smolin (Smolin, 2006): 

“The story I will tell could be read by some as a tragedy. To put it bluntly – and to give away 
the punch line – we have failed. We inherited a science, physics that had been progressing so fast 
for so ling that it was often taken as the model for how other kinds of science should be done. For 
more than two centuries, until the present period, our understanding of the laws of nature 
expanded rapidly. But today, despite our best effort, what we know for certain about these laws is 
no more than what we knew back in the 1970s. 

How unusual is it for three decades to pass without major progress in fundamental physics? 
Even if we look back more than two hundred years, to a time when science was the concern 
mostly of wealthy amateurs, it is unprecedented. Since at least the late eighteenth century, 
significant progress has been made on crucial questions every quarter century”. 

4.0. An axiomatic approach 
Let us examine now the theory of elementary particles, built on the axiomatic basis, taking into 

account the above deficiencies in the structure of Standard Model. 
We will present here very brief results of this theory, referring to the details and proofs in the 

complete theory (Kyriakos, 2009) (the separate chapter references see in the text). 

4.1.  Axiomatic basis of the theory   
The axiomatic basis of the proposed theory is composed by 5 postulates, from which the first 4 

are the postulates of contemporary field theory. Postulate 5 expresses the specific nonlinearity of 
theory, but it does not contradict to the results of contemporary physics.  

 
1) Postulate of fundamentality of the electromagnetic field: Maxwell's equation for 

the field without  sources:  
 

 01
=Η−

Ε r
r

rot
tc ∂

∂ ,  (4.1.1)         

 01
=Ε+

Η r
r

rot
tc ∂

∂ ,       (4.1.2) 

are fundamental  independent equations of motion of fields.  
Definition: the motions of EM field are called EM waves. 

 
2) The postulate of the quantization of EM wave fields: electromagnetic wave fields 

consist of the elementary electromagnetic wave formations (particles) – photons, leptons etc. 
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3) Postulate of Planck and de Broglie:  the relationship between the energy, frequency 
and wavelength of photon is determined by the following formulas: 
 
 ωνε h== hph ,  (4.1.3) 

 
ε

λ hc
p
h

ph

== ,  (4.1.4) 

 
4) The postulate of superposition of wave fields: 

in the general case electromagnetic waves are the superposition of elementary wave fields, the 
simplest of which are photons.  
 

5) Postulate of the massive particles’ generation: for generation of the massive 
particles the field of photon must undergo the rotation transformation. 
  

4.2. The theorems of the theory 
Let us use the above postulates for constructing the theory of each type of elementary particles.  

4.2.1. Equation of photon 
(For details see the Chapter 2. “The photon theory”).  
Using the postulates 1 and 3, we will obtain from Maxwell's equations the wave equation of 

the photon: 

 ,  (4.2.1) ( ) ( ) 0ˆˆˆˆ
222 =Φ⎥⎦
⎤

⎢⎣
⎡ − pco

rrαεα

where ∇−=∂
∂=

r
h

r
h ipti ˆ,ε̂  are the operators of energy and momentum; 0α̂ ; ;  are 

Dirac matrices, while  is certain matrix; in this case: 

α̂
r

4ˆˆ αβ ≡

Φ

 , ,  (4.2.2) 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

Η
Η
Ε
Ε

=Φ

z

x

z

x

i
i

( )zxzx ii Η−Η−ΕΕ=Φ+

The harmonic functions are the solution of this equation: 
 

 
⎪⎩

⎪
⎨
⎧

Η+Η=Η

Ε+Ε=Ε
−+−

−+−

kyti
o

kyti
o

kyti
o

kyti
o

ee

ee
ωω

ωω

*

*

rrr

rrr

 , (4.2.3) 

where energy and momentum are quantified according to postulate 3: hεω =  and hpk = . 
Factorizing of (4.2.2), we will obtain the system: 

 
( )

( )⎪⎩

⎪
⎨
⎧

=Φ+

=−Φ+

0ˆˆˆˆ

0ˆˆˆˆ

pc

pc

o

o
rr

rr

αεα

αεα
,  (4.2.4) 

These equations, taking into account the quantization of energy and momentum, are the 
known quantum equations of photon, equivalent to one equation (4.2.1).  

The physical sense of these equations is revealed with the substitution of expressions (4.2.2). 
As a result we obtain Maxwell's equations for the advanced and retarded waves: 
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⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

⎨

⎧

=
Ε

+
Η

=
Η

+
Ε

=
Ε

−
Η

=
Η

−
Ε

01

01

01

01

ytc

ytc

ytc

ytc

zx

xz

xz

zx

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

,    (4.2.5’)    

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

⎨

⎧

=
Ε

−
Η

=
Η

−
Ε

=
Ε

+
Η

=
Η

+
Ε

01

01

01

01

ytc

ytc

ytc

ytc

zx

xz

xz

zx

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

 ,   (4.2.5’’)  

which confirms the EM nature of photon. 
The quantum theory of photon shows (Akhiezer and Berestetskii, 1965) that a photon is not a 

point particle. According to the analysis of quantum equation of the photon L. Landau and R. 
Peierls (Landau and Peierls, 1930), and later R.J. Cook (Cook, 1982a; 1982b) and T. Inagaki 
(Inagaki, 1994) showed that the photon wave function is nonlocal. In other words, the photon 
wave function is not determined by the field at the some point, but depends on the field 
distribution in a certain region, which has the size of the order of photon wavelength. This means 
that the localization of a photon in a smaller region is impossible and, therefore, the concept of a 
probability density distribution that could be used to find the photon at a fixed point of space does 
not make sense. 

