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Abstract: This study applies the mathematical method of chrono-
metric invariants, which are physically observable quantities in the
four-dimensional space-time (Zelmanov A. L., Soviet Physics Doklady,
1956, vol. 1, 227–230). The isotropic region of the space-time is consid-
ered (it is known as the isotropic space). This is the home of massless
light-like particles (e.g. photons). It is shown that the isotropic space
rotates with a linear velocity equal to the velocity of light. The rota-
tion slows in the presence of gravitation. Even under the simplified
conditions of Special Relativity, the isotropic space still rotates with
the velocity of light. A manifestation of this effect is the observed
Hubble redshift explained as energy loss of photons with distance, for
work against the non-holonomity (rotation) field of the isotropic space
wherein they travel (Rabounski D. The Abraham Zelmanov Journal,
2009, vol. 2, 11–28). It is shown that the light-speed rotation of the
isotropic space has a purely geometrical origin due to the space-time
metric, where time is presented as the fourth coordinate, expressed
through the velocity of light.
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This presentation is dedicated to Hermann Minkowski (1864–1909),
on the 100th anniversary of his publication of “Raum und Zeit”.

§1. Foreword. When I presented Hubble Redshift due to the Global
Non-Holonomity of Space∗ [1], the scientific community asked: Why do
you believe that the isotropic space (the home of photons) rotates with

∗The presentation was also delivered, in two parts, at Meetings of the Ameri-
can Physical Society, held in Spring, 2009 [2, 3]. A brief account of the study was
preliminary publushed in [4].



— 2 —

the velocity of light, and what are its foundations in the basic space-time
geometry?

Naturally, this question is not trivial, and cannot be answered in
brief. I therefore decided to provide the answer, in detail, in this special
presentation.

This problem will be considered in the framework of both General
Relativity and Special Relativity. In both cases, it will be observed
that the sign-alternating structure of the space-time metric, where time
is presented as the fourth coordinate x0= ct, expressed through the
velocity of light, is solely responsible reason for the ligh-speed rotation
of the isotropic space. Now, I have to offer all the explanations to the
attention of readers.

§2. A short explanation of the isotropic space. First of all we
need to give a short explanation of the isotropic space and of its origin
in the geometric structure of space-time.

The basic space-time of the General Theory of Relativity is a four-
dimensional pseudo-Riemannian space, with the signature (−+++) or
(+−−−). This is one member of the family of Riemannian spaces, the
metric spaces where the square of distance between any two infinitely
close points is set up by the square form ds2 = gαβ dxαdxβ . This form is
invariant along all the space (that also is specific to Riemannian spaces).
Due to invariance of the metric, the length of any n-dimensional vec-
tor Qα, being transferred in parallel to itself in a Riemannian space of
n-dimensions, remains unchanged: QαQα = gαβ QαQβ = const. This is
known as Levi-Civita parallel transfer, due to Tullio Levi-Civita, and is
specific to Riemannian spaces. The kind metric ds2= gαβ dxαdxβ = inv
is referred to as a Riemannian metric, in memory of Bernhard Riemann
who introduced it in the 1850’s. The prefix “pseudo” means a class of
Riemannian spaces, where the metric is sign-alternating. In this case,
algebraically, the diagonal components gαα of the fundamental met-
ric tensor gαβ do not bear the same sign. Geometrically, this means
that two types of coordinate axes are present in the space: the axes
of real coordinates (the “plus” sign in the diagonal components) and
the axes where coordinates are imaginary (the “minus” sign). Pseudo-
Riemannian spaces were introduced in 1908 by Hermann Minkowski,
who first considered a particular case of these, having four dimensions,
wherein one axis is imaginary and three other axes are real, or, alter-
natively, one axis is real while the other three are imaginary∗. So, the

