ABOUT THE CHARACTERISTIC FUNCTION OF A SET

Prof. Mihály Bencze, Department of Mathematics, University of Braşov, Romania

Prof. Florentin Smarandache, Chair of Department of Math & Sciences, University of New Mexico, 200 College Road, Gallup, NM 87301, USA, E-mail: smarand@unm.edu

Abstract:

In this paper we give a method, based on the characteristic function of a set, to solve some difficult problems of set theory found in undergraduate studies.

Definition: Let's consider $A \subset E \neq \emptyset$ (a universal set), then $f_A : E \to \{0, 1\}$, where the function $f_A(x) = \begin{cases} 1, & \text{if } x \in A \\ 0, & \text{if } x \notin A \end{cases}$ is called the characteristic function of the set

A.

Theorem 1: Let's consider A, $B \subset E$. In this case $f_A = f_B$ if and only if A = B.

Proof.

$$f_A(x) = \begin{cases} 1, & \text{if } x \in A = B \\ 0, & \text{if } x \notin A = B \end{cases} = f_B(x)$$

Reciprocally: For any $x \in A$, $f_A(x) = 1$, but $f_A = f_B$, therefore $f_B(x) = 1$, namely $x \in B$ from where $A \subset B$. The same way we prove that $B \subset A$, namely A = B.

Theorem 2: $f_{\tilde{A}} = 1 - f_A$, $\tilde{A} = C_E A$.

 $\begin{array}{l} \mathbf{Prof.} \\ f_{\tilde{A}}(x) = \begin{cases} 1, & \text{if } x \in \tilde{A} \\ 0, & \text{if } x \notin \tilde{A} \end{cases} = \begin{cases} 1, & \text{if } x \notin A \\ 0, & \text{if } x \in A \end{cases} = \begin{cases} 1-0, & \text{if } x \notin A \\ 1-1, & \text{if } x \in A \end{cases} = 1 - \begin{cases} 0, & \text{if } x \notin A \\ 1, & \text{if } x \in A \end{cases} = 1 - f_A(x) \end{cases}$

Theorem 3: $f_{A \cap B} = f_A * f_B$.

Proof.

$$f_{A\cap B}(x) = \begin{cases} 1, & \text{if } x \in A \cap B \\ 0, & \text{if } x \notin A \cap B \end{cases} = \begin{cases} 1, & \text{if } x \in A \text{ and } x \in B \\ 0, & \text{if } x \notin A \text{ or } x \notin B \end{cases} = \begin{cases} 1, & \text{if } x \in A, x \notin B \\ 0, & \text{if } x \notin A, x \notin B \\ 0, & \text{if } x \notin A, x \notin B \end{cases}$$
$$= \left(\begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A \end{cases} \right) \left(\begin{cases} 1 & \text{if } x \in B \\ 0 & \text{if } x \notin B \end{pmatrix} \right) = f_A(x) f_B(x) . \end{cases}$$

The theorem can be generalized by induction:

Theorem 4: $f_{\bigcap_{k=1}^{n}A_{k}} = \prod_{k=1}^{n} f_{A_{k}}$

Consequence. For any $n \in \mathbb{N}^*$, $f_M^n = f_M$. **Proof.** In the previous theorem we chose $A_1 = A_2 = ... = A_n = M$.

Theorem 5:
$$f_{A\cup B} = f_A + f_B - f_A f_B$$
.
Proof.
 $f_{A\cup B} = f_{\overline{A\cup B}} = f_{\overline{A\cap B}} = 1 - f_{\overline{A}\cap\overline{B}} = 1 - f_{\overline{A}}f_{\overline{B}} = 1 - (1 - f_A)(1 - f_B) = f_A + f_B - f_A f_B$

It can be generalized by induction:

Theorem 6:
$$f_{\substack{\bigcup \\ k=1 \\ k=1}}^{n} f_{k_{i_{1}}} = \sum_{k=1}^{n} (-1)^{k-1} \sum_{1 \le i_{1} < \dots < i_{k} \le n}^{n} (-1)^{k-1} f_{A_{i_{1}}} f_{A_{i_{2}}} \dots f_{A_{i_{k}}}$$

Theorem 7: $f_{A-B} = f_A (1 - f_B)$ **Proof.** $f_{A-B} = f_{A \cap \overline{B}} = f_A f_{\overline{B}} = f_A (1 - f_B)$. It can be generalized by induction:

Theorem 8:
$$f_{A_1-A_2-...-A_n} = \sum_{k=1}^n (-1)^{k-1} f_{A_{i_1}} f_{A_{i_2}} ... f_{A_{i_k}}$$
.

