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Description Logics (DLs) are appropriate, widely used, logics for managing structured
knowledge. They allow reasoning about individuals and concepts, i.e. set of individuals
with common properties. Typically, DLs are limited to dealing with crisp, well defined
concepts. That is, concepts for which the problem whether an individual is an instance of
it is a yes/no question. More often than not, the concepts encountered in the real world do
not have a precisely defined criteria of membership: we may say that an individual is an
instance of a concept only to a certain degree, depending on the individual’s properties.
The DLs that deal with such fuzzy concepts are called fuzzy DLs. In order to deal
with fuzzy, incomplete, indeterminate and inconsistent concepts, we need to extend the
capabilities of fuzzy DLs further.

In this paper we will present an extension of fuzzy ALC, combining Smarandache’s
neutrosophic logic with a classical DL. In particular, concepts become neutrosophic (here
neutrosophic means fuzzy, incomplete, indeterminate and inconsistent), thus, reasoning
about such neutrosophic concepts is supported. We will define its syntax, its semantics,
describe its properties and present a constraint propagation calculus for reasoning in it.

Keywords: Description logic; fuzzy description logic; fuzzy ALC; neutrosophic description
logic.
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1. Introduction

The modelling and reasoning with uncertainty and imprecision is an important

research topic in the Artificial Intelligence community. Almost all the real world

knowledge is imperfect. A lot of works have been carried out to extend existing

knowledge-based systems to deal with such imperfect information, resulting in a

number of concepts being investigated, a number of problems being identified and

a number of solutions being developed 1,2,3,4.

Description Logics (DLs) have been utilized in building a large amount of

knowledge-based systems. DLs are a logical reconstruction of the so-called frame-

based knowledge representation languages, with the aim of providing a simple well-

established Tarski-style declarative semantics to capture the meaning of the most

popular features of structured representation of knowledge. A main point is that

DLs are considered as to be attractive logics in knowledge based applications as they

are a good compromise between expressive power and computational complexity.

Nowadays, a whole family of knowledge representation systems has been build

using DLs, which differ with respect to their expressiveness, their complexity and

the completeness of their algorithms, and they have been used for building a variety

of applications 5,6,7,8.

The classical DLs can only deal with crisp, well defined concepts. That is, con-

cepts for which the problem whether an individual is an instance of it is a yes/no

question. More often than not, the concepts encountered in the real world do not

have a precisely defined criteria of membership. There are many works attempted

to extend the DLs using fuzzy set theory 9,10,11,12,13,14. These fuzzy DLs can

only deal with fuzzy concepts but not incomplete, indeterminate, and inconsistent

concepts (neutrosophic concepts). For example, ”Good Person” is a neutrosophic

concepts, in the sense that by different subjective opinions, the truth-membership

degree of tom is good person is 0.6, and the falsity-membership degree of tom is

good person is 0.6, which is inconsistent, or the truth- membership degree of tom

is good person is 0.6, and the falsity-membership degree of tom is good person is

0.3, which is incomplete.

The set and logic that can model and reason with fuzzy, incomplete, in-

determinate, and inconsistent information are called neutrosophic set and neu-

trosophic logic, respectively 15,16. In Smarandache’s neutrosophic set theory,a

neutrosophic set A defined on universe of discourse X , associates each element

x in X with three membership functions: truth-membership function TA(x),

indeterminacy-membership function IA(x), and falsity-membership function FA(x),

where TA(x), IA(x), FA(x) are real standard or non-standard subsets of ]−0, 1+[,

and TA(x), IA(x), FA(x) are independent. For simplicity, in this paper, we will ex-

tend Straccia’s fuzzy DLs 9,11 with neutrosophic logic, called neutrosophic DLs,

where we only use two components TA(x) and FA(x), with TA(x) ∈ [0, 1], FA(x) ∈

[0, 1], 0 ≤ TA(x) + FA(x) ≤ 2. The neutrosophic DLs is based on the DL ALC, a

significant and expressive representative of the various DLs. This allows us to adapt
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it easily to the different DLs presented in the literature. Another important point is

that we will show that the additional expressive power has no impact from a compu-

tational complexity point of view. The neutrosophic ALC is a strict generalization

of fuzzy ALC, in the sense that every fuzzy concept and fuzzy terminological ax-

iom can be represented by a corresponding neutrosophic concept and neutrosophic

terminological axiom, but not vice versa.

The rest of paper is organized as follows. In the following section we first in-

troduce Straccia’s ALC. In section 3 we extend ALC to the neutrosophic case and

discuss some properties in Section 4, while in Section 5 we will present a constraint

propagation calculus for reasoning in it. Section 6 concludes and proposes future

work.

2. A Quick Look to Fuzzy ALC

We assume three alphabets of symbols, called atomic concepts (denoted by A),

atomic roles (denoted by R) and individuals (denoted by a and b). a

A concept (denoted by C or D) of the language ALC is built out of atomic

concepts according to the following syntax rules:

C,D −→ ⊤| (top concept)

⊥| (bottom concept)

A| (atomic concept)

C ⊓D| (concept conjunction)

C ⊔D| (concept disjunction)

¬C| (concept negation)

∀R.C| (universal quantification)

∃R.C (existential quantification)

Fuzzy DL extends classical DL under the framework of Zadeh’s fuzzy sets 17.A

fuzzy set S with respect to an universe U is characterized by a membership function

µS : U → [0, 1], assigning an S-membership degree, µS(u), to each element u in U .

In fuzzy DL, (i) a concept C, rather than being interpreted as a classical set, will

be interpreted as a fuzzy set and, thus, concepts become fuzzy; and, consequently,

(ii) the statement “a is C”, i.e. C(a), will have a truth-value in [0, 1] given by the

degree of membership of being the individual a a member of the fuzzy set C.

2.1. Fuzzy Interpretation

A fuzzy interpretation is now a pair I = (∆I , .I), where ∆I is, as for the crisp case,

the domain, whereas .I is an interpretation function mapping

aThrough this work we assume that every metavariable has an optional subscript or superscript.
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(1) individual as for the crisp case, i.e. aI 6= bI , if a 6= b;

(2) a concept C into a membership function CI : ∆I → [0, 1];

(3) a role R into a membership function RI : ∆I × ∆I → [0, 1].

If C is a concept then CI will naturally be interpreted as the membership degree

function of the fuzzy concept (set) C w.r.t. I, i.e. if d ∈ ∆I is an object of the

domain ∆I then CI(d) gives us the degree of being the object d an element of the

fuzzy concept C under the interpretation I. Similarly for roles. Additionally, the

interpretation function .I has to satisfy the following equations: for all d ∈ ∆I ,

⊤I(d) = 1

⊥I(d) = 0

(C ⊓D)I(d) = min{CI(d), DI(d)}

(C ⊔D)I(d) = max{CI(d), DI(d)}

(¬C)I(d) = 1 − CI(d)

(∀R.C)I(d) = infd′∈∆I{max{1 −RI(d, d′), CI(d′)}}

(∃R.C)I(d) = supd′∈∆I{min{RI(d, d′), CI(d′)}}.

