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Abstract.
New notions are introduced in algebra in order to better study the congruences in number theory.
For example, the <special semigroups> make an important such contribution.
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Introduction.
By <proper subset> of a set A we consider a set P included in A,
and different from A, different from the empty set, and from the unit element
in A - if any.

  We rank the algebraic structures using an order relationship:
we say that the algebraic structures S1 << S2 if:
- both are defined on the same set;
- all S1 laws are also S2 laws;
- all axioms of an S1 law are accomplished by the corresponding S2 law;
- S2 laws accomplish strictly more axioms than S1 laws, or S2 has more laws
than S1.

  For example: semigroup << monoid << group << ring << field,
or semigroup << commutative semigroup, ring << unitary ring, etc.

  We define a GENERAL SPECIAL STRUCTURE to be a structure SM on a set A,
different from a structure SN, such that a proper subset of A is an SN
structure, where SM << SN.

1)  The SPECIAL SEMIGROUP is defined to be a semigroup A, different from
a group, such that a proper subset of A is a group (with respect to the same
induced operation).

For example, if we consider the commutative multiplicative group
  SG = {18^2, 18^3, 18^4, 18^5} (mod 60)
we get the table:



     x  |  24 12 36 48
    --- |-------------
     24 |  36 48 24 12
     12 |  48 24 12 36
     36 |  24 12 36 48
     48 |  12 36 48 24

Unitary element is 36.

Using the algorithm [Smarandache 1972] we get that
      18^2 is congruent to 18^6 (mod 60).

Now we consider the commutative multiplicative semigroup
    SS =  {18^1, 18^2, 18^3, 18^4, 18^5} (mod 60)
and we get the table:

      x | 18 | 24 12 36 48
    ----|----|------------
    18 | 24 | 12 36 48 24
    ----|----|------------
     24 | 12 | 36 48 24 12
     12 | 36 | 48 24 12 36
     36 | 48 | 24 12 36 48
     48 | 24 | 12 36 48 24

Because SS contains a proper subset SG, which is a group, then SS is a
Special Semigroup.   This is generated by the element 18.  The
powers of 18 form a cyclic sequence: 18,  24,12,36,48,  24,12,36,48, ... .

Similarly are defined:

2) The SPECIAL MONOID is defined to be a monoid A, different from a group,
such that a proper subset of A is a group (with respect with the same induced
operation).

3) The SPECIAL RING is defined to be a ring A, different from a field, such
that a proper subset of A is a field (with respect with the same induced
operations).

We consider the commutative additive group M={0,18^2,18^3,18^4,18^5}
(mod 60) [using the module 60 residuals of the previous powers of 18],
M={0,12,24,36,48}, unitary additive unit is 0.
(M,+,x) is a field.
While (SR,+,x)={0,6,12,18,24,30,36,42,48,54} (mod 60) is a ring whose



proper subset {0,12,24,36,48} (mod 60) is a field.
Therefore (SR,+,x) (mod 60) is a Special Ring.
This feels very nice.

4) The SPECIAL SUBRING is defined to be a Special Ring B which
is a proper subset of a Special Ring A (with respect with the same
induced operations).

5) The SPECIAL IDEAL is defined to be an ideal A, different from a field,
such that a proper subset of A is a field (with respect with the same induced
operations).

6) The SPECIAL SEMILATTICE is defined to be a lattice A, different from a
lattice, such that a proper subset of A is a lattice (with respect with the
same induced operations).

7) The SPECIAL FIELD is defined to be a field (A,+,x), different from a
K-algebra, such that a proper subset of A is a K-algebra (with respect with
the same induced operations, and an external operation).

8) The SPECIAL R-MODULE is defined to be an R-MODULE (A,+,x), different from
an S-algebra, such that a proper subset of A is an S-algebra (with respect
with the same induced operations, and another "x" operation internal on A),
where R is a commutative unitary ring and S is its proper subset field.

9) The SPECIAL K-VECTORIAL SPACE is defined to be a K-vectorial
space (A,+,.), different from a K-algebra, such that a proper subset of A is
a K-algebra (with respect with the same induced operations, and another "x"
operation internal on A), where K is a commutative field.
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