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Abstract

Most of modern systems for information retrieval, fusion
and management have to deal more and more with infor-
mation expressed quatitatively (by linguistic labels) since
human reports are better and easier expressed in natural
language than with numbers. In this paper, we propose
to use Herrera-Mart́ınez’ 2-Tuple linguistic representation
model (i.e. equidistant linguistic labels with a numeric
value assessment) for reasoning with uncertain and qual-
itative information in Dezert-Smarandache Theory (DSmT)
framework to preserve the precision and the efficiency of
the fusion of linguistic information expressing the expert’s
qualitative beliefs. We present operators to deal with the
2-Tuples and show from a simple example how qualitative
DSmT-based fusion rules can be used for qualitative rea-
soning and fusioning under uncertainty.

Keywords: DSmT, Dezert-Smarandache Theory, Informa-
tion fusion, Qualitative reasoning, linguistic labels.

1. Introduction

Qualitative methods for reasoning under uncertainty
have gained more and more attention because traditional
methods based only on quantitative representation and anal-
ysis are not able to adequately satisfy the need of the de-
velopment of science and technology integrating at higher
fusion levels human beliefs and reports in complex sys-
tems. Therefore qualitative knowledge representation and
analysis becomes important and necessary in next genera-

tions of decision-making support systems. Most of existing
approaches use the 1-Tuple linguistic representation model
consisting in a given finite ordered set of pure linguistic la-
bels, sayL = {L0, L̃, Ln+1} whereL̃ = {L1, · · · , Ln}.
Smarandache and Dezert give a detailed introduction of ma-
jor works for 1-Tuple qualitative reasoning under uncer-
tainty in [5] and also propose new well-justified operators
on 1-Tuple labels in [1]. They have also shown how quanti-
tative combination rules can be easily extended for dealing
with qualitative beliefs represented in terms of pure linguis-
tic labels (i.e. 1-Tuple). In order to keep an acceptable com-
putational complexity it is obviously better to work with a
reduced/coarse granularity set of pure linguistic labels (1-
Tuple) but by doing so, some available richer information
content, likeless good, good enough, very good, is lost in
the classical/1-Tuple qualitative information processing. To
overcome this limitation, Herrera and Martı́nez in [2] pro-
posed a 2-Tuple fuzzy linguistic representation model for
computing with words (CW), which offers a computation-
ally feasible method for aggregating linguistic information
that are represented by linguistic variables with equidistant
labels1 through counting indexes of the corresponding lin-
guistic labels. It has been shown in [2] the advantages of
the 2-Tuple Linguistic representation of symbolic method
over methods based on the extension principle in CW in
term of complexity and feasibility. In 2007, Li et al. [3]
have proposed in the DSmT framework, the extension of
1-Tuple linguistic representation model to Qualitative En-

1For non-equidistant labels we can still use these 2-Tuples labels in the
same way, but of course the result is less accurate, yet giving a satisfactory
result.



riched labels, denotedLi(σ
e
i ), for taking into account a pos-

sible confidence factorσe
i on any labelLi. In this paper,

we propose to use Herrera’s 2-Tuple representation denoted
(Li, σ

h
i ) besides our previous 1-Tuple (enriched) represen-

tation whereσh
i expresses a kind of refinement of the lin-

guistic valueLi. Clearlyσe
i andσh

i correspond to two dis-
tinct notions. In section 2, we remind briefly the basics of
DSmT. In sections 3 and 4, we recall the 1-Tuple models
(classical and enriched). In sections 5 and 6, we present the
2-Tuple model together with the basic operators for 2-Tuple
labels. Qualitative fusion rules based on 2-Tuple linguistic
labels are proposed in section 7. In section 8, we show how
these operators are used for combining 2-Tuple qualitative
beliefs. Concluding remarks are then given in section 9.