We will say that two concepts C and D are said to be equivalent (denoted by

C ∼= D) when CI = DI for all interpretation I. As for the crisp non fuzzy case,

dual relationships between concepts hold: e.g. ⊤ ∼= ¬⊥, (C ⊓D) ∼= ¬(¬C ⊔¬D) and

(∀R.C) ∼= ¬(∃R.¬C).

2.2. Fuzzy Assertion

A fuzzy assertion (denoted by ψ) is an expression having one of the following forms

〈α ≥ n〉 or 〈α ≤ m〉, where α is an ALC assertion, n ∈ (0, 1] and m ∈ [0, 1).

From a semantics point of view, a fuzzy assertion 〈α ≤ n〉 constrains the truth-

value of α to be less or equal to n (similarly for ≥). Consequently, e.g. 〈 (Video

⊓ ∃About.Basket)(v1) ≥ 0.8〉 states that video v1 is likely about basket. For-

mally, an interpretation I satisfies a fuzzy assertion 〈C(a) ≥ n〉 (resp. 〈R(a, b) ≥ n〉)

iff CI(aI) ≥ n (resp. RI(aI , bI) ≥ n). Similarly, an interpretation I satisfies a fuzzy

assertion 〈C(a) ≤ n〉 (resp. 〈R(a, b) ≤ n〉) iff CI(aI) ≤ n (resp. RI(aI , bI) ≤ n).

Two fuzzy assertion ψ1 and ψ2 are said to be equivalent (denoted by ψ1
∼= ψ2) iff

they are satisfied by the same set of interpretations. An atomic fuzzy assertion is a

fuzzy assertion involving an atomic assertion (assertion of the form A(a) or R(a, b)).

2.3. Fuzzy Terminological Axiom

From a syntax point of view, a fuzzy terminological axiom (denoted by τ̃ is either a

fuzzy concept specialization or a fuzzy concept definition. A fuzzy concept special-

ization is an expression of the form A ≺ C, where A is an atomic concept and C is a

concept. On the other hand, a fuzzy concept definition is an expression of the form
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A :≈ C, where A is an atomic concept and C is a concept. From a semantics point

of view, a fuzzy interpretation I satisfies a fuzzy concept specialization A ≺ C iff

∀d ∈ ∆I , AI(d) ≤ CI(d), (2.1)

whereas I satisfies a fuzzy concept definition A :≈ C iff

∀d ∈ ∆I , AI(d) = CI(d). (2.2)

2.4. Fuzzy Knowlege Base, Fuzzy Entailment and Fuzzy

Subsumption

A fuzzy knowledge base is a finite set of fuzzy assertions and fuzzy terminological

axioms. ΣA denotes the set of fuzzy assertions in Σ, ΣT denotes the set of fuzzy

terminological axioms in Σ (the terminology), if ΣT = ∅ then Σ is purely assertional,

and we will assume that a terminology ΣT is such that no concept A appears more

than once on the left hand side of a fuzzy terminological axiom τ̃ ∈ ΣT and that

no cyclic definitions are present in ΣT .

An interpretation I satisfies (is a model of) a set of fuzzy Σ iff I satisfies each

element of Σ. A fuzzy KB Σ fuzzy entails a fuzzy assertion ψ (denoted by Σ |=f ψ)

iff every model of Σ also satisfies ψ.

Furthermore, let ΣT be a terminology and let C,D be two concepts. We will say

that D fuzzy subsumes C w.r.t. ΣT (denoted by C �ΣT
D) iff for every model I of

ΣT , ∀d ∈ ∆I , CI(d) ≤ DI(d) holds.

3. A Neutrosophic DL

Our neutrosophic extension directly relates to Smarandache’s work on neutrosophic

sets 15,16. A neutrosophic set S defined on universe of discourse U , associates each

element u in U with three membership functions: truth-membership function TS(u),

indeterminacy-membership function IS(u), and falsity-membership function FS(u),

where TS(u), IS(u), FS(u) are real standard or non-standard subsets of ]−0, 1+[, and

TS(u), IS(u), FS(u) are independent. For simplicity, here we only use two compo-

nents TS(u) and FS(u), with TS(u) ∈ [0, 1], FS(u) ∈ [0, 1], 0 ≤ TS(u) + FS(u) ≤ 2.

It is easy to extend our method to include indeterminacy-membership function.

TS(u) gives us an estimation of degree of u belonging to U and FS(u) gives us an

estimation of degree of u not belonging to U . TS(u) + FS(u) can be 1 (just as in

classical fuzzy sets theory). But it is not necessary. If TS(u) + FS(u) < 1, for all u

in U , we say the set S is incomplete, if TS(u)+FS(u) > 1, for all u in U , we say the

set S is inconsistent. According to Wang 16, the truth-membership function and

falsity-membership function has to satisfy three restrictions: for all u ∈ U and for

all neutrosophic sets S1, S2 with respect to U

TS1∩S2
(u) = min{TS1

(u), TS2
(u)}, FS1∩S2

(u) = max{FS1
(u), FS2

(u)}

TS1∪S2
(u) = max{TS1

(u), TS2
(u)}, FS1∪S2

(u) = min{FS1
(u), FS2

(u)}
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TS1
(u) = FS1

(u), FS1
(u) = TS1

(u),

where S1 is the complement of S1 in U . Wang 16 gives the definition of N -norm and

N -conorm of neutrosophic sets, min and max is only one of the choices. In general

case, they may be the simplest and the best.

When we switch to neutrosophic logic, the notion of degree of truth-membership

TS(u) of an element u ∈ U w.r.t. the neutrosophic set S over U is regarded as the

truth-value of the statement “u is S”, and the notion of degree of falsity-membership

FS(u) of an element u ∈ U w.r.t. the neutrosophic set S over U is regarded as the

falsity-value of the statement “u is S”. Accordingly, in our neutrosophic DL, (i)

a concept C, rather than being interpreted as a fuzzy set, will be interpreted as

a neutrosophic set and, thus, concepts become imprecise (fuzzy, incomplete, and

inconsistent); and, consequently, (ii) the statement “a is C”, i.e. C(a) will have a

truth-value in [0, 1] given by the degree of truth-membership of being the individual

a a member of the neutrosophic set C and a falsity-value in [0, 1] given by the degree

of falsity-membership of being the individual a not a member of the neutrosophic

set C.