Theorem 9: $f_{A\Delta B} = f_A + f_B - 2f_A f_B$ **Proof.**

 $f_{A\Delta B} = f_{A\cup B-A\cap B} = f_{A\cup B} \left(1 - f_{A\cap B}\right) = \left(f_A + f_B - f_A f_B\right) \left(1 - f_A f_B\right) = f_A + f_B - 2f_A f_B$ It can be generalized by induction:

Theorem 10: $F_{\Delta_{k=1}^{n}A_{k}} = \sum_{k=1}^{n} (-2)^{k-1} \sum_{1 \le i_{1} < \ldots < i_{k} \le n} f_{A_{i_{1}}A_{i_{2}} \ldots A_{i_{k}}}$.

Theorem 11: $f_{A \times B}(x, y) = f_A(x) f_B(y)$.

Proof. If $(x, y) \in A \times B$, then $f_{A \times B}(x, y) = 1$ and $x \in A$, namely $f_A(x) = 1$ and $y \in B$, namely $f_B(y) = 1$, therefore $f_A(x)f_B(y) = 1$. If $(x, y) \notin A \times B$, then $f_{A \times B}(x, y) = 0$ and $x \notin A$, namely $f_A(x) = 0$ or $y \notin B$, namely $f_B(y) = 0$, therefore $f_A(x)f_B(y) = 0$.

This theorem can be generalized by induction.

Theorem 12:
$$f_{x_{k=1}^n A_k}(x_1, x_2, ..., x_n) = \prod_{k=1}^n f_{A_k}(x_k).$$

Theorem 13: (De Morgan) $\overline{\bigcup_{k=1}^{n} A_k} = \bigcap_{k=1}^{n} \overline{A_k}$ **Proof.**

$$f_{\frac{n}{\bigcup_{k=1}^{n}A_{k}}} = 1 - f_{\frac{n}{\bigcup_{k=1}^{n}A_{k}}} = 1 - \sum_{k=1}^{n} (-1)^{k-1} \sum_{1 \le i_{1} < \ldots < i_{k} \le n}^{n} f_{A_{i_{1}}} f_{A_{i_{2}}} \dots f_{A_{i_{k}}} = \prod_{k=1}^{n} (1 - f_{A_{k}}) = \prod_{k=1}^{n} f_{\overline{A}_{k}} = f_{\frac{n}{A_{k}}} - f_{\overline{A}_{k}} = f_{\frac{n}{A_{k}}} - f_{\overline{A}_{k}} = f_{\overline{A}_{k}} - f_{\overline{A}_{k}} = f_{\overline{A}_{k}} - f_{\overline{A}_{k}} = f_{\overline{A}_{k}} - f_{\overline{A}_{k}} - f_{\overline{A}_{k}} - f_{\overline{A}_{k}} = f_{\overline{A}_{k}} - f_{\overline{A}_{k}}$$

We prove in the same way the following theorem:

Theorem 14: (De Morgan) $\overline{\bigcap_{k=1}^{n} A_{k}} = \bigcup_{k=1}^{n} \overline{A_{k}}$.

Theorem 15: $\left(\bigcup_{k=1}^{n} A_{k}\right) \cap M = \bigcup_{k=1}^{n} \left(A_{k} \cap M\right).$

Proof.

$$f_{\binom{n}{k+1}A_k} \cap M = f_{\underset{k=1}{M}A_k}^n f_M = \sum_{k=1}^n (-1)^{k-1} \sum_{1 \le i_1 < \ldots < i_k \le n}^n f_{A_{i_1}} f_{A_{i_2}} \cdots f_{A_{i_k}} f_M = \sum_{k=1}^n (-1)^{k-1} \sum_{1 \le i_1 < \ldots < i_k \le n}^n f_{A_{i_1}} f_{A_{i_2}} \cdots f_{A_{i_k}} f_M^k = \sum_{k=1}^n (-1)^{k-1} \sum_{1 \le i_1 < \ldots < i_k \le n}^n f_{A_{i_1}} f_{A_{i_2}} \cdots f_{A_{i_k}} f_M^k = \sum_{k=1}^n (-1)^{k-1} \sum_{1 \le i_1 < \ldots < i_k \le n}^n f_{A_{i_1}} f_{A_{i_2}} \cdots f_{A_{i_k}} f_M^k = \sum_{k=1}^n (-1)^{k-1} \sum_{1 \le i_1 < \ldots < i_k \le n}^n f_{A_{i_1}} \cap M f_{A_{i_2}} \cap M \cdots f_{A_{i_k}} \cap M = f_{\underset{k=1}{\bigcup}(A_k \cap M)}^n$$

In the same way we prove that:

Theorem 16: $\left(\bigcap_{k=1}^{n} A_{k}\right) \bigcup M = \bigcap_{k=1}^{n} \left(A_{k} \bigcup M\right).$

Theorem 17: $\left(\Delta_{k=1}^{n}A_{k}\right)\cap M = \Delta_{k=1}^{n}\left(A_{k}\cap M\right)$

Application.