2 DSmT for the fusion of beliefs

2.1 Basic belief mass

The differences between Dempster-Shafer Theory (DST)
[4], and Dezert-Smarandache Theory (DSmT) [5] are:

1. The model on which one works with. Typically if
one considers a finite frame of possible exhaustive so-
lutions Θ = {θ1, . . . , θn}, Shafer assumes the ex-
clusivity of θi and defines belief masses on classical
power set2Θ , (Θ,∪) while we don’t need such as-
sumption in DSmT and the belief masses can be de-
fined directly on Dedekind’s lattice/hyper-power set
DΘ , (Θ,∪,∩) and even on the super-power set
SΘ , (Θ,∪,∩, c(.)) if one really needs/wants to work
on the refined frameΘref of Θ. In the sequel, we use
the generic notationGΘ for denoting either2Θ, DΘ or
SΘ. A quantitative basic belief assignment (bba) is a
mappingm(.) : GΘ → [0, 1] associated to a given
body of evidenceB which satisfiesm(∅) = 0 and
∑

A∈GΘ m(A) = 1.

2. The choice of the combination and conditioning rules,
i.e. Dempster’s rule in DST versus PCR5 rule in
DSmT (see next section and [5] for details).

3. Aside working only with numerical/quantitative be-
liefs as within DST, DSmT allows also to combine di-
rectly qualitative belief masses.

2.2 Fusion of quantitative belief masses

In DSmT, we propose to use the Proportional Conflict
Redistribution rule no. 5 (PCR5) [5, 6] which transfers
conflicting masses (total or partial) proportionally to non-
empty sets involved in the model according to all integrity
constraints. PCR5 rule works for any degree of conflict in
[0, 1], for any models (Shafer’s model, free DSm model or

any hybrid DSm model) and both in DST and DSmT frame-
works for static or dynamical fusion problems. The PCR5
rule for two sources is defined by:mPCR5(∅) = 0 and
∀X ∈ GΘ \ {∅}

mPCR5(X) = m12(X)+

∑

Y ∈GΘ\{X}
X∩Y =∅

[
m1(X)2m2(Y )

m1(X) + m2(Y )
+

m2(X)2m1(Y )

m2(X) + m1(Y )
] (1)

where each elementX , andY , is in the disjunctive nor-
mal form. m12(X) =

∑

X1,X2∈GΘ

X1∩X2=X

m1(X1)m2(X2) cor-

responds to the conjunctive consensus onX between the
two sources. All denominators are different from zero. If
a denominator is zero, that fraction is discarded. No matter
how big or small is the conflicting mass, PCR5 mathemati-
cally does a better redistribution of the conflicting mass than
Dempster’s rule and other rules since PCR5 goes backwards
on the tracks of the conjunctive rule and redistributes the
partial conflicting masses only to the sets involved in the
conflict and proportionally to their masses put in the con-
flict, considering the conjunctive normal form of the par-
tial conflict. PCR5 is quasi-associative and preserves the
neutral impact of the vacuous belief assignment. General
PCR5 fusion formula and improvement for the combination
of k ≥ 2 sources of evidence with many detailed examples
can be found in [5].

3 The 1-Tuple linguistic model

To deal with a 1-Tuple qualitative belief overGΘ, one
defined in [5] aqualitative basic belief assignmentq1m(.)
as a mapping function fromGΘ into a set of linguistic
labels L = {L0, L̃, Ln+1} where L̃ = {L1, · · · , Ln}
is a finite set of linguistic labels and wheren ≥ 2 is
an integer. For example,L1 can take the linguistic
value “poor”, L2 the linguistic value “good”, etc. L̃
is endowed with a total order relationship≺, so that
L1 ≺ L2 ≺ · · · ≺ Ln. To work on a true closed linguistic
setL under linguistic addition and multiplication operators,
Smarandache and Dezert extended naturallyL̃ with two
extreme valuesL0 = Lmin and Ln+1 = Lmax, where
L0 corresponds to the minimal qualitative value and
Ln+1 corresponds to the maximal qualitative value, in
such a way thatL0 ≺ L1 ≺ L2 ≺ · · · ≺ Ln ≺ Ln+1,
where≺ means inferior to, or less (in quality) than, or
smaller than, etc. In the sequelLi ∈ L are assumed
linguistically equidistant labels such that we can make an
isomorphism betweenL = {L0, L1, L2, . . . , Ln, Ln+1}
and{0, 1/(n + 1), 2/(n + 1), . . . , n/(n + 1), 1}, defined
asLi = i/(n + 1) for all i = 0, 1, 2, . . . , n, n + 1.