3.1. Neutrosophic Interpretation

A em neutrosophic interpretation is now a tuple I = (∆I , (·)I , | · |t, | · |f ), where ∆I

is, as for the fuzzy case, the domain, and

(1) (·)I is an interpretation function mapping

(a) individuals as for the fuzzy case, i.e. aI 6= bI , if a 6= b;

(b) a concept C into a membership function CI : ∆I → [0, 1] × [0, 1];

(c) a role R into a membership function RI : ∆I × ∆I → [0, 1] × [0, 1].

(2) | · |t and | · |f are neutrosophic valuation, i.e. | · |t and | · |f map

(a) every atomic concept into a function from ∆I to [0, 1];

(b) every atomic role into a function from ∆I × ∆I to [0, 1].

If C is a concept then CI will naturally be interpreted as a pair of membership

functions 〈|C|t, |C|f 〉 of the neutrosophic concept (set) C w.r.t. I, i.e. if d ∈ ∆I

is an object of the domain ∆I then CI(d) gives us the degree of being the object

d an element of the neutrosophic concept C and the degree of being the object d

not an element of the neutrosophic concept C under the interpretation I. Similarly

for roles. Additionally, the interpretation function (·)I has to satisfy the following

equations: for all d ∈ ∆I ,

Note that the semantics of ∀R.C

(∀R.C)I(d) = 〈 inf
d′∈∆I

{max{|R|f(d, d′), |C|t(d′)}}, sup
d′∈∆I

{min{|R|t(d, d′), |C|f (d′)}}〉(3.6)

is the result of viewing ∀R.C as the open first order formula ∀y.¬FR(x, y)∨FC(y),

where the universal quantifier ∀ is viewed as a conjunction over the elements of the
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⊤I(d) = 〈1, 0〉

⊥I(d) = 〈0, 1〉

(C ⊓D)I(d) = 〈min{|C|t(d), |D|t(d)},max{|C|f (d), |D|f (d)}〉

(C ⊔D)I(d) = 〈max{|C|t(d), |D|t(d)},min{|C|f (d), |D|f (d)}〉

(¬C)I(d) = 〈|C|f (d), |C|t〉

(∀R.C)I(d) = 〈infd′∈∆I{max{|R|f (d, d′), |C|t(d′)}}, supd′∈∆I{min{|R|t(d, d′), |C|f (d′)}}〉

(∃R.C)I(d) = 〈supd′∈∆I{min{|R|t(d, d′), |C|t(d′)}}, infd′∈∆I{max{|R|f(d, d′), |C|f (d′)}}〉

domain. Similarly, the semantics of ∃R.C

(∃R.C)I(d) = 〈 sup
d′∈∆I

{min{|R|t(d, d′), |C|t(d′)}}, inf
d′∈∆I

{max{|R|f (d, d′), |C|f (d′)}}〉(3.7)

is the result of viewing ∃R.C as the open first order formula ∃y.FR(x, y) ∧ FC(y)

and the existential quantifier ∃ is viewed as a disjunction over the elements of the

domain. Moreover, | · |t and | · |f are extended to complex concepts as follows: for

all d ∈ ∆I

|C ⊓D|t(d) = min{|C|t(d), |D|t(d)}

|C ⊓D|f (d) = max{|C|f (d), |D|f (d)}

|C ⊔D|t(d) = max{|C|t(d), |D|t(d)}

|C ⊔D|f (d) = min{|C|f (d), |D|f (d)}

|¬C|t(d) = |C|f (d)

|¬C|f (d) = |C|t(d)

|∀R.C|t(d) = infd′∈∆I{max{|R(d, d′)|f , |C|t(d)}}

|∀R.C|f (d) = supd′∈∆I{min{|R(d, d′)|t, |C|f (d)}}

|∃R.C|t(d) = supd′∈∆I{min{|R(d, d′)|t, |C|t(d)}}

|∃R.C|f (d) = infd′∈∆I{max{|R(d, d′)|f , |C|f (d)}}

We will say that two concepts C and D are said to be equivalent (denoted by

C ∼=n D) when CI = DI for all interpretation I. As for the fuzzy case, dual

relationships between concepts hold: e.g. ⊤ ∼=n ¬⊥, (C ⊓ D) ∼=n ¬(¬C ⊔ ¬D) and

(∀R.C) ∼=n ¬(∃R.¬C).

3.2. Neutrosophic Assertion

A neutrosophic assertion (denoted by ϕ) is an expression having one of the following

form 〈α :≥ n,≤ m〉 or 〈α :≤ n,≥ m〉, where α is an ALC assertion, n ∈ [0, 1]

and m ∈ [0, 1]. From a semantics point of view, a neutrosophic assertion 〈α :≥
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n,≤ m〉 constrains the truth-value of α to be greater or equal to n and falsity-

value of α to be less or equal to m (similarly for 〈α :≤ n,≥ m〉). Consequently,

e.g. 〈(Poll ⊓ ∃Support.War x)(p1) :≥ 0.8,≤ 0.1〉 states that poll p1 is close

to support War x. Formally, an interpretation I satisfies a neutrosophic assertion

〈α :≥ n,≤ m〉 (resp. 〈R(a, b) :≥ n,≤ m〉) iff |C|t(aI) ≥ n and |C|f (aI) ≤ m (resp.

|R|t(aI , bI) ≥ n and |R|f(aI , bI) ≤ m). Similarly, an interpretation I satisfies a

neutrosophic assertion 〈α :≤ n,≥ m〉 (resp. 〈R(a, b) :≤ n,≥ m〉) iff |C|t(aI) ≤ n and

|C|f (aI) ≥ m (resp. |R|t(aI , bI) ≤ n and |R|f(aI , bI) ≥ m). Two fuzzy assertion ϕ1

and ϕ2 are said to be equivalent (denoted by ϕ1
∼=n ϕ2) iff they are satisfied by the

same set of interpretations. Notice that 〈¬C(a) :≥ n,≤ m〉 ∼=n 〈C(a) :≤ m,≥ n〉

and 〈¬C(a) :≤ n,≥ m〉 ∼=n 〈C(a) :≥ m,≤ n〉. An atomic neutrosophic assertion is

a neutrosophic assertion involving an atomic assertion.