 $(\Delta_{k=1}^{n}A_{k})$ $\bigcup M = \Delta_{k=1}^{n}(A_{k} \bigcup M)$ if and only if $M = \Phi$.

Theorem 18: $M \times \left(\bigcup_{k=1}^{n} A_{k}\right) = \bigcup_{k=1}^{n} \left(M \times A_{k}\right)$ **Proof.**

$$f_{M \times \binom{n}{k+1}A_k}(x, y) = f_M(y)f_{\prod_{k=1}^n A_k}(x) = \sum_{k=1}^n (-1)^{k-1} \sum_{1 \le i_1 < \dots < i_k \le n}^n f_{A_{i_1}}(x)f_{A_{i_2}}(x)\dots f_{A_{i_k}}(x)f_M(y) =$$
$$= \sum_{k=1}^n (-1)^{k-1} \sum_{1 \le i_1 < \dots < i_k \le n}^n f_{A_{i_1}}(x)f_{A_{i_2}}(x)\dots f_{A_{i_k}}(x)f_M^k(y) =$$
$$= \sum_{k=1}^n (-1)^{k-1} \sum_{1 \le i_1 < \dots < i_k \le n}^n f_{A_{i_1} \times M}(x, y)\dots f_{A_{i_k} \times M}(x, y) = f_{\prod_{k=1}^n (M \times A_k)}$$

In the same way we prove that:

Theorem 19:
$$M \times \left(\bigcap_{k=1}^{n} A_{k}\right) = \bigcap_{k=1}^{n} \left(M \times A_{k}\right).$$

Theorem 20: $M \times (A_1 - A_2 - ... - A_n) = (M \times A_1) - (M \times A_2) - ... - (M \times A_n).$ Theorem 21: $(A_1 - A_2) \cup (A_2 - A_3) \cup ... \cup (A_{n-1} - A_n) \cup (A_n - A_1) = \bigcup_{k=1}^n A_k - \bigcap_{k=1}^n A_k$ Proof 1.

$$\begin{split} f_{(A_{1}-A_{2})\cup..\cup(A_{n}-A_{1})} &= \sum_{k=1}^{n} (-1)^{k-1} \sum_{1 \le i_{1} < \ldots < i_{k} \le n}^{n} f_{A_{i_{1}}-A_{i_{2}}} \cdots f_{A_{i_{k}}-A_{i_{1}}} = \\ &= \sum_{k=1}^{n} (-1)^{k-1} \sum_{1 \le i_{1} < \ldots < i_{k} \le n}^{n} (f_{A_{i_{1}}} - f_{A_{i_{2}}} - f_{A_{i_{1}}} f_{A_{i_{2}}}) \cdots (f_{A_{i_{k}}} - f_{A_{i_{1}}} - f_{A_{i_{k}}} f_{A_{i_{1}}}) = \\ &= \sum_{k=1}^{n} (-1)^{k-1} \sum_{1 \le i_{1} < \ldots < i_{k} \le n}^{n} f_{A_{i_{1}}} \cdots f_{A_{i_{k}}} \left(1 - \prod_{p=1}^{n} f_{A_{p}} \right) = f_{\bigcup_{k=1}^{n} A_{k}} \left(1 - f_{\bigcap_{k=1}^{n} A_{k}} \right) = f_{\bigcup_{k=1}^{n} A_{k}} \bigcap_{k=1}^{n} A_{k} - \bigcap_{k=1}^{n} A_{k} \right). \end{split}$$

Proof 2. Let's consider $x \in \bigcup_{i=1}^{n} (A_i - A_{i+1})$, (where $A_{n+1} = A_1$), then there exists k such that $x \in (A_k - A_{k+1})$, namely $x \notin (A_k \cap A_{k+1}) \subset A_1 \cap A_2 \cap \ldots \cap A_n$, namely $x \notin A_1 \cap A_2 \cap \ldots \cap A_n$, and $x \in \bigcup_{k=1}^{n} A_k - \bigcup_{k=1}^{n} A_k$.