From the extension of the isomorphism between the set
of linguistic equidistant labels and a set of numbers in the
interval [0, 1], one can built exact operators on linguistic
labels which makes possible the extension all the quan-
titative fusion rules into their qualitative counterparts[3].
We briefly remind the basic qualitative operators2 (or q-
operators for short) on 1-Tuple labels:

• q-addition:

Li + Lj =

{

Li+j if i + j < n + 1,

Ln+1 = Lmax if i + j ≥ n + 1.
(2)

• q-subtraction:

Li − Lj =

{

Li−j if i ≥ j,

−Lj−i if i < j.
(3)

where−L = {−L1,−L2, . . . ,−Ln,−Ln+1}.

• q-multiplication3:

Li · Lj = L[(i·j)/(n+1)]. (4)

where[x] means the closest integer4 to x (with [n +
0.5] = n + 1, ∀n ∈ N). This operator is justified by
the approximation of the product of equidistant labels
given byLi · Lj = i

n+1 · j
n+1 = (i·j)/(n+1)

n+1 .

• Scalar multiplication of a linguistic label: Leta be a
real number. The multiplication of a linguistic label by
a scalar is defined by:

a · Li =
a · i

n + 1
≈

{

L[a·i] if [a · i] ≥ 0,

L−[a·i] otherwise.
(5)

• Division of linguistic labels:

a) q-division as an internal operator: Letj 6= 0, then
if [(i/j) · (n + 1)] < n + 1 one defines

Li/Lj = L[(i/j)·(n+1)] (6)

otherwiseLi/Lj = Ln+1.

b) Division as an external operator:�. Let j 6= 0.
We define:

Li � Lj = i/j. (7)

From theq-operators we can directly extend all quantitative
fusion rules into their qualitative counterparts by replacing
classical operators on numbers by those on linguistic labels
defined just above in the formulas. Many useful examples
can be found in [1,3,5,6].

2moreq-operators with their justifications can be found in [1].
3The q-multiplication of two linguistic labels defined here can beex-

tended directly to the multiplication ofn > 2 linguistic labels. For exam-
ple the product of three linguistic label will be defined asLi · Lj · Lk =
L[(i·j·k)/(n+1)(n+1)], etc.

4When working with labels, no matter how many operations we have,
the best (most accurate) result is obtained if we do only one approximation,
and that one should be just at the very end.

4 The 1-Tuple linguistic enriched model

To take into account the confidence in a linguistic asser-
tionsLi, we proposed in 2007 [3] a qualitative enriched 1-
Tuple model, denotedLi(σ

e
i ), where the first component is

a standard linguistic labelLi and the second component is a
confidence factorσe

i (either a numerical supporting degree
in [0, 1]5 called Type 1; or a qualitative supporting degree
taking its value in a given (ordered) setX of linguistic la-
bels, called Type 2).σe

i is the confidence one grants to the
source when it assigns its qualitative beliefLi to a given
propositionA ∈ GΘ. For example, the enriched Type 1
label L1 , L1(1) represents the linguistic variableGood
with 100% confidence, whereasL1(σ

e
1 = 0.4) means that

the linguistic valueL1 is discounted by 60%, i.e. we are
under confident inL1 given by the source. It is important to
recall thatσe

i is related with a confidence measure and does
not reflect a positive or negative refinement of the linguistic
value itself. That’s whyσe

i andLi are considered as two in-
dependent components of the enriched vectorLi(σ

e
i ) in the

derivations done in [3]. We have shown how to define new
qe-operators and how combine qualitative beliefs based on
this enriched linguistic 1-Tuple representation model.