∗In a general case, pseudo-Riemannian spaces can have any number of dimen-
sions, with any combitations of positive and negative signs in the signature.
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signature of the space metric is (−+++) or (+−−−), respectively. Thus,
Minkowski emphasized time as a coordinate axis x0 = ct, which is seg-
regate from three axes of the spatial spread. Historically, he studied
a highly simplified case, where the space metric can be reduced, by
transformation of the coordinates, to a simplest diagonal form, where
gαα = {−1, +1,+1,+1} or {+1,−1,−1,−1}, and the non-diagonal com-
ponents of gαβ are zero. This is the basic space-time of the Special The-
ory of Relativity. In this case, the Riemann-Christoffel curvature tensor
is zero, so the space is non-curved as can be illustrated by a pile of flat
spatial sections (three-dimensional spaces) threaded up onto the time
axis. This simplified case of the four-dimensional pseudo-Riemannian
space is known as Minkowski’s space. This, however, differs from a four-
dimensional pseudo-Euclidean space, which also is non-curved, but all
spatial coordinates are homogeneous therein (the unit coordinate marks
are uniformly distributed along the coordinate axes). In contrast, the
spatial coordinates can be inhomogenous in Minkowski’s space, produc-
ing some forces therein.

The four-dimensional pseudo-Riemannian space is not a “monolite”
single spread as a sign-definite metric space. Due to its sign-alternating
metric, it is presented with two segregate spreads:

a) The non-isotropic space (space-time), where the time interval and
the spatial interval always differ from each other. As such, ds2 6=0
and any world-vector’s length is QαQα = const 6=0 in the space.
Thus, this is the home for mass-bearing particles (such a particle,
being characterized with the world-vector Pα =m0

dxα

ds
, has a non-

zero rest mass PαPα = m0= const 6=0).

b) The isotropic space (space-time), where the time interval and the
spatial interval have the same length. As such, the space-time
interval is always zero (ds2=0). Any world-vector of the isotropic
space has zero length (QαQα = const=0). The isotropic space
particles are characterized with the world-vector Pα = m

c
dxα

dτ
, ex-

pressed through the relativistic mass m and the observable time
interval dτ . They have zero rest mass (PαPα = const=0), but
non-zero relativistic mass and energy according to E =mc2. All
isotropic space particles move at the velocity of light. Thus, these
are massless light-like particles, e.g. photons.

This terminology, “non-isotropic” and “isotropic”, does not seem to
be very successful when being applied to the space-time regions. This
is because, for a physicist, the terms mean something different than in
the geometry of pseudo-Riemannian spaces. A physicist, when hearing
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that something (space or medium) is non-isotropic, thinks about the
presence of a preferred direction in it. Conversely, the absence of a
preferred direction is regularly understood as isotropy. Relativists and
mathematicians refer to a space region as isotropic if ds2 =0 therein, so
the length of any world-vector is zero: the vector is equally targeting all
four-dimensional directions. On the other hand, spatial vectors of the
isotropic space, having one dimension lesser than the four-dimensional
space itself, are not world-vectors therein. The vectors have surely non-
zero lengths, and target their specific spatial direction. That is, the term
“isotropic” is attributed to the four-dimensional space (space-time) of
photons, but is unrelated to the three-dimensional space where photons
travel (it can be isotropic or anisotropic, depending on the particular
physical conditions in it).

I, and the relativists in general, adhere to this terminology, because
it is well accepted in the scientific literature on the space-time geometry
and the theory of relativity.

§3. The light-speed rotation. We are going to consider the iso-
tropic space from the viewpoint of a regular observer, whose home is
the non-isotropic space filled with mass-bearing particles. Thus, his
reference body is a rigid physical body over which a real (deformed)
coordinate net is spanned, and real clocks are located on its surface. To
find physical quantities, registered by the observer, we should project
the four-dimensional quantities onto the time line and coordinate net of
his body of reference. This problem was resolved, in 1944, by Abraham
Zelmanov. His mathematical apparatus of chronometric invariants [5–7]
targets physically observable quantities for a regular observer at rest
with respect to his body of reference.