3.3. Neutrosophic Terminological Axiom

Neutrosophic terminological axioms we will consider are a natural extension of

fuzzy terminological axioms to the neutrosophic case. From a syntax point of view,

a neutrosophic terminological axiom (denoted by τ̂ ) is either a neutrosophic concept

specialization or a neutrosophic concept definition. A neutrosophic concept special-

ization is an expression of the form A ≺n C, where A is an atomic concept and C

is a concept. On the other hand, a neutrosophic concept definition is an expression

of the form A :≈n C, where A is an atomic concept and C is a concept. From

a semantics point of view, we consider the natural extension of fuzzy set to the

neutrosophic case 15,16. A neutrosophic interpretation I satisfies a neutrosophic

concept specialization A ≺n C iff

∀d ∈ ∆I , |A|t(d) ≤ |C|t(d), |A|f (d) ≥ |C|f (d), (3.8)

whereas I satisfies a neutrosophic concept definition A :≈n C iff

∀d ∈ ∆I , |A|t(d) = |C|t(d), |A|f (d) = |C|f (d). (3.9)

3.4. Neutrosophic Knowledge Base, Neutrosophic Entailment and

Neutrosophic Subsumption

A neutrosophic knowledge base is a finite set of neutrosophic assertions and neutro-

sophic terminological axioms. As for the fuzzy case, with ΣA we will denote the set

of neutrosophic assertions in Σ, with ΣT we will denote the set of neutrosophic ter-

minological axioms in Σ (the terminology), if ΣT = ∅ then Σ is purely assertional,

and we will assume that a terminology ΣT is such that no concept A appears more

than once on the left hand side of a neutrosophic terminological axiom τ̂ ∈ ΣT and

that no cyclic definitions are present in ΣT .

An interpretation I satisfies (is a model of) a neutrosophic Σ iff I satisfies each

element of Σ. A neutrosophic KB Σ neutrosophically entails a neutrosophic assertion

ϕ (denoted by Σ |=n ϕ) iff every model of Σ also satisfies ϕ.
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Furthermore, let ΣT be a terminology and let C,D be two concepts. We will say

that D neutrosophically subsumes C w.r.t. ΣT (denoted by C �n
ΣT

D) iff for every

model I of ΣT , ∀d ∈ ∆I , |C|t(d) ≤ |D|t(d) and |C|f (d) ≥ |D|f (d) holds.

Finally, given a neutrosophic KB Σ and an assertion α, we define the greatest

lower bound of α w.r.t. Σ (denoted by glb(Σ, α)) to be 〈sup{n : Σ |=n 〈α :≥ n,≤

m〉}, inf{m : Σ |=n 〈α :≥ n,≤ m〉}〉. Similarly, we define the least upper bound

of α with respect to Σ (denoted by lub(Σ, α)) to be 〈inf{n : Σ |=n 〈α :≤ n,≥

m〉}, sup{m : Σ |=n 〈α :≤ n,≥ m〉}〉 (sup ∅ = 0, inf ∅ = 1). Determing the lub and

the glb is called the Best Truth-Value Bound (BTVB) problem.

4. Some Properties

In this section, we discuss some properties of our neutrosophic ALC.

4.1. Concept Equivalence

The first ones are straightforward: ¬⊤ ≈n ⊥, C ⊓ ⊤ ≈n C,C ⊔ ⊤ ≈n ⊤, C ⊓ ⊥ ≈n

⊥, C ⊔ ⊥ ≈n C,¬¬C ≈n C,¬(C ⊓D) ≈n ¬C ⊔ ¬D,¬(C ⊔ D) ≈n ¬C ⊓ ¬D,C1 ⊓

(C2 ⊔ C3) ≈
n (C1 ⊓ C2) ⊔ (C1 ⊓ C3) and C1 ⊔ (C2 ⊓ C3) ≈

n (C1 ⊔ C2) ⊓ (C1 ⊔ C3).

For concepts involving roles, we have ∀R.C ≈n ¬∃R.¬C, ∀R.⊤ ≈n ⊤, ∃R.⊥ ≈n ⊥

and (∀R.C) ⊓ (∀R.D) ≈n ∀R.(C ⊓ D). Please note that we do not have C⊓ 6=

C ≈n ⊥, nor we have C ⊔ ¬C ≈n ⊤ and, thus, (∃R.C) ⊓ (∀R.¬C) ≈n ⊥ and

(∃R.C) ⊔ (∀R.¬C) ≈n ⊤ do not hold.

4.2. Entailment Relation

Of course, Σ |=n 〈α :≥ n,≤ m〉 iff glb(Σ, α) = 〈f, g〉 with f ≥ n and g ≤ m,

and similarly Σ |=n 〈α :≤ n,≥ m〉 iff lub(Σ, α) = 〈f, g〉 with f ≤ n and g ≥ m.

Concerning roles, note that Σ |=n 〈R(a, b) :≥ n,≤ m〉 iff 〈R(a, b) :≥ f,≤ g〉 ∈ Σ

with f ≥ n and g ≤ m. Therefore,

glb(Σ, R(a, b)) = 〈max{n : 〈R(a, b) :≥ n,≤ m〉 ∈ Σ},

min{m : 〈R(a, b) :≥ n,≤ m〉 ∈ Σ}〉 (4.10)

while the same is not true for the 〈R(a, b) :≤ n,≥ m case. While 〈R(a, b) :≤ f,≥

g〉 ∈ Σ and f ≤ n, g ≥ m imply Σ |=n 〈R(a, b) :≤ n,≥ m〉, the converse is false (e.g.

{〈∀R.A(a) :≥ 1,≤ 0〉, 〈A(b) :≤ 0,≥ 1〉} |=n 〈R(a, b) :≤ 0,≥ 1〉).

Furthermore, from Σ |=n 〈C(a) :≤ n,≥ m〉 iff Σ |=n 〈¬C(a) :≥ m,≤ n〉,

it follows lub(Σ, C(a)) = 〈f, g〉 iff glb(Σ,¬C(a)) = 〈g, f〉. Therefore, lub can be

determined through glb (and vice versa). The same reduction to glb does not hold

for lub(Σ, R(a, b)) as ¬R(a, b) is not an expression of our language.

Modus ponens on concepts is supported: if n > g and m < f then {〈C(a) :≥

n,≤ m〉, 〈(¬C ⊔D)(a) :≥ f,≤ g〉} |=n〉D(a) :≥ f,≤ g〉 holds.

Modus ponens on roles is supported: if n > g and m < f then {〈R(a, b) :≥

n,≤ m〉, 〈∀R.D(a) :≥ f,≤ g〉} |=n 〈D(b) :≥ f,≤ g〉 and {〈∃R.C(a) :≥ n,≤
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m〉, 〈∀R.D(a) :≥ f,≤ g〉} |=n 〈∃R.(C ⊓ D)(a) :≥ min{n, f},≤ max{m, g}〉 hold.

Moreover, {〈∀R.C(a) :≥ n,≤ m〉, 〈∀R.D(a) :≥ f,≤ g〉} |=n 〈∀(R.(C ⊓ D))(a) :≥

min{n, f},≤ max{m, g}〉 holds.

Modus ponens on specialization is supported. The following degree bounds prop-

agation through a taxonomy is supported. If C �n
Σ D then (i) Σ ∪ {〈C(a) :≥ n,≤

m〉} |=n 〈D(a) :≥ n,≤ m〉}; and (ii) Σ ∪ {〈D(a) :≤ n,≥ m〉} |=n 〈C(a) :≤ n,≥ m〉

hold.