5 The 2-Tuple linguistic model

In order to keep working with a coarse/reduced set of lin-
guistic labels for maintaining a low computational complex-
ity but for working with a richer information, we adopt here
Herrera and Martı́nez’ 2-Tuple model(Li, σ

h
i ) introduced

in [2]. σh
i is chosen inΣ , [−0.5/(n+1), 0.5/(n+1)), i ∈

{1, · · · ,∞}. It is a numerical value of the symbolic trans-
lation of our quantitative two-order support[a, b] or of our
qualitative two-order support inX , say by exampleX =
{NB, NM, NS, O, PS, PM, PB}. The 2-Tuple model
can be justified since each distance between two equidistant
labels is1/(n + 1) because of the isomorphism betweenL
and{0, 1/(n+1), . . . , n/(n+1), 1} so thatLi = i/(n+1)
for all i = 0, 1, 2, . . . , n, n + 1. Therefore, we take half to
the left and half to the right of each label, soσh

i ∈ Σ. So a
2-Tuple equidistant linguistic representation model is used
to represent the linguistic information by means of 2-Tuple
item setΠ(L, σh) with L = {L0, L1, L2, . . . , Ln, Ln+1}
isomorphic to{0, 1/(n + 1), 2/(n + 1), . . . , n/(n + 1), 1}
and the set of qualitative assessments isomorphic toΣ.
This 2-Tuple approach is an intricate/hybrid mechanism of
derivation using jointlyLi andσh

i whereσh
i is a positive or

negative numericalremainderwith respect to the labels.

5In [3], we proposedσe
i ∈ [0,∞) to allow a possible over confidence

factor but since the confidence factor usually comes from statistics it is
more natural to take it in[0, 1].



5.1 Symbolic translation

Let’s define the normalized index6 i = round((n+1)×
β) = [(n+1)×β], with i ∈ [0, (n+1)] andβ ∈ [0, 1], and
theSymbolic Translationσh , β−i/(n+1) ∈ [−0.5/(n+
1), 0.5/(n + 1)). Roughly speaking, the symbolic transla-
tion of an assessment linguistic value(n + 1) × σh

i is a
numerical value that supports the difference of information
between the (normalized) index obtained from the fusion
rule and its closest value in{0, 1, . . . , n + 1}.

5.2 Useful transformations

• 4(.) : conversion of a numerical value into a 2-Tuple

4(.) : [0, 1] → L × Σ is defined by [2]

4(β) = (Li, σ
h) ,

{

Li, i = round((n + 1) · β)

σh = β − i/(n + 1), σh ∈ Σ

(8)
ThusLi has the closest index label toβ andσh is the value
of its symbolic translation.

• ∇(.) : conversion of a 2-Tuple into a numerical value

The inverse/dual function of4(.) is denoted∇(.) and
∇(.) : L × Σ → [0, 1] is defined by

∇((Li, σ
h
i )) = i/(n + 1) + σh

i = βi (9)

It has been proved in [2] that any arithmetic operation
commutes with4(.) and/or with∇(.).

5.2.1 Useful operators on 2-Tuples

Let’s consider two 2-Tuples(Li, σ
h
i ) and(Lj, σ

h
j ), then the

following operators7 are defined [2].

• Addition of 2-Tuples

(Li, σ
h
i ) + (Lj , σ

h
j ) ≡ ∇((Li, σ

h
i )) + (Lj, σ

h
j ))

= ∇((Li, σ
h
i )) + ∇((Lj , σ

h
j )) = βi + βj = βz

=

{

4(βz) if βz ∈ [0, 1]

Ln+1 otherwise
(10)

• Product of 2-Tuples

6whereround(.) is theroundingoperation denoted[.] in our previous
q-operators [3].