In particular, the theory introduces the chronometrically invariant
(physically observable) intervals of time and the spatial coordinates as
the projections of the interval of the four-dimensional coordinates dxα

onto the observer’s time line and the spatial section. The observable spa-
tial coordinates meet the regular three-dimensional coordinates, while
the physically observable time interval

dτ =
√

g00 dt +
g0i

c
√

g00
dxi =

√
g00 dt− 1

c2
vi dxi (3.1)

depends on the gravitational potential w = c2 (1−√g00) and the linear
velocity of rotation of the observer’s three-dimensional space

vi = − c
g0i√
g00

. (3.2)
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The chronometrically invariant metric tensor

hik = − gik +
g0i g0k

g00
= − gik +

1
c2

vi vk , (3.3)

obtained as the spatial projection of the fundamental metric tensor gαβ ,
gives the chronometrically invariant (observable) spatial interval

dσ2 = hik dxidxk. (3.4)

Due to these formulae, the space-time interval ds2 = gαβ dxαdxβ is
expressed through the observable time interval and the observable spa-
tial interval as

ds2 = c2dτ2 − dσ2, (3.5)

that is true in the space-time of General Relativity, because the ob-
servable quantities, dτ and dσ, take all components of the fundamental
metric tensor gαβ into account. This is in contrast to the analogous for-
mula of Special Relativity, ds2= c2dt2− dx2− dy2− dz2, which assumes
that only the diagonal terms of gαβ are non-zero, and are units.

Now, I show how rotation of the isotropic space can be easyly found
with use of the mathematical method of physically observable quanities
(chronometric invariants).

Two physical conditions specific to the isotropic space,

ds2 = 0 , c2dτ2 = dσ2 6= 0 , (3.6)

were highlighted in §2∗. These conditions set that the time spead and
the spatial spread meet each other everywhere in the isotropic space.

Time and regular three-dimensional space can meet each other in
terms of the linear velocity of rotation of the space, according to the
definition of the velocity (3.2).

This can be visualized by introducing a locally geodesic frame of
reference in the point of observation (where the observer is located).
The main advantage of such a reference frame is that it is the same,
within infinitesimal vicinities of the point of observation, for all other
regions of the space (space-time)†.

∗The second condition, c2dτ2 = dσ2 6= 0, is stronger. This is because the first,
ds2 = c2dτ2− dσ2 =0, includes also the fully degenerate case c2dτ2 = dσ2 =0, which
means something out of the isotropic space due to the full degeneration of the ob-
servable time durations and the observable lengths.

†Locally geodesic coordinates and reference frames rise from Riemann’s pioneer-
ing studies, and are much explained in the scientific literature. For instance, see §7
of Petrov’s Einstein Spaces [8].
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Within infinitesimal vicinities of any point of such a reference frame
the fundamental metric tensor is

g̃αβ = gαβ +
1
2

(
∂2g̃αβ

∂x̃µ∂x̃ν

)
(x̃µ − xµ)(x̃ν − xν) + . . . , (3.7)

i.e. its components g̃αβ at a point, located in the vicinities, are different
from gαβ at the point of observation to within only the higher order
terms, which can be neglected. Therefore, at any point of a locally geo-
desic reference frame the fundamental metric tensor can be considered
constant, so its first derivatives (the Christoffel symbols) and the second
derivatives (the space curvature) are zero.

As a matter of fact, within infinitesimal vicinities of any point lo-
cated in a Riemannian space, a locally geodesic reference frame can be
set up. At the same time, at any point of this locally geodesic reference
frame, a tangential flat Euclidean space can be set up so that this ref-
erence frame, being locally geodesic for the Riemannian space, is the
global geodesic for that tangential flat space.

The fundamental metric tensor of a flat Euclidean space is constant,
so the values of the tensor g̃αβ , taken in the vicinities of a point of
the Riemannian space, converge to the values of the tensor gαβ in the
flat space tangential at this point. Therefore, we can build a system of
basis vectors ~e(α), which are located along the coordinate axes in this
flat space, and tangential to curved coordinate lines of the Riemannian
space in the point of observation.

It should be noted that, in a general case, real coordinate lines in
Riemannian spaces are curved, inhomogeneous, and are not orthogonal
to each other. So the lengths of the basis vectors may sometimes be
very different from unity.