4.3. Soundness and Completeness of the Semantics

Our neutrosophic semantics is sound and complete w.r.t. fuzzy semantics. First we

must note that the neutrosophic ALC is a strict generalization of fuzzy ALC, in the

sense that every fuzzy concept and fuzzy terminological axiom can be represented

by a corresponding neutrosophic concept and neutrosophic terminological axiom,

but not vice versa. It is easy to verify that,

Proposition 4.1. A classical fuzzy ALC can be simulated by a neutrosophic ALC,

in the way that a fuzzy assertion 〈α ≥ n〉 represented by a neutrosophic assertion

〈α :≥ n,≤ 1−n〉, a fuzzy assertion 〈α ≤ n〉 represented by a neutrosophic assertion

〈α :≤ n,≥ 1−n〉 and a fuzzy terminological axiom τ̃ represented by a neutrosophic

terminological axiom τ̂ in the sense that if I is a fuzzy interpretation then |C|t(a) =

CI(a) and |C|f (a) = 1 − CI(a). ⊣

Let us consider the following transformations ♯(·) and ⋆(·) of neutrosophic as-

sertions into fuzzy assertions,

♯〈α :≥ n,≤ m〉 7→ 〈α ≥ n〉,

⋆〈α :≥ n,≤ m〉 7→ 〈α ≤ m〉,

♯〈α :≤ n,≥ m〉 7→ 〈α ≤ n〉,

⋆〈α :≤ n,≥ m〉 7→ 〈α ≥ m〉,

We extend ♯(·) and ⋆(·) to neutrosophic terminological axioms as follows: ♯τ̂ = τ̃

and ⋆τ̂ = τ̃ . Finally, ♯Σ = {♯ϕ : ϕ ∈ ΣA} ∪ {♯τ̂ : τ̂ ∈ ΣT } and ⋆Σ = {⋆ϕ : ϕ ∈

ΣA} ∪ {⋆τ̂ : τ̂ ∈ ΣT }.

Proposition 4.2. Let Σ be a neutrosophic KB and let ϕ be a neutrosophic assertion

(〈α :≥ n,≤ m〉 or 〈α :≤ n,≥ m〉). Then Σ |=n ϕ iff ♯Σ |= ♯ϕ and ⋆Σ |= ⋆ϕ. ⊣

Proof. (⇒): Let ϕ be 〈α :≥ n,≤ m〉. Consider a fuzzy interpretation I satisfying

♯Σ and I
′

satisfying ⋆Σ. 〈I, I
′

〉 is also a neutrosophic interpretation such that aI =

aI
′

, CI(a) = |C|t(a) and CI
′

(a) = |C|f (a), RI(d, d′) = |R|t(d, d′) and RI
′

(d, d′) =

|R|f (d, d′) hold. By induction on the structure of a concept C it can be shown that I

(I
′

) satisfies C(a) iff CI(aI) ≥ n (CI′

(aI
′

≥ n) for fuzzy assertion 〈C(a) ≥ n〉 and

CI(aI) ≤ n (CI
′

(aI
′

) for fuzzy assertion 〈C(a) ≤ n〉. Similarly for roles. By the
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definition of ♯(·) and ⋆(·), therefore 〈I, I
′

〉 is a neutrosophic interpretation satisfying

Σ. By hypothesis, 〈I, I
′

〉 satisfies 〈α :≥ n,≤ m〉. Therefore, I satisfies ♯ϕ and I
′

satisfies ♯ϕ. The proof is similar for ϕ = 〈α :≤ n,≥ m〉.

(⇐): Let ϕ be 〈α :≥ n,≤ m〉. Consider a neutrosophic I satisfying Σ. I can

be regarded as two fuzzy interpretations I
′

and I” such that aI = aI
′

= aI
”

,

CI
′

(d) = |C|t(d) and CI”

(d) = |C|f (d), RI
′

(d, d′) = |R|t(d, d′) and RI”

(d, d′) =

|R|f (d, d′)hold. By induction on the structure of a concept C it can be shown that

I satisfies C(a) iff |C|t(aI) ≥ n, |C|f (aI) ≤ m for neutrosophic assertion 〈C(a) :≥

n,≤ m〉 and |C|t(aI) ≤ n, |C|f (aI) ≥ m for neutrosophic assertion 〈C(a) :≤ n,≥

m〉. Similarly for roles. By the definition of ♯(·) and ⋆(·), therefore, I
′

is a fuzzy

interpretation satisfying ♯Σ and I” satisfying ⋆Σ. By hypothesis, I
′

satisfies ♯ϕ

and I” satisfies ⋆ϕ. And according to the definition of ♯(·) and ⋆(·), I satisfies

〈α :≥ n,≤ m〉. The proof is similar for ϕ = 〈α :≤ n,≥ m〉. 2

4.4. Subsumption

As for the fuzzy case, subsumption between two concepts C and D w.r.t. a termi-

nology ΣT , i.e. C �n
ΣT

D, can be reduced to the case of an empty terminology, i.e.

C′ �n
∅ D

′.

Example 4.1. Suppose we have two polls p1 and p2 about two wars war x and

war y, separately. By the result of p1, it establishes that, to some degree n people in

the country support the war x and to some degree m people in the country do not

support the war x, whereas by the result of p2, it establishes that, to some degree f

people in the country support the war y and to some degree g people in the country

do not support the war y. Please note that, truth-degree and falsity-degree give a

quantitative description of the supportness of a poll w.r.t. a war, i.e. the supportness

is handled as a neutrosophic concept. So, let us consider

Σ = {〈p1 : ∃Support.war x :≥ 0.6,≤ 0.5〉, 〈p2 : ∃Support.war y :≥ 0.8,≤ 0.1〉,

war x ≺n War,war y ≺n War}

where the axioms specify that both war x and war y are a War. According to the

expansion process, Σ will be replaced by

Σ
′

= {〈p1 : ∃Support.war x :≥ 0.6,≤ 0.5〉, 〈p2 : ∃Support.war y :≥ 0.8,≤ 0.1〉,

war x :≈n War ⊓ war x∗, war y :≈n War ⊓ war y∗},

which will be simplified to

Σ” = {〈p1 : ∃Support.(War ⊓ war x∗) :≥ 0.6,≤ 0.5〉,

〈p2 : ∃Support.(War ⊓ war y∗) :≥ 0.8,≤ 0.1〉}.