7Only those useful for the fusion of 2-Tuple qualitative masses are pre-
sented here due to space limitation constraint. More can be found in [2]
like negation, comparison, subtraction, etc.

(Li, σ
h
i ) × (Lj , σ

h
j ) ≡ ∇((Li, σ

h
i ) × (Lj , σ

h
j ))

= ∇((Li, σ
h
i ))×∇((Lj , σ

h
j )) = βi×βj = βp ≡ 4(βp)

(11)

with βp ∈ [0, 1]. It can be proved that 2-Tuple addition and
product operators are commutative and associative.

• Scalar multiplication of a 2-Tuple

α · (Li, σ
h
i ) ≡ ∇(α · (Li, σ

h
i )) = α · ∇((Li, σ

h
i ))

= α · βi = βα ≡

{

4(βα) βα ∈ [0, 1]

Ln+1 otherwise
(12)

• Division of a 2-Tuple by a 2-Tuple

Let’s consider two 2-Tuples(Li, σ
h
i ) and (Lj , σ

h
j ) with8

(Li, σ
h
i ) < (Lj, σ

h
j ), then the division is defined as

(Li, σ
h
i )

(Lj , σh
j )

≡ ∇(
(Li, σ

h
i )

(Lj , σh
j )

) =
∇((Li, σ

h
i ))

∇((Lj , σh
j ))

=
βi

βj
= βd ≡ 4(βd) with βd ∈ [0, 1] (13)

If (Li, σ
h
i ) ≥ (Lj , σ

h
j ), then

(Li, σ
h
i )

(Lj , σh
j )

≡ ∇(
(Li, σ

h
i )

(Lj , σh
j )

) =
∇((Li, σ

h
i ))

∇((Lj , σh
j ))

=
βi

βj
≥ 1

and in such case(Li,σ
h
i )

(Lj,σh
j
)

is set to the maximum label, i.e.

(Li,σ
h
i )

(Lj,σh
j
)

= (Ln+1, 0) ∼ Ln+1.

6 The 2-Tuple linguistic enriched model

As for the extension of 1-Tuple model into 1-Tuple en-
riched model, it is possible to extend the 2-Tuple model
into a 2-Tuple enriched model as well, i.e. working with
(Li, σ

h
i , σe

i ). This can be done pretty easily but this will be
not reported in this paper due to the space limitation con-
straint. This will be subject to a forthcoming publication.

7 Fusion of qualitative beliefs with 2-Tuple

From the 2-Tuple model of qualitative beliefs and the
previous operators, we are able to extend the PCR5 and
Demspter-Shafer’s (DS) fusion rules in the qualitative do-
main in a more precise way than done before. The qualita-
tive belief mass/assignment (qba)q2m(·) based on 2-Tuple

8The comparison operator is defined in [2].



representation is defined asq2m(·): GΘ → L × σh such
thatq2m(∅) = (L0, 0) and

∑

A∈GΘ q2m(A) = (Ln+1, 0).
The q2-extensions of PCR5 (1) and Demspter-Shafer’s fu-
sion rules [4] for two sources on a frameΘ based on the
2-Tuple operators are then given by9:

• q2-extension of PCR5 fusion rule:q2mPCR5(∅) =
(L0, 0) and∀X ∈ GΘ \ {∅}

q2mPCR5(X) = q2m12(X)+

∑

Y ∈GΘ\{X}
X∩Y =∅

[
q2m1(X)2q2m2(Y )

q2m1(X) + q2m2(Y )
+

q2m2(X)2q2m1(Y )

q2m2(X) + q2m1(Y )
] (14)

where q2m12(X) corresponds to the qualitativeq2-
extension of the conjunctive consensus.

• q2-extension of Dempster-Shafer fusion rule:
q2mDS(∅) = (L0, 0) and∀X ∈ 2Θ \ {∅}

q2mDS(X) =

∑

X1,X2∈2Θ

X1∩X2=X

q2m1(X1)q2m2(X2)

Ln+1 − K12
(15)

where the total degree of qualitative conflict is given by
K12 ,

∑

X1,X2∈2Θ

X1∩X2=∅

q2m1(X1)q2m2(X2).