Now we prove the inverse statement:

Let's consider $x \in \bigcup_{k=1}^{n} A_k - \bigcap_{k=1}^{n} A_k$, we show that there exists k such that $x \in A_k$ and $x \notin A_{k+1}$. On the contrary, it would result that for any $k \in \{1, 2, ..., n\}$, $x \in A_k$ and $x \in A_{k+1}$ namely $x \in \bigcup_{k=1}^{n} A_k$, it results that there exists p such that $x \in A_p$, but from the previous reasoning it results that $x \in A_{p+1}$, and using this we consequently obtain that $x \in A_k$ for $k = \overline{p, n}$. But from $x \in A_n$ we obtain that $x \in A_1$, therefore, it results that $x \in A_k$, $k = \overline{1, p}$, from where $x \in A_k$, $k = \overline{1, n}$, namely $x \in A_1 \cap \ldots \cap A_n$, that is a contradiction. Thus there exists r such that $x \in A_r$ and $x \notin A_{r+1}$, namely $x \in (A_r - A_{r+1})$ and therefore $x \in \bigcup_{k=1}^{n} (A_k - A_{k+1})$.

In the same way we prove the following theorem:

Theorem 22:
$$(A_1 \Delta A_2) \cup (A_2 \Delta A_3) \cup \dots \cup (A_{n-1} \Delta A_n) = \bigcup_{k=1}^n A_k - \bigcap_{k=1}^n A_k$$
.

$$\begin{split} \left(A_{1} \times A_{2} \times \ldots \times A_{k}\right) & \cap \left(A_{k+1} \times A_{k+2} \times \ldots \times A_{2k}\right) \cap \left(A_{n} \times A_{1} \times \ldots \times A_{k-1}\right) = \left(A_{1} \cap A_{2} \cap \ldots \cap A_{n}\right)^{k} . \\ \mathbf{Proof.} \ f_{(A_{1} \times \ldots \times A_{k}) \cap \ldots \cap (A_{n} \times A_{1} \times \ldots \times A_{k-1})}(x_{1}, \ldots, x_{n}) = \\ &= f_{A_{1} \times \ldots \times A_{k}}(x_{1}, \ldots, x_{n}) \ldots f_{A_{n} \times \ldots \times A_{k-1}}(x_{1}, \ldots, x_{n}) = \\ &= \left(f_{A_{1}}(x_{1}) \ldots f_{A_{k}}(x_{k})\right) \ldots \left(f_{A_{n}}(x_{n}) \ldots f_{A_{k-1}}(x_{k-1})\right) = \\ &= f_{A_{1}}^{k}(x_{1}) \ldots f_{A_{n}}^{k}(x_{n}) = f_{A_{1} \cap \ldots \cap A_{n}}^{k}(x_{1}, \ldots, x_{n}) = \\ &= f_{(A_{1} \cap \ldots \cap A_{n})^{k}}(x_{1}, \ldots, x_{n}) . \end{split}$$

Theorem 24. (P(E), U) is a commutative monoid.

Proof. For any $A, B \in P(E)$; $A \cup B \in P(E)$, namely the intern operation. Because $(A \cup B) \cup C = A \cup (B \cup C)$ is associative, $A \cup B = B \cup A$ commutative, and because $A \cup \emptyset = A$ then \emptyset is the neutral element.

Theorem 25: $(P(E), \bigcap)$ is a commutative monoid.

Proof. For any $A, B \in P(E)$; $A \cap B \in P(E)$ namely intern operation. $(A \cap B) \cap C = A \cap (B \cap C)$ associative, $A \cap B = B \cap A$, commutative $A \cap E = A$, *E* is the neutral element.

Theorem 26: $(P(E), \Delta)$ is an abelian group.

Proof. For any $A, B \in P(E)$; $A\Delta B \in P(E)$, namely the intern operation. $A\Delta B = B\Delta A$ commutative. The proof of associativity is in the XIIth grade manual as a problem. We'll prove it using the characteristic function of the set.

 $f_{(A\Delta B)\Delta C} = 4f_A f_B f_C - 2f_A f_B + f_B f_C + f_C f_A + f_A + f_B + f_C = f_{A\Delta (B\Delta C)}.$

Because $A\Delta \emptyset = A$, \emptyset is the neutral element and because $A\Delta A = \emptyset$; the symmetric element of A is A itself.