Now, if we are looking for supportness of polls of War, then from Σ we may infer

that Σ |=n 〈p1 : ∃Support.War :≥ 0.6,≤ 0.5〉 and Σ |=n 〈p2 : ∃Support.War :≥

0.8,≤ 0.1〉. Furthermore, it is easily verified that Σ” |=n 〈p1 : ∃Support.War :≥
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0.6,≤ 0.5〉 and Σ” |=n 〈p2 : ∃Support.War :≥ 0.8,≤ 0.1〉 hold as well. Indeed, for

any neutrosophic assertion ϕ, Σ |=n ϕ iff Σ” |=n ϕ holds. 2

5. Decision Algorithms in Neutrosophic ALC

Deciding whether Σ |=n 〈α :≥ n,≤ m〉 or Σ |=n 〈α :≤ n,≥ m〉 requires a calculus.

Without loss of generality we will consider purely assertional neutrosophic KBs

only.

We will develop a calculus in the style of the constraint propagation method,

as this method is usually proposed in the context of DLs18 and fuzzy DLs9,11. We

first address the entailment problem, then the subsumption problem and finally the

BTVB problem. Both the subsumption problem and the BTVB problem will be

reduced to the entailment problem.

5.1. A Decision Procedure for the Entailment Problem

Consider a new alphabet of ALC variables. An interpretation is extended to vari-

ables by mapping these into elements of the interpretation domain. An ALC object

(denoted by ω) is either an individual or a variable.b

A constraint (denoted by α is an expression of the form C(ω) or R(ω, ω
′

), where

ω, ω
′

are objects, C is an ALC concept and R is a role. A neutrosophic constraint

(denoted by ϕ) is an expression having one of the following four forms: 〈α :≥ n,≤

m〉, 〈α :≤ n,≥ m〉, 〈α :> n,< m〉, 〈α :< n,> m〉. Note that neutrosophic assertions

are neutrosophic constraints.

The definitions of satisfiability of a constraint, a neutrosophic constraint, a set

of constraints, a set of neutrosophic constraints, atomic constraint and atomic neu-

trosophic constraint are obvious.

It is quite easily verified that the neutrosophic entailment problem can be re-

duced to the unsatisfiability problem of a set of neutrosophic constraints:

Σ |=n 〈α :≥ n,≤ m〉 iff Σ ∪ {〈α :< n,> m〉} not satisfiable (5.11)

Σ |=n 〈α :≤ n,≥ m〉 iff Σ ∪ {〈α :> n,< m〉} not satisfiable (5.12)

Our calculus, determining whether a finite set S of neutrosophic constraints is

satisfiable or not, is based on a set of constraint propagation rules transforming

a set S of neutrosophic constraints into “simpler” satisfiability preserving sets Si

until either all Si contain a clash (indicating that from all the Si no model of S

can be build) or some Si is completed and clash-free, that is, no rule can be further

applied to Si and Si contains no clash (indicating that from Si a model of S can

be build).

bIn the following, if there is no ambiguity, ALC variables and ALC objects are called variables
and objects, respectively.
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A set of neutrosophic constraints S contains a clash iff it contains either one

of the constraints in Table 1 or S contains a conjugated pair of neutrosophic con-

straints. Each entry in Table 2 says us under which condition the row-column pair

of neutrosophic constraints is a conjugated pair. Given a neutrosophic constraint ϕ,

〈⊥(ω) :≥ n,≤ m〉, where n > 0 or m < 1

〈⊤(ω) :≤ n,≥ m〉, where n < 1 or m > 0

〈⊥(ω) :> n,< m〉, 〈⊤(ω) :< n,> m〉

〈C(ω) :< 0, > m〉, 〈C(ω) :> 1, < m〉, 〈C(ω) :< n,> 1〉, 〈C(ω) :> n,< 0〉

Table 1. Clashes

〈α :< f,> g〉 〈α :≤ f,≥ g

〈α :≥ n,≤ m n ≥ f or m ≤ g n > f or m < g

〈α :> n,< m n ≥ f or m ≤ g n ≥ f or m ≤ g

Table 2. Conjugated Pairs

with ϕc we indicate a conjugate of ϕ (if there exists one). Notice that a conjugate

of a neutrosophic constraint may be not unique, as there could be infinitely many.

For instance, both 〈C(a) :< 0.6, > 0.3〉 and 〈C(a) :≤ 0.7,≥ 0.4〉 are conjugates of

〈C(a) :≥ 0.8,≤ 0.1〉.

Concerning the rules, for each connective ⊓,⊔,¬, ∀, ∃ there is a rule for each

relation 〈≥,≤〉, 〈>,<〉, 〈≤,≥〉, 〈<,>〉, i.e. there are 20 rules. The rules have the

form:

Φ → Ψ if Γ (5.13)

where Φ and Ψ are sequences of neutrosophic constraints and Γ is a condition. A rule

fires only if the condition Γ holds, if the current set S of neutrosophic constraints

contains neutrosophic constraints matching the precondition Φ and the consequence

Ψ is not already in S. After firing, the constraints from Ψ are added to S. The rules

are the following:

(¬〈≥,≤〉) 〈¬C(ω) :≥ n,≤ m〉 → 〈C(ω) :≤ m,≥ n〉

(¬〈>,<〉) 〈¬C(ω) :> n,< m〉 → 〈C(ω) :< m,> n〉 (5.14)

(¬〈≤,≥〉) 〈¬C(ω) :≤ n,≥ m〉 → 〈C(ω) :≥ m,≤ n〉

(¬〈<,>〉) 〈¬C(ω) :< n,> m〉 → 〈C(ω) :> m,< n〉
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(⊓〈≥,≤〉) 〈(C ⊓D)(ω) :≥ n,≤ m〉 → 〈C(ω) :≥ n,≤ m〉, 〈D(ω) :≥ n,≤ m〉