We denote a four-dimensional vector of infinitesimal displacement by
d~r ={dx0, dx1, dx2, dx3}. So d~r =~e(α)dxα, where components of the ba-
sis vectors ~e(α) tangential to the coordinate lines are ~e(0)= {e0

(0), 0, 0, 0},
~e(1)= {0, e1

(1), 0, 0}, ~e(2)= {0, 0, e2
(2), 0}, ~e(3)= {0, 0, 0, e3

(3)}. The scalar
product of the vector d~r with itself is d~rd~r = ds2. On the other hand,
ds2 = gαβ dxαdxβ . As a result we arrive at the formula

gαβ = ~e(α)~e(β) = e(α)e(β) cos (xα; xβ) , (3.8)

which shows how components of the fundamental metric tensor of the
observer’s space depend on the lengths of the basis vectors (tangential
to his real coordinate axes, inhomogeneous and curved), and on the
angle between them.



— 7 —

In particular, formula (3.8) gives

g00 = e2
(0) , (3.9)

g0i = e(0)e(i) cos (x0;xi) , (3.10)

gik = e(i)e(k) cos (xi;xk) . (3.11)

Finally, applying these to the definitions of vi (3.2) and hik (3.3), we
derive how these depend on the lengths of the basis vectors ~e(0) and ~e(i)

(tangential to the real coordinate axes, inhomogeneous, and curved),
and on the angle between them. That is

vi = − c e(i) cos (x0; xi) , (3.12)

hik = e(i)e(k)

[
cos(x0; xi) cos(x0; xk)− cos(xi; xk)

]
. (3.13)

Consider these equations under the isotropic space condition,
c2dτ2 = dσ2 6=0. According to this condition, time and regular three-
dimensional space meet each other. Geometrically, this means that the
time basis vector ~e(0) meets all three spatial basis vectors ~e(i) (this fact
does not mean, however, that the spatial basis vectors coincide, be-
cause the time basis vector is the same for all the spatial frame). In
other words, cos(x0;xk)=±1 everywhere in the isotropic space. Also,
in observing a photon, only its direction of motion (direction of travel-
ling light) is counted, and e(0) = e(i) along it (according to the isotropic
space condition). This can be exressed through the gravitational po-
tential w = c2 (1−√g00), because e(0)=

√
g00 in a general case (3.9).

Finally, in the isotropic space, we have

cos (x0; xk) = ±1 , e(i) = e(0) =
√

g00 = 1− w
c2

, (3.14)

and, hence,

vi = ∓√g00 ci = ∓
(
1− w

c2

)
ci , (3.15)

hik =
(
1− w

c2

)2 [
1− cos (xi;xk)

]
, (3.16)

where ci is the chronometrically invariant three-dimensional vector of
the physically observable velocity of light, cic

i =hik cick = c2.
According to the formula derived (3.15), we immediately come to

the following conclusion:
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The isotropic space rotates, at each its point and in each direction
where a photon travels, with a linear velocity equal to the velocity
of light. This fundamental rotation can slow down relative to the
light speed in the presence of gravitation.

§4. Consequences of the light-speed rotation. Now, we investi-
gate two sequels of the light-speed rotation of the isotropic space.
First consequence. Consider physically observable time dτ (3.1),
which is dependent on the linear velocity of rotation of space. This
is proper time, registered by the observer. It is always positive (dτ > 0)
due to his recognition of the past and the future. Therefore, the coor-
dinate time function of an object, the function dt

dτ
, manifests how this

object travels along the time axis with respect to the observer.
When expressing the coordinate time function from the definition of

dτ (3.1), we obtain

dt

dτ
=

1√
g00

(
1 +

1
c2

vi vi

)
, vi =

dxi

dτ
, (4.1)

where vi is the chronometrically invariant (physically observable) veloc-
ity of the object we observe.