It is important to note that the addition, the product and
the division operators involved in the previous formulas are
the 2-Tuple operators defined in previous section. The ex-
tensions (14) and (15) are well justified since every 2-Tuple
(Li, σ

h
i ) can be mapped into a unique numerical valueβ

corresponding to it which makesq2PCR5 andq2DS equiva-
lent to PCR5 and DS because of∆(.) function.

8 Example of fusion of qualitative beliefs

Let’s consider an investment corporation which must
choose one of three projects inΘ = {θ1, θ2, θ3} (assume
here that Shafer’s model holds for simplicity) to invest
through two consulting departments. A set of qualitative
values are used to describe the opinions of two consulting
companies, i.e. I7→ Impossible, EU7→ Extremely-Unlikely,
VLC 7→ Very-Low-Chance, LLC7→ Little-Low-Chance,
SC 7→ Small-Chance, IM7→ IT-May, MC 7→ Meanful-
Chance, LBC7→ Little-Big-Chance, BC7→ Big-Chance,
ML 7→ Most-likely, C 7→ Certain. So, we consider the set
of ordered linguistic labelsL = {L0 ≡ I, L1 ≡ EU, L2 ≡

9These formulas can obviously be extended directly forN > 2
sources.

V LC, L3 ≡ LLC, L4 ≡ SC, L5 ≡ IM, L6 ≡ MC, L7 ≡
LBC, L8 ≡ BC, L9 ≡ ML, L10 ≡ C} and in this
examplen = 9.

The opinions of the two consulting companies/sources
are given in Table 1

m(·) θ1 θ2 θ3

Source no 1 (L4, 0.3) (L3,−0.3) (L3, 0)
Source no 2 (L5, 0) (L2, 0.1) (L3,−0.1)

Table 1. Qualitative 2-Tuple belief masses

Following PCR5, the masses of the partial conflictsθ1 ∩
θ2, θ1∩θ3 andθ2∩θ3 are redistributed to those belief masses
involved in these conflicts according to (14). One gets:

q2mxA1(θ1) =
(L4, 0.3) × (L1,−0.097)

(L6, 0.4)
≈ (L1,−0.393)

q2myA1(θ2) =
(L2, 0.1) × (L1,−0.097)

(L6, 0.4)
≈ (L0, 0.296)

q2mxB1(θ1) =
(L5, 0) × (L1, 0.35)

(L8,−0.3)
≈ (L1,−0.123)

q2myB1(θ2) =
(L3,−0.3)× (L1, 0.35)

(L8,−0.3)
≈ (L0, 0.473)

q2mxA2(θ1) =
(L4, 0.3) × (L1, 0.247)

(L7, 0.2)
≈ (L1,−0.255)

q2myA2(θ3) =
(L3,−0.1) × (L1, 0.247)

(L7, 0.2)
≈ (L1,−0.497)

and similarly, one hasq2mxB2(θ1) ≈ (L1,−0.062),
q2myB2(θ3) ≈ (L1,−0.437), q2mxA3(θ2) ≈ (L0, 0.377),
q2myA3(θ3) ≈ (L0, 0.405), q2mxB3(θ2) ≈ (L0, 0.259)
andq2myB3(θ3) ≈ (L0, 0.370). Thus, one finally gets:

q2mPCR5(θ1) = q2m12(θ1) + q2mxA1(θ1)+

q2mxB1(θ1)+q2mxA2(θ1)+q2mxB2(θ1) ≈ (L5, 0.315)

q2mPCR5(θ2) = q2m12(θ2) + q2myA1(θ2)+

q2myB1(θ2)+q2mxA3(θ2)+q2mxB3(θ2) ≈ (L2,−0.026)

q2mPCR5(θ3) = q2mDSmC(θ3) + q2myA2(θ3)+

q2myB2(θ3)+q2myA3(θ3)+q2myB3(θ3) ≈ (L3,−0.289)