Theorem 27: $(P(E), \Delta, \bigcap)$ is a commutative Boole ring with a divisor of zero.

Proof. Because the previous theorem satisfies the commutative ring axioms, the first part of the theorem is proved. Now we prove that it has a divisor of zero. If $A \neq \emptyset$ and $B \neq \emptyset$ are two disjoint sets, then $A \cap B = \emptyset$, thus it has divisor of zero. From Theorem 17 we get that it is distributive for n = 2. Because for any $A \in P(E)$; $A \cap A = A$ and $A \Delta A = \emptyset$ it also satisfies the Boole-type axioms.

Theorem 28: Let's consider $H = \{f \mid f : E \to \{0,1\}\}$, then (H, \oplus) is an abelian group, where $f_A \oplus f_B = f_A + f_B - 2f_A f_B$ and $(P(E), \Delta) \cong (H, \oplus)$.

Proof. Let's consider $F: P(E) \to H$, where $f(A) = f_A$, then, from the previous theorem we get that it is bijective and because $F(A\Delta B) = f_{A\Delta B} = F(A) \oplus F(B)$ it is compatible.

Theorem 29: $card(A_1 \Delta A_n) \leq card(A_1 \Delta A_2) + card(A_2 \Delta A_3) + ... + card(A_{n-1} \Delta A_n)$.

Proof. By induction. If n = 2, then it is true, we show that for n = 3 it is also true. Because $(A_1 \cap A_2) \cup (A_2 \cap A_3) \subseteq A_2 \cup (A_1 \cap A_3)$;

$$card\left(\left(A_{1} \cap A_{2}\right) \cup \left(A_{2} \cap A_{3}\right)\right) \leq card\left(A_{2} \cup \left(A_{1} \cap A_{3}\right)\right) \text{ but}$$

$$card\left(M \cup N\right) = cardM + cardN - card\left(M \cap N\right), \text{ and thus}$$

$$cardA_{2} + card\left(A_{1} \cap A_{3}\right) - card\left(A_{1} \cap A_{2}\right) - card\left(A_{2} \cap A_{3}\right) \geq 0, \quad \text{ can } \quad \text{ be}$$

written as

 $cardA_1 + cardA_3 - 2card(A_1 \cap A_3) \leq$

$$\leq \left(cardA_1 + cardA_2 - 2card\left(A_1 \cap A_2\right) \right) + \left(cardA_2 + cardA_3 - 2card\left(A_2 \cap A_3\right) \right)$$

But because of

 $(M \Delta N) = cardM + cardN - 2card(M \cap N)$

then $card(A_1\Delta A_3) \leq card(A_1\Delta A_2) + card(A_2\Delta A_3)$. The proof of this step of the induction relies on the above method.

Theorem 30: $(P^2(E), card(A\Delta B))$ is a metric space.

Proof. Let $d(A, B) = card(A \Delta B)$: $P(E) \times P(E) \rightarrow \Box$

1. $d(A,B) = 0 \Leftrightarrow card(A\Delta B) = 0 \Leftrightarrow card((A - B) \cup (B - A)) = 0$ but

because $(A-B)\cap (B-A) = \emptyset$ we obtain (A-B)+card(B-A) = 0 and because (A-B)=0 and card(B-A)=0, then $A-B=\emptyset$, $B-A=\emptyset$, and A=B.

2. d(A,B) = d(B,A) results from $A\Delta B = B\Delta A$.

3. As a consequence of the previous theorem $d(A,C) \le d(A,B) + d(B,C)$.

As a result of the above three properties it is a metric space.

PROBLEMS

Problem 1.

Let's consider $A = B \cup C$ and $f: P(A) \to P(A) \times P(A)$, where $f(x) = (X \cup B, X \cup C)$. Prove that f is injective if and only if $B \cap C = \emptyset$.

Solution 1. If f is injective. Then

 $f(\emptyset) = (\emptyset \cup B, \emptyset \cup C) = (B, C) = ((B \cap C) \cup B, (B \cap C) \cup C) = f(B \cap C)$ from which we obtain $B \cap C = \emptyset$. Now reciprocally: Let's consider $B \cap C = \emptyset$, then f(X) = f(Y); it results that $X \cup B = Y \cup B$ and $X \cup C = Y \cup C$ or $X = X \cup \emptyset = X \cup (B \cap C) = (X \cup B) \cap (X \cup C) = (Y \cup B) \cap (Y \cup C) = Y \cup (B \cap C) = Y \cup \emptyset = Y$ namely it is injective.