Further let us show, how the mass of elementary particles is generated. 

4.2.2. Equation of intermediate boson (massive photon) 
(For details see the Chapter 3. “The intermediate photon theory and particles’ generation”). 
In the framework of NQFT particles acquire mass through an intermediate massive boson. The 

last is generated with the rotation transformation of EM field. We will use the postulate 5 and 
produce the rotation transformation R̂  of photon fields Φ : 

 ,  (4.3.1) Ψ→ΦR̂
where Ψ is the new wave function, which appears after the transformation of the rotation: 
 

 ,  (4.3.2) 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

Ψ
Ψ
Ψ
Ψ

=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

Η
Η
Ε
Ε

=Ψ

4

3

2

1

'
'
'
'

z

x

z

x

i
i

where (  are the vectors of the 
electromagnetic field, which appear after the rotation 
transformation and are the wave functions of the new particle 
within the framework of quantum theory. 

)zxzx ii '''' Η−Η−ΕΕ

Let us examine the EM wave, which moves along the 
circular path, so that vectors HE

rr
, and Poynting's vector S

r
 move 

as shown in the figure: 
Displacement current in equations (4.2.5) is determined by the 
expression: 

 ,
4
1

t
jdis ∂

∂
π

Ε
=

r

  (4.3.3) 

  The electric field vector of the expression (4.3.3), during the motion along the curvilinear 
trajectory, can be recorded in the form: 
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 ,nr
r

⋅Ε−=Ε   (4.3.4) 

where Ε=Ε
r

, and  is the unit vector of the normal to the curve. After differentiation the 

displacement current of the plane wave, which moves along the ring, can be recorded in the 
form:       

rn

   τω
π∂

∂
π

rrr
⋅Ε+

Ε
−= pdis n

t
j

4
1

4
1 ,  (4.3.5) 

where Κ≡== c
cmpp

p
hh

2ε
ω , and 2cm pp ε= is a mass, which corresponds to photon energy 

pε ; n
t

jn
rr

∂
∂

π
Ε

=
4
1  and τ

π
ω

τ
rr
⋅Ε=

4
pj  are the normal and tangential components of 

displacement current  of “nonlinear” EM waves, respectively. 
A more general expression can be obtained, describing rotation in the curvilinear geometry of 

Riemann (Kyriakos, 2009). In this case it occurs that the currents are determined by the 
connections of field, i.e., by the symbols of Ricci (or, in the most general case, by Christoffel 
symbols) 

The physical sense of the generation of mass consists of the following. At the moment of  
rotation transformation, a self-interaction of own fields occurs in the photon (mass-free boson). 
Due to this fact the photon fields revolve in the small region of space. In this case its energy does 
not move from infinity to infinity with the speed of light, but it is locked in a small space region. 
This concentration  of photon energy is a massive particle, one of characteristics of which is the 
value 2cpε . This particle is structureless; it does not have the specific size, but it has some 
characteristics of the energy distribution, which define its existence as separate object. According 
to the relationship of Einstein the value 2cm pp ε=  is the mass of a particle. 

It is understandable that for the generation of masses of particles in NQFT the use of Higgs's 
mechanism is not required. This frees theory from many known problems and makes theory 
considerably simpler. 

It is remarkable that in NQFT the mass does not appear as primary characteristic, but as the 
ratio of energy to the square of the speed of light. Its property - to be coefficient in the mechanical 
momentum, which determines the inertia of particle - can be shown by the Ehrenfest theorem.  

Because of the rotation, this mass assigns an angular momentum of particle, i.e. spin (in this 
case, equal to 1). Simultaneously the tangential current appears, which with volume (occupied 
with particle) integration, determines the particle charge. Since in this case the current is 
sinusoidal, electrical charge of “massive photon” is equal to zero.  

As a result of the transformation of rotation we will obtain the equation of intermediate boson 
(massive photon): 

 ( ) ( ) 0ˆˆˆˆˆˆˆˆ =Ψ+⋅+−⋅− KpcKpc oo
rrrr αεααεα ,  (4.3.6)  

Or, taking into account the value K  (see above), we will obtain this equation in form: 

 ( ) ,0ˆˆ 42222 =Ψ−− cmpc p
rε   (4.3.7) 

4.2.3. Equation of leptons 
(For details see the Chapter 4. “An electron theory (linear approach)”)  
Now let us produce, conditionally speaking, the breaking of the intermediate boson symmetry 

(which in nature occurs spontaneously due to electromagnetic repulsion of the parts of the 
massive boson with each other). In the case of the plane-polarized initial photon this gives the 
possibility to obtain two oppositely charged particles with half-integral spin of the type of electron 
and positron. 
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Multiplying equation (4.3.7) to the left on +Ψ  and making factorizing, we will obtain the 
equations of two particles, which are located in the field of each other: 

 

  , (4.4.1’)  ( )[ 0ˆˆˆˆˆ 2 =++ ψβαεα cmpc po
rr ]

  ( )[ ] 0ˆˆˆˆˆ 2 =−−+ cmpc po βαεαψ rr ,  (4.4.1’’)       

Here 
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is lepton wave function, which corresponds to electromagnetic field after 

the breakdown of intermediate boson (this ψ -function is not the vector, but a so-called semi-
vector, i.e. spinor). 