Substituting the observable velocity of photons vi = ci and the linear
velocity of the light-speed rotation (3.15), specific to the isotropic space
as we obtained above, we consider a case where the time basis vector is
directed oppositely to the spatial basis vectors, so cos(x0;xk)=−1 and,
hence, vi =−ci. (The second case, cos(x0;xk)=+1, leads to nonsense
in the coordinate time function.) We obtain

dt

dτ
=

1√
g00

(
1−√g00

)
. (4.2)

It is evident that the photon coordinate time stops, dt
dτ

=0, when√
g00 =1 and, hence, the gravitational potential w = c2 (1−√g00) be-

comes w = 0, implying the absence of gravitational fields. In the pre-
cense of gravitation we have

√
g00 < 1, so the photon coordinate time

function increases with the value of the gravitational potential, and the
isotropic space rotation is slowing down from the light speed.

The stopping of the photon coordinate time function reflects that
they, the particles of the isotropic space, move at the velocity of light.
Light signals are mediators in synchronization of clocks (Einstein’s
method of synchronization). In this process, a light signal transfers
zero-point of the time coordinate from one clock to another. Thus,
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from the point of view of a regular observer, the isotropic space parti-
cles are “resting-in-time”: their coordinate time is stopped with respect
to his coordinate time, while physically observable time is not at rest
due to their visible motion. In other words, photons rest in time, while
we are moving along the time axis with respect to them. Therefore, the
photon coordinate time function is always zero in the absence of gravi-
tational fields. According to the formula (4.2), only gravitation is able
to enforce the coordinate time of a photon to be flowing with respect to
that of the observer.

Second consequence. It is interesting to ponder whether the light-
speed rotation of the isotropic space has any influence on the space
curvature. It is doubtful that this rotation can be attributed only to
the curved space-time of General Relativity. To illustrate, consider the
Riemann-Christoffel curvature tensor Rαβµν . It is built on the second
derivatives of the fundamental metric tensor gαβ , and on its first deriva-
tives, according to its definition

R · · ·α
µνσ · =

∂Γα
σµ

∂xν
− ∂Γα

µν

∂xσ
+ Γβ

µσΓα
νβ − Γβ

µνΓα
σβ , (4.3)

where Γα
µν = gασ Γµν,σ = 1

2
gασ

(
∂gµσ

∂xν + ∂gνσ

∂xµ − ∂gµν

∂xσ

)
.

In this formula, according to the definition of vi (3.2), we should use
g0i =− 1

c vi
√

g00 . Hence, even if
√

g00 =1 (no gravitational fields), vi

should have an influence on the Riemann-Christoffel tensor. But this
is true, only if g0i 6= const. In the isotropic space, in the absence of
gravitation, as shown above, vi =−ci and, hence, g0i = 1

c ci. If rotation
of the isotropic space is stationary and vorticeless, vi =−ci is inde-
pendent from the spatial coordinates and time, so its first and second
derivatives are zero. In other words, there is not a goal of this rota-
tion into the curvature tensor. Thus, with the diagonal spatial metric∗

where gkk = {−1,−1,−1} or {+1, +1, +1}, we arrive at the condition of
Special Relativity, which is R · · ·α

µνσ · =0.
Therefore, even in the framework of the simplified conditions of Spe-

cial Relativity, the isotropic space still rotates with the velocity of light.

∗We know, according to the theorem introduced by Émile Cotton [9], that any
three-dimensional square form can be reduced to the diagonal unit form. This means,
in particular, that, if a four-dimensional space (space-time) is free of gravitation
(g00 =1) and its three-dimensional metric gik is stationary, the space-time metric
is reducible to the diagonal unit form gαα = {+1,−1,−1,−1} or {−1, +1, +1, +1}
(see §46 of Petrov’s Einstein Spaces [8]). This is the case considered by the Special
Theory of Relativity, and is known as Minkowski’s space (space-time).
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§5. The origin of the fundamental rotation. Why does the iso-
tropic space rotate at the velocity of light? In other words, wherefrom
does the rotation originate? To answer this question, we should turn to
the geometric structure of space-time.