Solution 2. Let's consider $B \cap C = \emptyset$ passing over the set function f(X) = f(Y)if and only if $X \cup B = Y \cup B$ and $X \cup C = Y \cup C$, namely $f_{X \cup B} = f_{Y \cup B}$ and $f_{X \cup C} = f_{Y \cup C}$ or $f_X + f_B - f_X f_B = f_Y + f_B - f_Y f_B$ and $f_X + f_C - f_X f_C = f_Y + f_C - f_Y f_C$ from which we obtain $(f_X - f_Y)(f_B - f_C) = 0$.

Because $A = B \cup C$ and $B \cap C = \emptyset$, we have

$$(f_B - f_C)(u) = \begin{cases} 1, & \text{if } u \in B \\ -1, & \text{if } u \in C \end{cases} \neq 0$$

therefore $f_X - f_Y = 0$, namely X = Y and thus it is injective.

Generalization. Let $M = \bigcup_{k=1}^{n} A_k$ and $f : P(A) \to P^n(A)$, where

 $f(X) = (X \cup A_1, X \cup A_2, ..., X \cup A_n).$

Prove that f is injective if and only if $A_1 \cap A_2 \cap ... \cap A_n = \emptyset$.

Problem 2. Let $E \neq \emptyset$, $A \in P(E)$, and $f : P(E) \rightarrow P(E) \times P(E)$, where $f(X) = (X \cap A, X \cup A)$.

- a. Prove that f is injective
- b. Prove that $\{f(x), x \in P(E)\} = \{(M, N) | M \subset A \subset N \subset E\} = K$.
- c. Let $g: P(E) \to K$, where g(X) = f(X). Prove that g is bijective and compute its inverse.

Solution.

a. f(X) = f(Y), namely $(X \cap A, X \cup A) = (Y \cap A, Y \cup A)$ and then $X \cap A = Y \cap A$, $X \cup A = Y \cup A$, from where $X \Delta A = Y \Delta A$ or $(X \Delta A) \Delta A = (Y \Delta A) \Delta A$, $X \Delta (A \Delta A) = Y \Delta (A \Delta A)$, $X \Delta \emptyset = Y \Delta \emptyset$ and thus X = Y, namely *f* is injective.

b. $\{f(X), X \in P(E)\} = f(P(E))$. We'll show that $f(P(E)) \subset K$. For any $(M,N) \in f(P(E)), \exists X \in P(E) : f(X) = (M,N); (X \cap A, X \cup A) = (M,N)$. From here $X \cap A = M$, $X \cup A = N$, namely $M \subset A$ and $A \subset N$

thus $M \subset A \subset N$, and, therefore $(M, N) \in X$.

Now, we'll show that $K \subset f(P(E))$, for any $(M,N) \in K$, $\exists X \in P(E)$ such that f(X) = (M,N). f(X) = (M,N), namely $(X \cap A, X \cup A) = (M,N)$ from where $X \cap A = M$ and $X \cup A = N$, namely $X \Delta A = N - M$, $(X \Delta A) \Delta A = (N - M) \Delta A$, $X \Delta \emptyset = (N - M) \Delta A$,

$$X = (N - M)\Delta A, \quad X = (N \cap M)\Delta A,$$

$$X = \left((N \cap \overline{M}) - A\right) \cup \left(A - (N \cap \overline{M})\right) = \left((N \cap \overline{M}) \cap A\right) \cup \left(A \cap (\overline{N \cap \overline{M}})\right) =$$

$$= \left(N \cap (\overline{M} \cap \overline{A})\right) \cup \left(A \cap (N \cap \overline{M})\right) = (N \cap \overline{A}) \cup \left((A \cap \overline{N}) \cup (A \cap M)\right) =$$

 $= (N \cap \overline{A}) \bigcup (\emptyset \bigcup M) = (N - A) \bigcup M.$

From here we get the unique solution: $X = (N - A) \cup M$. We test $f((N - A) \cup M) = (((N - A) \cup M) \cap A, ((N - A) \cup M) \cup A)$

but

$$((N-A)\cup M)\cap A = ((N\cap\overline{A})\cup M)\cap A = ((N\cap\overline{A})\cap A)\cup (M\cap A) = = ((N\cap(\overline{A}\cap A))\cup M = (N\cap\emptyset)\cup M = \emptyset\cup M = M$$

and

$$((N-A) \bigcup M) \bigcup A = (N-A) \bigcup (M \bigcup A) = (N-A) \bigcup A = (N \cap A) \bigcup A =$$
$$= (N \bigcup A) \cap (\overline{A} \bigcup A) = N \cap E = N, f((N-A) \bigcup M) = (M,N).$$

Thus f(P(E)) = K.

c. From point a. we have that g is injective, from point b. we have that g surjective, thus g is bijective. The inverse function is:

$$g^{-1}(M,N) = (N-A) \mathsf{U} M$$

Problem 3. Let $E \neq \emptyset$, $A, B \in P(E)$ and $f: P(E) \rightarrow P(E) \times P(E)$, where $f(X) = (X \cap A, X \cap B)$.