(⊓〈>,<〉) 〈(C ⊓D)(ω) :> n,< m〉 → 〈C(ω) :> n,< m〉, 〈D(ω) :> n,< m〉

(⊓〈≤,≥〉) 〈(C ⊓D)(ω) :≤ n,≥ m〉 → 〈C(ω) :≤ n,≥ m〉, 〈D(ω) :≥ n,≤ m〉|

〈C(ω) :≥ n,≤ m〉, 〈D(ω) :≤ n,≥ m〉|

〈C(ω) :≤ n,≥ 0〉, 〈C(ω) :≥ 0,≤ m〉, 〈D(ω) :≥ n,≤ 1〉, 〈D(ω) :≤ 1,≥ m〉|

〈C(ω) :≥ n,≤ 1〉, 〈C(ω) :≤ 1,≥ m〉, 〈D(ω) :≥ 0,≤ m〉, 〈D(ω) :≤ n,≥ 0〉

(⊓〈<,>〉) 〈(C ⊓D)(ω) :< n,> m〉 → 〈C(ω) :< n,> m〉, 〈D(ω) :≥ n,≤ m〉|

〈C(ω) :≥ n,≤ m〉, 〈D(ω) :< n,> m〉|

〈C(ω) :< n,> 0〉, 〈C(ω) ≥ 0,≤ m〉, 〈D(ω) :≥ n,≤ 1〉, 〈D(ω) :< 1, > m〉|

〈C(ω) :≥ n,≤ 1〉, 〈C(ω) :< 1, > m〉, 〈D(ω) :< n,> 0〉, 〈D(ω) :≥ 0,≤ m〉

(⊔〈≥,≤〉) 〈(C ⊔D)(ω) :≥ n,≤ m〉 → 〈C(ω) :≥ n,≤ m〉, 〈D(ω) :≤ n,≥ m〉|

〈C(ω) :≤ n,≥ m〉, 〈D(ω) :≥ n,≤ m〉|

〈C(ω) :≥ n,≤ 1〉, 〉C(ω) :≤ 1,≥ m〉, 〈D(ω) :≤ n,≥ 0〉, 〈D(ω) :≥ 0,≤ m〉|

〈C(ω) :≥ 0,≤ m〉, 〈C(ω) :≤ n,≥ 0〉, 〈D(ω) :≥ n,≤ 1〉, 〈D(ω) :≤ 1,≥ m〉

(⊔〈>,<〉) 〈(C ⊔D)(ω) :> n,< m〉 → 〈C(ω) :> n,< m〉, 〈D(ω) :≤ n,≥ m〉|

〈C(ω) :≤ n,≥ m〉, 〈D(ω) :> n,< m〉|

〈C(ω) :> n,< 1〉, 〈C(ω) :≤ 1,≥ m〉, 〈D(ω) :≤ n,≥ 0〉, 〈D(ω) :> 0, < m〉|

〈C(ω) :≤ n,≥ 0〉, 〈C(ω) :> 0, < m〉, 〈D(ω) :> n,< 1〉, 〈D(ω) :≤ 1,≥ m〉

(⊔〈≤,≥) 〈(C ⊔D)(ω) :≤ n,≥ m〉 → 〈C(ω) :≤ n,≥ m〉, 〈D(ω) :≤ n,≥ m〉

(⊔〈<,>) 〈(C ⊔D)(ω) :< n,> m〉 → 〈C(ω) :< n,> m〉, 〈D(ω) :< n,> m〉

(∀〈≥,≤) 〈(∀R.C)(ω1) :≥ n,≤ m〉, 〈R(ω1, ω2) :≥ f,≤ g〉 → 〈C(ω2) :≥ n,≤ m〉

if f > m and g < n

(∀〈>,<) 〈(∀R.C)(ω1) :> n,< m〉, 〈R(ω1, ω2) :≥ f,≤ g〉 → 〈C(ω2) :> n,< m〉

if f ≥ m and g ≤ n

(∃〈≤,≥) 〈(∃R.C)(ω1) :≤ n,≥ m〉, 〈R(ω1, ω2) :≥ f,≤ g〉 → 〈C(ω2) :≤ n,≥ m〉

if f > n and g < m

(∃〈<,>) 〈(∃R.C)(ω1) :< n,> m〉, 〈R(ω1, ω2) :≥ f,≤ g〉 → 〈C(ω2) :< n,> m〉

if f ≥ n and g ≤ m
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(∃≥,≤) 〈(∃R.C)(ω) :≥ n,≤ m〉 → 〈R(ω, x) :≥ n,≤ m〉, 〈C(x) :≥ n,≤ m〉

if x is new variable and there is no ω
′

such that both

〈R(ω, ω
′

) :≥ n,≤ m〉 and 〈C(ω
′

) :≥ n,≤ m〉 are already in the constraint set

(∃>,<) 〈(∃R.C)(ω) :> n,< m〉 → 〈R(ω, x) :> n,< m〉, 〈C(x) :> n,< m〉

if x is new variable and there is no ω
′

such that both

〈R(ω, ω
′

) :> n,< m〉 and 〈C(ω
′

) :> n,< m〉 are already in the constraint set

(∀≤,≥) 〈(∀R.C)(ω) :≤ n,≥ m〉 → 〈R(ω, x) :≥ m,≤ n〉, 〈C(x) :≤ n,≥ m〉

if x is new variable and there is no ω
′

such that both

〈R(ω, ω
′

) :≥ m,≤ n〉 and 〈C(ω
′

) :≤ n,≥ m〉 are already in the constraint set

(∀<,>) 〈(∀R.C)(ω) :< n,> m〉 → 〈R(ω, x) :> m,< n〉, 〈C(x) :< n,> m〉

if x is new variable and there is no ω
′

such that both

〈R(ω, ω
′

) :> m,< n〉 and 〈C(ω
′

) :< n,> m〉 are already in the constraint set

A set of neutrosophic constraints S is said to be complete if no rule is applicable

to it. Any complete set of neutrosophic constraints S2 obtained from a set of neu-

trosophic constraints S1 by applying the above rules (11) is called a completion of

S1. Due to the rules (⊔≥,≤), (⊔>,<), (⊓≤,≥) and (⊓<,>), more than one completion

can be obtained. These rules are called nondeterministic rules. All other rules are

called deterministic rules.

It is easily verified that the above calculus has the termination property, i.e.

any completion of a finite set of neutrosophic constraints S can be obtained after a

finite number of rule applications.

Example 5.1. Consider Example 1 and let us prove that

Σ” |=n 〈(∃Support.War)(p1)

≥ 0.6,≤ 0.5〉. We prove the above relation by verifying that all completions of

S = Σ” ∪ {〈(∃Support.War)(p1) :< 0.6, > 0.5〉} contain a clash. In fact, we have

the following sequence.

(1) 〈(∃Support.(War ⊓ war x∗))(p1) :≥ 0.6,≤ 0.5〉 Hypothesis:S

(2) 〈(∃Support.(War ⊓ war y∗))(p2) :≥ 0.8,≤ 0.1〉

(3) 〈(∃Support.War)(p1) :< 0.6, > 0.5〉

(4) 〈Support(p1, x) :≥ 0.6,≤ 0.5〉, 〈(War ⊓ war x∗)(x) :≥ 0.6,≤ 0.5〉 (∃≥,≤) : (1)

(5) 〈War(x) :< 0.6, > 0.5〉 (∃<,>) : (3), (4)

(6) 〈War(x) :≥ 0.6,≤ 0.5〉, 〈war x∗(x) :≥ 0.6,≤ 0.5〉 (⊓≥,≤) : (4)

(7) clash (5), (6)

2
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16 Haibin Wang;André Rogatko;Florentin Smarandache; Rajshekhar Sunderraman

Proposition 5.1. A finite set of neutrosophic constraints S is satisfiable iff there

exists a clash free completion of S. ⊣

From a computational complexity point of view, the neutrosophic entailment

problem can be proven to be a PSPACE-complete problem, as is the classical en-

tailment problem and fuzzy entailment problem.

Proposition 5.2. Let Σ be a neutrosophic KB and let ϕ be a neutrosophic assertion.