The basic space-time of the General Theory of Relativity is the four-
dimensional pseudo-Riemannian space, which metric is sign-alternating
so that the time axis is emphasized as x0 = ct. The space-time signature,
(+−−−) or (−+++), was first pointed out by Hermann Minkowski in his
famous Raum und Zeit [14] as the origin of the relativistic transforma-
tions of the spatial coordinates and time, which distinguishes relativistic
physics from classical physics.

If a sign-definite signature, (++++) or (−−−−), the world would have
four spatial coordinates where time is a spatial parameter as found in
classical physics. In this case, no difference from the laws of classical
physics would be observed, but simply four spatial coordinates instead
of three ones. Accordingly, ds2= 0 that is the isotropic space condition
which differs an isotropic region from a non-isotropic one, would mean
that the space has been shrunk into a point. So, ds2 6=0 is true every-
where in the space. No splitting into isotropic and non-isotropic regions
is possible. All the space is a single non-isotropic spread.

In contrast, in a space of the sign-alternating signature as above, the
isotropic space condition ds2=0 is expanded as to contain non-zero time
and spatial spreads, equal to each other in the length. As a result, the
isotropic region (ds2=0) and the non-sotropic region (ds2 6=0) co-exist
in the space.

Therefore the isotropic space (the home of photons), i.e. the region
determined by the condition ds2 =0, is due only to the sign-alternating
space metric which emphasizes time as a segregate axis of the space.

The next step in understanding the light-speed rotation of the iso-
tropic space is visualized by consideration of the formula (3.12). This
formula, vi =− c e(i) cos (x0; xi), shows how the linear velocity of the
rotation of the observer’s space depends on the lengths of the spatial
basis vectors ~e(i) (tangential to his real coordinate axes, inhomogeneous
and curved), and on the angle between them and the time basis vector
~e(0). The velocity of light appears in the formula, as well as in the other
formulae of relativistic physics, due to the fact that time is presented
here as the fourth coordinate axis, x0 = ct, where the velocity plays a
rôle of numerical coefficient.

If one assumes another numerical coefficient of the same dimension,
say u cm/sec, so the time coordinate axis is presented as x0 =ut, the
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formula has to be changed as∗

vi = −u e(i) cos (x0; xi) . (5.1)

Once the isotropic space condition ds2 =0 applied to the space-time
metric ds2 = gαβ dxαdxβ = e(α)e(β) cos (xα; xβ) as we did in §2 and §3,
we obtain cos (x0; xi)=−1 and, hence,

vi = −ui (5.2)

in the space. In other word, when assuming x0 =ut instead of x0 = ct,
we immediately arrive at a result that the isotropic space rotates with
a linear velocity equal to u.

As a result of what has been said above, we arrive at the conclusion
that the isotropic space rotates with the velocity of light due to two
purely geometric conditions:

a) The space-time metric is sign-alternating. The signature, (+−−−)

or (−+++), emphasizes time as the fourth coordinate x0 = ct con-
taining the velocity of light as a numerical coefficient.

b) The isotropic space condition ds2 =0. This is a sequel of the first
condition. Namely, because the signature emphasizes the time
axis x0 = ct, there is in the space-time a region where the space-
time spread is zero (ds2=0), while the time spead and the spatial
spread are non-zero, and are equal to each other.

The conditions are true in the framework of both General Relativ-
ity and Special Relativity, because the same signature condition exists,
independent of the presence of the space curvature or the other factors
which alter the basic geometries of the theories.

So, the light-speed rotation of the isotropic space has a purely ge-
ometrical origin due to the sign-alternatic structure of the space-time
metric, where time is presented as the fourth coordinate axis x0 = ct.

§6. A topological interpretation of the result. How can we
imagine that the isotropic space rotates with the velocity of light? In
searching for a native illustration of this result, we turn our attention
to the concepts of topology as the best way of understanding something
in many-dimensional space geometry.

According to the concepts of topology [10], a finite symmetric system
can be considered as a topological spread mapped into a spherical space.
Can we apply these views to our Universe?