- a. Give the necessary and sufficient condition such that f is injective.
- b. Give the necessary and sufficient condition such that f is surjective.

c. Supposing that f is bijective, compute its inverse. *Solution.*

a. Suppose that f is injective. Then:

 $f(A \cup B) = ((A \cup B) \cap A, (A \cup B) \cap B) = (A, B) = (E \cap A, E \cap B) = f(E),$

from where $A \cup B = E$.

Now we suppose that $A \cup B = E$, it results that:

 $X = X \cap E = X \cap (A \cup B) = (X \cap A) \cup (X \cap B) = (Y \cap A) \cup (Y \cap B) = Y \cap (A \cup B) = Y \cap E = Y$ namely from f(X) = f(Y) we obtain that X = Y, namely f is injective.

b. Suppose that f is surjective, for any $M, N \in P(A) \times P(B)$, there exists

 $X \in P(E), f(X) = (M, N), (X \cap A, X \cap B) = (M, N), X \cap A = M, X \cap B = N.$

In special cases $(M, N) = (A, \emptyset)$, there exists $X \in P(E)$, from

 $X \supset A, \ \emptyset = X \cap B \supset A \cap B, \ A \cap B = \emptyset.$

Now we suppose that $A \cap B = \emptyset$ and show that it is surjective.

Let $(M,N) \in P(A) \times P(B)$, then $M \subset A, N \subset B$, $M \cap B \subset A \cap B = \emptyset$, and $N \cap A \subset B \cap A = \emptyset$, namely $M \cap B = \emptyset$, $N \cap A = \emptyset$ and $f(M \cup N) = ((M \cup N) \cap A, (M \cup N) \cap B) =$ $= ((M \cap A) \cup (N \cap A), (M \cap B) \cup (N \cap B)) = (M \cup \emptyset, \emptyset \cup N) = (M, N),$ for any (M, N) there exists $X = M \bigcup N$ such that f(X) = (M, N), namely f is surjective.

c. We'll show that $f^{-1}((M, N)) = M \bigcup N$.

Remark. In the previous two problems we can use the characteristic function of the set as in the first problem. We leave this method for the readers.

Application. Let $E \neq \emptyset$, $A_k \in P(E)$ (k = 1,...,n) and $f: P(E) \to P^n(E)$, where $f(X) = (X \cap A_1, X \cap A_2, ..., X \cap A_n)$.

Prove that f is injective if and only if $\bigcup_{k=1}^{n} A_k = E$.

Application. Let $E \neq \emptyset$, $A_k \in P(E)$, (k = 1, ..., n) and $f: P(E) \to P^n(E)$, where $f(X) = (X \cap A_1, X \cap A_2, ..., X \cap A_n)$.

Prove that f is surjective if and only if $\bigcap_{k=1}^{n} \overline{A}_{k} = \emptyset$.

Problem 4. We name the set *M* convex if for any $x, y \in M$ $tx + (1-t)y \in M$, for any $t \in [0,1]$.

Prove that if A_k , (k = 1,...,n) are convex sets, then $\bigcap_{k=1}^{n} A_k$ is also convex.

Problem 5. If A_k , (k = 1,...,n) are convex sets, then $\bigcap_{k=1}^n A_k$ is also convex.

Problem 6. Give the necessary and sufficient condition such that if A, B are convex/concave sets, then $A \cup B$ is also convex/concave. Generalization for the \mathbb{N} set.

Problem 7. Give the necessary and sufficient condition such that if *A*, *B* are convex/concave sets then $A\Delta B$ is also convex/concave. Generalization for the \mathbb{N} set.

Problem 8. Let $f, g: P(E) \to P(E)$, where f(x) = A - X, and $g(x) = A\Delta X$, $A \in P(E)$.

Prove that f, g are bijective and compute their inverse functions.