In the simplest case of the production electron-positron pair ep mm 2= , and from (4.1) we 
have: 

 ,  (4.4.2’) ( )[ 0ˆ2ˆˆˆˆ 2 =++ ψβαεα cmpc eo
rr ]

 ( )[ ] 0ˆ2ˆˆˆˆ 2 =−−+ cmpc eo βαεαψ rr , (4.4.2’’) 

It is obvious that in order to become free, the electron and positron must spend energy. It is not 
difficult to calculate, that during their removing from each other an amount of energy must be 
spent, equal to the amount, which is necessary for the formation of particle themselves. The 
external field of particles arises due to this process. Using a linear writing of the energy-
momentum conservation law, we will obtain for the external field of the particle: 

 exexexexe Aeepccm
rrrr αϕαεβ ˆˆˆ 2 −−=−−= ,  (4.4.3)  

where “ex” indicates “external”; then, substituting (4.4.3) in (4.4.2), we obtain Dirac's equation 
with the external field: 

 ( ) ( )[ ] 0ˆˆˆˆˆ 2
0 =+⋅+ ψβαεεα cmppc eexex

r
m

rr
m ,  (4.4.4) 

At a sufficiently great distance between the particles, when these fields are not important, we 
obtain Dirac's equations for the free particles: 

 , (4.4.5’) ( )[ 0ˆˆˆˆˆ 2 =++ ψβαεα cmpc eo
rr ]

 ( )[ ] 0ˆˆˆˆˆ 2 =−−+ cmpc eo βαεαψ rr ,  (4.4.5’’)  

4.2.4. Equation of the massive neutrino 
(For details see the Chapter 8. “The theory of massive neutrino”)  
In the book (Kyriakos, 2009) it is shown that from the circularly polarized photon field, 

neutrino is formed with all its known properties. It is noticeable that in this case the helicities of 
neutrino and antineutrino are mutually opposite and no transformation can change this property. 
In other words, the neutrino has always the left spirality, and antineutrino – right spirality (note 
that in SM this property is not explained and is accepted as a postulate). 

4.2.5. Equation of the hadrons  
(For details see the Chapter 9. “About hadrons theory”)  
The formation of different hadrons is also connected with the described characteristics of 

leptons. According to the fourth postulate, wave fields can form superpositions. It is possible to 
show that with the superposition of elementary fields, which are equivalent to leptons, different 
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hadrons can be formed, which are described by Yang–Mills equation. Moreover from two lepton-
like fields mesons can be formed, and with the superposition of three lepton-like fields - baryons. 

Conclusion. Basic differences of NQFT from the Standard Model 
1) As we see, NQFT is an axiomatic theory, not a collection of rules and procedures. All 

equations and consequences of theory are derived from a limited number of statements, accepted 
as the axioms.  

We do not consider the question, if this axiom system is complete. Moreover, judging by the 
formulation of other axiomatic theories, it is possible to use another system of axioms. We 
considered the simplest of them, which was necessary and sufficient for describing of all 
fundamental elementary particles. 

2)  At the basis of NQFT lie the free electromagnetic field equation, but not a Lagrangian. The 
equations of motion of fields of elementary particles and their interactions are the consequences of 
this axiom along with some others. This makes it possible to avoid the complicated mathematical 
apparatus, connected to the use of a Lagrange approach. 

3)  At the basis of NQFT lies only one field: the fundamental electromagnetic field. This 
contradicts neither SM nor everything that we know about the microcosm. All the remaining 
fields (except gravitational) appear from this fundamental field on the basis of postulates. Thus, 
the nonlinear theory is the united electromagnetic theory of the elementary particles (unification is 
not considered a gravitational field, since the equation of GRT, according to Einstein, has 
geometric origin). 

4) Into framework of NQFT the wave functions of particles are not potentials, as in SM, but 
the strength of the electromagnetic field of different configuration. The potentials are used in 
NQFT as auxiliary values: as energy and momentum per charge unit of particles. 

5) Nevertheless, in framework of NQFT it is shown that all interpretations, accepted in SM, are 
completely legitimate and reflect the formal mathematical side of peculiarities of elementary 
particles. Thus, NQFT does not contradict SM, only generalizes and refines its results. 

6) NQFT does not require the use of Higgs’s mechanism for mass generation. Nevertheless, 
NQFT works equally well, both in the region of low and high energies, since the NQFT does not 
violate the unitarity in the region of high energies, as it takes place in SM if we do not use Higgs's 
mechanism. 
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