∗In this case, the respective changes appear in Lorentz’ transformations and in
all other formulae of relativistic physics.
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Observational astronomy manifest the precense of the event horizon
in the cosmos, and also the homogeneity and symmetry of the Meta-
galaxy to within a first order approximation. Therefore the Universe is
homogeneous and isotropic on the average.

Also, as was proved by Zelmanov in the 1950’s, in the framework of
the General Theory of Relativity, spatial infinitude of the homogeneous
isotropic cosmological models depends on the frame of reference from
which we observe the universe [11,12]. In other words, if a homogeneous
isotropic universe, being observed in one reference frame, is infinite, it
may be finite in another reference frame. Zelmanov enunciated this
result as the Infinite Relativity Principle. Thus, being located in a uni-
verse of infinite spread, we can always move to a specific frame of refer-
ence wherein the universe seems finite.

So, we can consider the Universe as a finite spread, which is ho-
mogeneous and isotropic on the average. Therefore, we can apply the
aforementioned topological views to the Universe as a whole.

In addition, we should take into account that only one geodesic line
can be drawn through a given point in a given direction, and the unique
geodesic line can be either non-isotropic or isotropic (see §6 of Petrov’s
Einstein Spaces [8] or §101 of Raschewski’s Riemannsche Geometrie und
Tensoranalysis [13] for detail). That is, the isotropic and non-isotropic
regions of space-time have no common points.∗

Therefore, we do consider the Universe as two segregate speads
(isotropic and non-isotropic), each mapped into a respective spherical
space of the same radius of curvature. These two spherical spaces are
equivalent to the surfaces of two concentric hyperspheres, which have the
same radius, but are not coincident with each other. The surface of the
isotropic hypersphere is the home of isotropic trajectories, while the non-
isotropic hypershere’s surface is the home of non-isotropic trajectories.

We are going to consider an observer who is located in the hyper-
sphere’s surface.

Any spherical formation of n dimensions (created by a spherical
space of n−1 dimensions) is directed in its “parental” space of n +1
and higher dimensions. This can be easily understood, because in any

∗This result can be illustrated in Minkowski’s diagram, which is the plane paper
(two-dimensional) representation of the four-dimensional pseudo-Riemannian space
(space-time). Once a moving mass-bearing particle increases its velocity so much
that it approaches the velocity of light, its non-isotropic trajectory in the diagram
tries to reach the light cone (isotropic region) but never meets it as the particle never
reaches the velocity of light. Even if the particle is moving infinitesimally close to
the velocity of light, its trajectory is close to the light cone but never meets it. So,
the isotropic and non-isotropic regions have no common points.
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circle, the two-dimensional spherical formation created by a respective
circumference (one-dimensional spherical space), is obviously directed in
the three-dimensional space. If a hypothetical one-dimensional observer,
located in a circumference, sees that every other (one-dimensional) ob-
ject of the circumference moves with respect to him with a constant
velocity, this is equivalent to the circumference rotating as a whole with
respect to his position in it, with the same velocity along the direction
in which he looks. Due to this rotation, an inertial force acts on all
one-dimensional objects of the circumference, according to the angular
velocity and the radius of it. This force has the same numerical value at
all the objects, and is directed othogonally to the circumference. As a re-
sult, all objects moving relative to the observer along the circumference
are carried out, by the force, in the directions opposite to their motion.
This is manifested as an additional acceleration braking the objects.

Analogously, a three-dimensional observer located in the isotropic
hypersphere’s surface (isotropic spherical space) sees that any other ob-
ject of the surface moves with respect to him with the velocity of light
along his direction of observation. This is equivalent to stating that
the surface rotates as a whole with the velocity of light in the direction
of his observation. Because the polar axis of the rotation is directed in
the “parental” space of the hypersphere, the inertial force produced due
to the rotation is directed orthogonally to the hypersphere’s surface in
each of its points, and is equally applied to all objects of the surface.
Trying to carry the moving objects to the direction orthogonal to the
surface, along which they travel, the force produces a braking accelera-
tion on the objects. Because all objects of the isotropic space (massless
particles, e.g. photons) move with the velocity of light, the additional
braking acceleration cannot slow down their motion, but only change
their energy (frequency). As was shown in my previous study [1], this
“braking effect” is observed as Hubble redshift which is explained as en-
ergy loss of photons with distance, for work against the non-holonomity
(rotation) field of the isotropic space wherein they travel.