Problem 9. Let $A \circ B = \{(x, y) \in \Box \times \Box \mid \exists z \in \Box : (x, z) \in A \text{ and } (z, y) \in B\}$. In a particular case let $A = \{(x, \{x\}) \mid x \in \Box\}$ and $B = \{(\{y\}, y\}) \mid y \in \Box\}$. Represent the $A \circ A$, $B \circ A$, $B \circ B$ cases.

Problem 10.

i. If $A \cup B \cup C = D$, $A \cup B \cup D = C$, $A \cup C \cup D = B$, $B \cup C \cup D = A$, then A = B = C = D ii. Are there different A, B, C, D sets such that $A \cup B \cup C = A \cup B \cup D = A \cup C \cup D = B \cup C \cup D$?

Problem 11. Prove that $A \Delta B = A \cup B$ if and only if $A \cap B = \emptyset$.

Problem 12. Prove the following identity.

$$\bigcap_{i,j=1,i< j}^{n} A_{k} \bigcup A_{j} = \bigcup_{i=1}^{n} \left(\bigcap_{j=1, j\neq i}^{n} A_{j} \right)$$

Problem 13. Prove the following identities.

$$(A \cup B) - (B \cap C) = (A - (B \cap C)) \cup (B - C) = (A - B) \cup (A - C) \cup (B - C)$$

and

$$A - \left[\left(A \cap C \right) - \left(A \cap B \right) \right] = \left(A - \overline{B} \right) \cup \left(A - C \right).$$

Problem 14. Prove that $A \cup (B \cap C) = (A \cup B) \cap C = (A \cup C) \cap B$ if and only if $A \subset B$ and $A \subset C$.

Problem 15. Prove the following identities:

(A-B)-C = (A-B)-(C-B), $(A\cup B)-(A\cup C) = B-(A\cap C),$ $(A\cap B)-(A\cap C) = (A\cap B)-C.$

Problem 16. Solve the following system of equations:

 $\begin{cases} A \cup X \cup Y = (A \cup X) \cap (A \cup Y) \\ A \cap X \cap Y = (A \cap X) \cup (A \cap Y) \end{cases}$

Problem 17. Solve the following system of equations:

 $\begin{cases} A\Delta X\Delta B = A\\ A\Delta Y\Delta B = B \end{cases}$

Problem 18. Let *X*, *Y*, *Z* \subseteq *A*. Prove that: $Z = (X \cap \overline{Z}) \cup (Y \cap \overline{Z}) \cup (\overline{X} \cap Z \cap \overline{Y})$ if and only if $X = Y = \emptyset$.

Problem 19. Prove the following identity:

$$\bigcup_{k=1}^{n} \left[A_{k} \cup \left(B_{k} - C \right) \right] = \left(\bigcup_{k=1}^{n} A_{k} \right) \cup \left[\left(\bigcup_{k=1}^{n} A_{k} \right) - C \right].$$

Problem 20. Prove that: $A \cup B = (A - B) \cup (B - A) \cup (A \cap B)$.

Problem 21. Prove that:

$(A\Delta B)\Delta C = (A \cap \overline{B} \cap \overline{C}) \cup (\overline{A} \cap B \cap \overline{C}) \cup (\overline{A} \cap \overline{B} \cap C) \cup (A \cap B \cap C).$

REFERENCES:

- [1] Mihály Bencze, F. Popovici Permutaciok Matematikai Lapok, Kolozsvar, pp. 7-8, 1991.
- [2] Pellegrini Miklós Egy ujabb kiserlet, a retegezett halmaz. M.L., Kolozsvar, 6, 1978.
- [3] Halmazokra vonatkozo egyenletekrol Matematikai Lapok, Kolozsvar, 6, 1970.
- [4] Alkalmazasok a halmazokkal kapcsolatban Matematikai Lapok, Kolozsvar, 3, 1970.
- [5] Ion Savu Produsul elementelor într-un grup finit comutativ Gazeta Matematică Perf., 1, 1989.
- [6] Nicolae Negoescu Principiul includerii-excluderii RMT 2, 1987.
- [7] F. C. Gheorghe, T. Spiru Teorema de prelungire a unei probabilități, dedusă din teorema de completare metrică Gazeta Matematică, Seria A, 2, 1974.
- [8] C. P. Popovici Funcții Boolene Gazeta Matematică, Seria A, 1, 1973.
- [9] Algebra tankonyv IX oszt., Romania.
- [10] Năstăsescu stb. Exerciții și probleme de algebră pentru clasele IX-XII Romania.

[Published in Octogon, Vol. 6, No. 2, pp. 86-96, 1998.]