Sinceq2mPCR5(θ1) > q2mPCR5(θ2) and q2mPCR5(θ1)
> q2mPCR5(θ3), the investment corporation must invest in
the projectθ1. Using DS fusion (15), the total conflict is
qK12 = q2m12(θ1 ∩ θ2) + q2m12(θ1 ∩ θ3) + q2m12(θ3 ∩
θ2) = (L6, 0.413). Thusq2mDS(∅) , (L0, 0) and

q2mDS(θ1) =
q2m12(θ1)

L10 − qK12
=

(L2, 0.15)

L10 − (L6, 0.413)

≈ (L6,−0.006)



q2mDS(θ2) =
q2m12(θ2)

L10 − qK12
=

(L1,−0.413)

L10 − (L6, 0.413)

≈ (L2,−0.419)

q2mDS(θ3) =
q2m12(θ3)

L10 − qKt12
=

(L1,−0.13)

L10 − (L6, 0.413)

≈ (L2, 0.425425)

q2mDS(θ1) is still larger than q2mDS(θ2) and
q2mDS(θ3) and the first project is also chosen to in-
vest based on DS rule. The final decision is same as the
previous one based onq2mPCR5. However, when the
total conflict increases up toL10, thenq2mDS results for
decision-making can become counter-intuitive and yield
to wrong decision (see [5] for counter examples of DS rule).

From our analysis, the following advantages can be
drawn on the usefulness of 2-Tuple representation coupled
with DSmT framework and PCR5.

a) High Precision: Based on 2-Tuples,q2 operators pro-
vide a higher precision than with 1-Tuplesq1 andqe

operators because for every 2-Tuple(Li, αi), there is a
uniqueβ ∈ [−(n + 1), n + 1] corresponding to it and
thus one doesn’t lose information in the computations.

b) Wide adaptive capacity: Since 2-Tuples{(L0, α0),. . .,
(Ln+1, αn+1)} express a continuous qualitative belief,
it is equivalent to real number. So all quantitative fu-
sion rules and belief conditioning rules can be used di-
rectly in this framework. As already proved for fu-
sion of qualitative belief masses, it is expected that
q2mPCR5 approach will outperformq2mDS , specially
in all high conflicting situations.

c) Low complexity: Since the addition and multiplica-
tion operators on 2-Tuple are commutative and asso-
ciative, while q1 and qe models depend on the or-
der/approximation of the operations carried out10 the
fusion based on 2-Tuple theoretically works better than
with q1 andqe models.

9 Conclusion

In this paper, we have proposed a new approach for com-
bining uncertain qualitative beliefs based on 2 -Tuple lin-
guistic labels and DSmT-PCR5 fusion rule. The main idea
was to refine the granularity of linguistic information with-
out extending the original set of linguistic labels to keep

10This dependency can be however diminished if the approximation is
done at the very end step.

a low computational complexity. For achieving such pur-
pose, Herrera-Martinez 2-Tuple representation model has
been adopted and a new set of qualitative operators for 2-
Tuples has been defined (q2-operators). We have shown that
this method is a generalization and an improvement of other
method based either onq1 operators (for 1-Tuple/pure lin-
guistic labels) or onqe operators.q2-operators are hybrid
operators which work jointly on the first component (index
of the label) and on the second component (positive or neg-
ative refinement of the label) of the 2-Tuples. On a very
simple example, we have shown how we can combine qual-
itative beliefs with these 2-Tuples andq2-operators. The
results obtained are more precise than those based onq1 or
qe-operators since no approximation is done during deriva-
tions and all the information is used in the fusion process.
This approach is an interesting bridge between qualitative
and quantitative reasoning under uncertainty. Applications
of this approach in robotics are under progress and will be
presented in a forthcoming publication.
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