§7. Conclusions. We have considered how the isotropic space (the
home of photons) appears to a hypothetical “light-like” observer located
in it. Such an observer cannot accompany his reference body to which he
compares all his measurements (a real physical body, e.g. a cosmic rigid
body, located in the non-isotropic space). Therefore the result of his
observation differs from that obtained by a regular observer who always
accompanies his reference body in the non-isotropic space. Meanwhile,
this approach gives an advantage to see the real physical propertites of
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the isotropic space. Here I would like to emphasize the most important
of the obtained results:

1. In the four-dimensional pseudo-Riemannian space, which is the
basic space-time of the General Theory of Relativity, the isotropic
region (isotropic space, the home of photons) rotates, basically,
with a linear velocity equal to the velocity of light. The funda-
mental rotation is slowed down in the precence of gravitation.

2. Even in a very simplified case of Minkowski’s space — the basic
space-time of the Special Theory of Relativity — the isotropic
space of photons still rotates with the velocity of light. This means
that a Galilean frame of reference (completely free of gravitation
and rotation) is not possible in the isotropic space, since the latter
always has an associated rotation.∗

3. The fundamental rotation was found, in the frameworks of both
General Relativity and Special Relativity, proceeding from only
two obviously geometric conditions: a) the space-time metric is
sign-alternating, (+−−−) or (−+++), where the time axis is empha-
sized as x0 = ct, and b) ds2=0 everywhere in the isotropic space.
This means that the rotation has a purely geometrical origin due
to the sign-alternating structure of the space-time metric.

4. In the framework of topology, the Universe can be presented as
two segregate spreads (isotropic and non-isotropic) mapped onto
two concentric hyperspheres, which have the same radius, but are
not coinciding with each other. The fact that any object of the
isotropic space moves relative to the observer with the velocity of
light is eqivalent to an isotropic hypersphere which rotates with
the velocity in its “parental” space of higher dimensions.

Thus, the isotropic space (the home of photons) rotates, at each of its
points, with a linear velocity which is, basically, equal to the velocity of
light. This fact was unfortunately overlooked during one hundred years
commencing in Hermann Minkowski’s 1908 famous presentation pub-
lished posthumously†, in 1909, as Raum und Zeit [14]. Minkowski was
the first person who pointed out that the Special Theory of Relativity,

∗This is in contrast to the non-isotropic region (non-isotropic space) inhabited
with mass-bearing particles. In Minkowski’s space, as proven in the framework of the
Special Theory of Relativity, we can reduce any motion to rectilinear and uniform
form by transformations of the spatial coordinates and time. Therefore, a regular
observer can find a Galilean frame of reference everywhere in the positions allowed
for him in Minkowski’s space.

†This presentation was delivered by Minkowski, a few months before the pub-
lication, at the 80th Assembly of German Natural Scientists and Physicians, held
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introduced by Albert Einstein three years before, in 1905, is explained
in a four-dimensional space (space-time), where time is the fourth co-
ordinate axis x0 = ct, while the three-dimensional space of the observer
moves with the velocity of light along it. Now, we clearly understand
that this picture is not complete. It should be added to the light-speed
rotation of the isotropic space (the home of photons). In other words,
Minkowski’s formula x0= ct means not only the light-speed motion of
the observer’s space along the time axis, upstairs in Minkowski’s dia-
gram, but also the light-speed rotation of the surface of the isotropic
cone which illustrates the isotropic space therein. It is significant that
this understanding arrives on the anniversary of his Raum und Zeit,
which was published exactly one hundred years ago. Therefore, I dedi-
cate this paper to the memory of Hermann Minkowski (1864–1909), the
pathfinder of space-time geometry.
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