Determining whether Σ |=n ϕ is a PSPACE-complete problem. ⊣

Proof. By the Proposition 1, Σ |=n ϕ iff ♯Σ |= ♯ϕ and ⋆Σ |= ⋆ϕ. From the PSPACE-

completeness of the entailment problem in fuzzy ALC11, PSPACE-completeness of

the neutrosophic entailment problems follows. 2

This result establishes an important property about our neutrosophic DLs. In effect,

it says that no additional computational cost has to be paid for the major expressive

power.

5.2. A Decision Procedure for the Subsumption Problem

In this section we address the subsumption problem, i.e. deciding whether C �n
ΣT

D,

where C and D are two concepts and ΣT is a neutrosophic terminology. As we have

seen (see Example 1), C �n
ΣT

D can be reduced to the case of an empty terminology

by applying the KB expansion process. So, without loss of generality, we can limit

our attention to the case C �n
∅ D.

It can easily be shown that

Proposition 5.3. Let C and D be two concepts. It follows that C �n
∅ D iff for all

n,m, 〈C(a) :≥ n,≤ m〉 |=n 〈D(a) :≥ n,≤ m〉, where a is a new individual. ⊣

Proof. (⇒) Assume that C �n
∅ D holds. Suppose to the contrary that ∃n,m such

that 〈C(a) :≥ n,≤ m〉 |=n 〈D(a) :≥ n,≤ m〉 does not hold. Therefore, there is an in-

terpretation I and an n,m such that |C|t(aI) ≥ n and |D|t(aI) < n or |C|f (aI) ≤ m

and |D|f (aI) > m. But, from the hypothesis n ≤ |C|t(aI) ≤ |D|t(aI) < n or

m ≥ |C|f (aI) ≥ |D|f (aI) > m follow. Absurd.

(⇐) Assume that for all n,m, 〈C(a) :≥ n,≤ m〉 |=n 〈D(a) :≥ n,≤ m〉 holds.

Suppose to the contrary that C �n
∅ D does not hold. Therefore, there is an inter-

pretation I and d ∈ ∆I such that |C|t(d) > |D|t(d) ≥ 0 or |C|f (d) < |D|f (d) ≤ 1.

Let us extent I to a such that aI = d and consider n = |C|t(d) and m = |C|f (d).

Of course, I satisfies 〈C(a) :≥ n,≤ m〉. Therefore, from the hypothesis it fol-

lows that I satisfies 〈D(a) :≥ n,≤ m〉, i.e. |D|t(d) ≥ n = |C|t(d) > |D|t(d) or

|D|f (d) ≤ m = |C|f (d) < |D|f (d). Absurd. 2

How can we check whether for all n,m, 〈C(a) :≥ n,≤ m〉 |=n 〈D(a) :≥ n,≤ m〉

holds? The following proposition shows that

Proposition 5.4. Let C andD be two concepts, n1,m1 ∈ {0, 0.25, 0.5, 0.75, 1} and let
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a be an individual. It follows that for all n,m〈C(a) :≥ n,≤ m〉 |=n 〈D(a) :≥ n,≤ m〉

iff 〈C(a) :≥ n1,≤ m1〉 |=n 〈D(a) :≥ n1,≤ m1〉 holds. ⊣

As a consequence, the subsumption problem can be reduced to the entailment prob-

lem for which we have a decision algorithm.

5.3. A Decision Procedure for the BTVB Problem

We address now the problem of determining glb(Σ, α) and lub(Σ, α). This is impor-

tant, as computing , e.g. glb(Σ, α), is in fact the way to answer a query of type “to

which degree is α (at least) true and (at most) false, given the (imprecise) facts in

Σ?”.

Without loss of generality, we will assume that all concepts are in NNF (Negation

Normal Form).

Proposition 5.5. Let Σ be a set of neutrosophic assertions in NNF and let α be an

assertion. Then glb(Σ, α) ∈ NΣ and lub(Σ, α) ∈MΣ, where

NΣ = {〈n,m〉 : 〈α :≥ n,≤ m′〉 ∈ Σ, 〈α :≥ n′,≤ m〉 ∈ Σ}

MΣ = {〈n,m〉 : 〈α :≤ n,≥ m′〉 ∈ Σ, 〈α :≤ n′,≥ m〉 ∈ Σ}

⊣

The algorithm computing glb(Σ, α) and lub(Σ, α) are described in Table 3.

Algorithm glb(Σ, α)

Set Min := 〈0, 1〉 and Max := 〈1, 0〉.

1. Pick 〈n,m〉 ∈MΣ such that first element of Min < n < first element of Max and

second element of Max < m < second element of Min. If there is no such 〈n,m〉,

then set glb(Σ, α) := Min and exit.

2. If Σ |=n 〈α :≥ n,≤ m〉 then set Min = 〈n,m〉, else set Max = 〈n,m〉. Go to Step 1.

Algorithm lub(Σ, α)

Set Min := 〈1, 0〉 and Max := 〈0, 1〉.

1. Pick 〈n,m〉 ∈ NΣ such that first element of Max < n < first element of Min and

second element of Min < m < second element of Max. If there is no such 〈n,m〉,

then set lub(Σ, α) := Min and exit.

2. If Σ |=n 〈α :≤ n,≥ m〉 then set Min = 〈n,m〉, else set Max = 〈n,m〉. Go to Step 1.

Table 3. Algorithms glb(Σ, α) and lub(Σ, α)
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6. Conclusions and Future Work

In this paper, we have presented a quite general neutrosophic extension of the

fuzzy DL ALC, a significant and expressive representative of the various DLs. Our

neutrosophic DL enables us to reason in presence of imprecise (fuzzy, incomplete,

and inconsistent) ALC concepts, i.e. neutrosophic ALC concepts. From a semantics

point of view, neutrosophic concepts are interpreted as neutrosophic sets, i.e. given

a concept C and an individual a, C(a) is interpreted as the truth-value and falsity-

value of the sentence “a is C”. From a syntax point of view, we allow to specify lower

and upper bounds of the truth-value and falsity-value of C(a). Complete algorithms

for reasoning in it have been presented, that is, we have devised algorithms for

solving the entailment problem, the subsumption problem as well as the best truth-

value bound problem.

An important point concerns computational complexity. The complexity result

shows that the additional expressive power has no impact from a computational

complexity point of view.

This work can be used as a basis both for extending existing DL and fuzzy DL

based systems and for further research. In this latter case, there are several open

points. For instance, it is not clear yet how to reason both in case of neutrosophic

specialization of the general form C ≺n D and in the case cycles are allowed in a

neutrosophic KB. Another interesting topic for further research concerns the seman-

tics of neutrosophic connectives. Of course several other choices for the semantics

of the connectives ⊓,⊔,¬, ∃, ∀ can be considered.
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